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We discuss a descriptive theory of decision making which has received much
attention in recent decades: prospect theory. We specifically focus on applying
the theory to problems with two attributes, assisted by different independence
assumptions. We discuss a process for solving decision problems using the theory
before applying it to a real life example of purchasing breakdown cover.

1. Introduction

In this paper, we apply prospect theory (PT) to multiattribute problems, specifically
those with two attributes. We will consider levels of independence between the
attributes in the problem and will split the corresponding value function into different
parts. When discussing independence between attributes in multiattribute expected
utility theory (EUT), Keeney and Raiffa [1976] use the term “utility independence”.
However, in this paper, we use the term “independence” to represent utility or value
independence, dependent on whether we are in the EUT or PT case. This can be
seen later in Definition 1.

Within PT, the reference point is chosen to be the point from which you consider
gains and losses. As such, the different parts of the value function are all based on
whether outcomes are better or worse than the reference point with respect to each
attribute. Following this, we will design a process which can be used to effectively
and efficiently solve a multiattribute decision problem. We show how this can be
applied to a real-life problem of purchasing breakdown cover.

We will begin by covering some background information in Section 2, introducing
notation and explaining how EUT deals with multiattribute problems. We also
introduce PT and how it is applied to single attribute problems. In Section 3, we
derive formulas for applying PT to multiattribute problems under different levels of
independence. Following this, in Section 4, we introduce a standard process which
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can be used to solve multiattribute decision problems. We illustrate the approach
with an example of purchasing breakdown cover in Section 5.

2. Background

We begin by introducing some definitions and notation. The following notation is
based on [Starmer 2000, p. 334]. We define a prospect to consist of a set of outcomes
(e.g., x1, x2, . . . , xn) with probabilities corresponding to them (e.g., p1, p2, . . . , pn).
At this point, it should be made clear that prospects will be present for both EUT
and PT. A prospect simply represents what it is that we are considering and should
not be thought of as being linked exclusively to PT.

Notationally, we will consider prospects using capital letters (e.g., A, B, C) and
will consider probabilities using p with subscripts (e.g., p1, p2, p3). Therefore, an
example of a prospect is A = (x1, p1; x2, p2; . . . ; xn, pn). Here, (p1, p2, . . . , pn) is
a probability distribution (hence pi ≥ 0 and

∑n
i=1 pi = 1) and (x1, x2, . . . , xn) are

the associated outcomes. So, with prospect A as described above, we would expect
outcome xi with probability pi for i = 1, . . . , n. Interestingly, we can consider
some of the outcomes within a prospect to be prospects themselves. So, for example,
we could have prospects B, C and D with D = (B, 0.25; C, 0.75). This would yield
prospect B with probability 0.25 and prospect C with probability 0.75.

When comparing prospects A and B:
• A ≺ B denotes B is preferred to A.
• A 4 B denotes B is at least as preferable as A.
• A ∼ B denotes indifference between A and B.

We now discuss prospect theory (PT) in the single-attribute case, which we later
extend to be applicable to multiattribute decision problems. PT was introduced
by Daniel Kahneman and Amos Tversky [1979]. It was designed to be a direct
alternative to EUT, dealing with some of the issues where EUT fails to reflect the
preferences of the majority of individuals. In reflecting these attitudes, it is clear
that PT was designed as a descriptive theory.

PT is made up of two stages: an editing phase and an evaluation phase. The
editing phase of PT is designed to simplify the decision-making process. Using
several different rules and operations, the individual can change the prospects which
they have to choose between and eliminate any that should never be picked. After
the editing phase has been completed, the decision maker will then complete an
evaluation phase in which they will decide what the best decision will be for them,
based on their opinions and beliefs. Within the evaluation phase, there are two
main functions which are considered and combined to help evaluate each prospect
numerically: a decision-weighting function, represented by π(p), and a value
function, represented by v(x).
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The reference point in PT is of great importance as it allows us to choose a
neutral point and then consider better points as gains and worse points as losses.
This is because it was found in [Kahneman and Tversky 1979, pp. 268–269] that
individuals are risk-averse when it comes to gains, whereas they are risk-seeking
when dealing with losses. To reflect this, the value function is generally designed
to be concave above the reference point and convex below the reference point.

Now that we have introduced PT, we will discuss the independence assumptions
which we will later use in deriving the formulas for multiattribute PT. Note here that
we are going to denote the values the attributes can take by Y and Z. In this paper,
we will be focussing on the instances where we have certain levels of independence
between the attributes Y and Z. This independence is used in multiattribute EUT
for utility functions and later we will use it for multiattribute PT when we work
with value functions. We define it as follows:

Definition 1 (adapted from [Keeney and Raiffa 1976, pp. 226, 229] to be applicable
to PT).
• Y is independent of Z when conditional preferences for outcomes on Y given

z do not depend on the particular level of z.

• Y and Z are mutually independent attributes if Y is independent of Z and Z is
independent of Y.

We will now briefly discuss multiattribute EUT and explain how with certain
levels of independence, it is possible to construct a utility function which helps
to choose the best possible alternative for a decision problem. This focusses on
[Keeney and Raiffa 1976].

To begin with, we discuss how Keeney and Raiffa show that independence
between attributes can be represented effectively with an equation. This can be
found in [loc. cit., p. 144] where it is suggested that two strategically equivalent
utility functions can be linked by

u1(x)= h+ ku2(x) for all x . (1)

Now, let us consider the instance where Y is independent of Z. By the definition
of independence, this means that u(y, z0) and u(y, z1) are strategically equivalent
(i.e., u(y, z0)∼ u(y, z1)) for any z0, z1 ∈ Z. Due to this, we can represent the utility
function of any y ∈ Y and any z ∈ Z as a transformation of another utility function
of y ∈ Y and a different z′ ∈ Z. Namely

u(y, z)= g(z)+ h(z)u(y, z′) for any y ∈ Y and z ∈ Z, (2)

with the functions g and h only functions of z (i.e., constant in y). Following this,
we can say that an attribute Y is independent of Z if and only if (2) holds. This
will later be applied to PT and form the basis of the derivation of the formulas for
multiattribute PT.
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If we have two attributes which are mutually independent, we can use Theorem 5.2
from [loc. cit., p. 234] to evaluate the utility of any alternative. Similarly, if the
attributes only have Z independent of Y, we use Theorem 5.6 from [loc. cit., p. 244].
This briefly describes how EUT can be applied to multiattribute problems to assist
in choosing the best alternative in a decision problem. We will now show how PT
can be applied in a similar way.

3. Applying PT to multiattribute problems

As PT is the natural alternative to EUT and EUT has been applied to multiattribute
problems, it seems logical to apply PT to multiattribute problems. One method
which uses PT is the TODIM method [Gomes and Lima 1991]. This uses pairwise
comparisons over each alternative based on each attribute, choosing one attribute
to be the reference attribute. Other than that, a lot of the research in multiattribute
problems using prospect theory involves combining the theory itself with the theory
of fuzzy sets. The theory of fuzzy sets was introduced in [Zadeh 1979] and applied
to multiattribute problems by [Bellman and Zadeh 1970]. Combining prospect
theory with the theory of fuzzy sets will not be covered in this paper, research into
this area can be found in [Krohling and de Souza 2012; Liu et al. 2011; Wang and
Sun 2008].

There is limited research looking into applying PT in the same way as EUT
is applied to multiattribute decision problems in [Keeney and Raiffa 1976]. The
closest thing currently available is [Hu and Zhou 2009], which is described in
[Liu et al. 2011] as being a “multiple criteria decision-making method for the risk
decision-making problem based on prospect theory”. However, it still does not
produce a piecewise form of the value function and instead focusses on using the
weighting function from cumulative PT, introduced in [Tversky and Kahneman
1992]. Further research which uses PT methods with multiattribute problems can
be found in [Egozcue et al. 2014].

In introducing the theory, we begin by considering what the reference point will
be for each attribute Y and Z. Denote these as (y0, z0) and let v(y0, z0)= 0. In this
paper, we keep the reference point constant and as such, we do not include it in the
notation. It should be emphasised here how important the choice of reference point
is. Different choices of reference point have a significant impact on the outcome of
a decision problem. This can be seen later in Section 5.

We begin by defining strategic equivalence of two value functions (similarly to
[Keeney and Raiffa 1976, p. 144]) as follows:

Definition 2. Two value functions, v and v∗, are strategically equivalent, denoted as
v ∼ v∗, if and only if they imply the same preference ranking for any two prospects
or outcomes.
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Suppose we have two value functions, v and v∗, which are strategically equivalent.
We assume that there are constants h1, k1, h2, k2 with k1 > 0 and k2 > 0 such that

v(x)=
{

h1+ k1v
∗(x) if x < x0,

h2+ k2v
∗(x) if x 4 x0.

(3)

This is a natural assumption for the value functions v and v∗, because multiplica-
tion by a positive constant will not affect the preference ordering over outcomes
and neither will a transformation by an additive constant.

Similarly to the multiattribute EUT case, we can represent attribute Y being
independent of Z with the equation

v(y, z)=
{

c+1 (z)+ c+2 (z)v(y, z0) if y < y0,

c−1 (z)+ c−2 (z)v(y, z0) if y 4 y0,
(4)

and attribute Z being independent of Y with

v(y, z)=
{

d+1 (y)+ d+2 (y)v(y0, z) if z < z0,

d−1 (y)+ d−2 (y)v(y0, z) if z 4 z0.
(5)

Notice here the similarities with (3). For example, c+1 (z) and d+1 (y) are similar
to h1 in (3). Note that c+1 (z) is a function of z meaning it is constant in y, as is
required for the value function which is only a function of y. The same logic applies
for the rest of the c and d values in (4) and (5) respectively.

3.1. Working with mutually independent attributes. To begin with, we are going
to consider the case where we have attributes Y and Z which are mutually indepen-
dent. Assuming this, we are going to loosely follow the proof for the multiattribute
EUT formula in [Keeney and Raiffa 1976, p. 234–235] but apply it to PT.

Y and Z being mutually independent means we can represent the independence
using (4) and (5). Substituting y0 into (4) gives that c+1 (z) = c−1 (z) = v(y0, z).
This is to retain a level of continuity and to ensure that the limit as y tends to y0

from above or below is the same. Then, consider a value y1 such that y1 � y0 and
substitute this value into (4) to get

v(y1, z)= v(y0, z)+ c+2 (z)v(y1, z0) =⇒ c+2 (z)=
v(y1, z)− v(y0, z)

v(y1, z0)
. (6)

Similarly, considering a value y−1 with y−1 ≺ y0 and substituting this into (4) gives

v(y−1, z)= v(y0, z)+c−2 (z)v(y−1, z0) =⇒ c−2 (z)=
v(y−1, z)− v(y0, z)

v(y−1, z0)
. (7)

Notice that both constants c+2 (z) and c−2 (z) are positive as is required in (3). The
function c−2 (z) is positive as both the numerator and denominator are negative as
v(y0, z0)= 0, so v(y−1, z0) < 0.
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Now that we have evaluated the values of the constants c+1 (z), c−1 (z), c+2 (z) and
c−2 (z), we can substitute these back into (4) to get

v(y, z)=


v(y0, z)+

(
v(y1, z)−v(y0, z)

v(y1, z0)

)
v(y, z0) if y < y0,

v(y0, z)+
(
v(y−1, z)−v(y0, z)

v(y−1, z0)

)
v(y, z0) if y 4 y0.

(8)

Similar logic can be used to rewrite (5) as

v(y, z)=


v(y, z0)+

(
v(y, z1)−v(y, z0)

v(y0, z1)

)
v(y0, z) if z < z0,

v(y, z0)+
(
v(y, z−1)−v(y, z0)

v(y0, z−1)

)
v(y0, z) if z 4 z0.

(9)

Evaluating (9) at y1 for any point z ∈ Z gives

v(y1, z)=


v(y1, z0)+

(
v(y1, z1)−v(y1, z0)

v(y0, z1)

)
v(y0, z) if z < z0,

v(y1, z0)+
(
v(y1, z−1)−v(y1, z0)

v(y0, z−1)

)
v(y0, z) if z 4 z0.

(10)

Similarly, evaluating (9) at y−1 for any point z ∈ Z gives

v(y1, z)=


v(y−1, z0)+

(
v(y−1, z1)−v(y−1, z0)

v(y0, z1)

)
v(y0, z) if z < z0,

v(y−1, z0)+
(
v(y−1, z−1)−v(y−1, z0)

v(y0, z−1)

)
v(y0, z) if z 4 z0.

(11)

Substituting (10) and (11) into (8) and simplifying leads to the following theorem
for calculating the value function for a multiattribute prospect theory problem:

Theorem 3. For attributes Y and Z which are mutually independent, the value
function required for multiattribute prospect theory for any point (y, z) with y ∈ Y
and z ∈ Z can be evaluated as

v(y, z)= v(y0, z)+v(y, z0)

+v(y0, z)v(y, z0)

×



(
v(y1, z1)−v(y1, z0)−v(y0, z1)

v(y0, z1)v(y1, z0)

)
if y < y0, z < z0,(

v(y1, z−1)−v(y1, z0)−v(y0, z−1)

v(y0, z−1)v(y1, z0)

)
if y < y0, z 4 z0,(

v(y−1, z1)−v(y−1, z0)−v(y0, z1)

v(y0, z1)v(y−1, z0)

)
if y 4 y0, z < z0,(

v(y−1, z−1)−v(y−1, z0)−v(y0, z−1)

v(y0, z−1)v(y−1, z0)

)
if y 4 y0, z 4 z0.

(12)
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So, provided we have mutual independence, this theorem allows us to assign a
value to any alternative (y, z) for any y ∈ Y and z ∈ Z. The values in the piecewise
function which are the coefficients of the v(y0, z)v(y, z0) term are similar to the
constant kYZ in the EUT case [Keeney and Raiffa 1976, p. 234, Theorem 5.2]. In
fact, if you were to choose the reference point as the worst possible values in Y
and Z, you would find that you are only in the top part of the piecewise function of
Theorem 3. This would give no significant differences between the utility function
in EUT and the value function in PT as all outcomes would be considered as gains.
As such, everyone would display risk-aversion to all options, as is the case in EUT.
This shows how the significant difference in the theories results from the use and
choice of a reference point.

In deriving this formula, we assigned the reference point to be (y0, z0). However,
suppose we decide to change the reference point to another point (y, z) for any y ∈Y
and z∈Z. This would then potentially need different points y1, y−1, z1, z−1 to be cho-
sen, which changes the constant term. So, an individual who has the same preference
ordering for each attribute could change their decision using this formula based on
the reference point that they choose. This shows how important the reference point is.

3.2. One independent attribute. Let us consider the case where we only have one
attribute being independent of the other. Without loss of generality, we assume that
attribute Z is independent of Y, meaning we can write the value function of y and
z (with reference point (y0, z0)) in the form of (5). From here, we will use similar
steps as in the proof of Theorem 5.6 in [Keeney and Raiffa 1976, pp. 244–245].

We begin with (5) and choose z1 and z−1 with z1 � z0 � z−1. They are chosen to
satisfy the following equations which fix the origin and unit of measure of v(y0, z):

v(y0, z0)= 0, (13)

v(y0, z1)= 1, (14)

v(y0, z−1)=−1. (15)

We can now evaluate (5) at the point z = z0 for any value of y ∈ Y which leads
to (using (13))

d+1 (y)= d−1 (y)= v(y, z0). (16)

This can now be combined with (5) to give

v(y, z)=
{
v(y, z0)+ d+2 (y)v(y0, z) if z < z0,

v(y, z0)+ d−2 (y)v(y0, z) if z 4 z0.
(17)

Now evaluate (17) at the points z = z1 and z = z−1. Using (14) and (15), we get

d+2 (y)= v(y, z1)− v(y, z0), (18)

d−2 (y)= v(y, z0)− v(y, z−1). (19)
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Notice here that we have d+2 (y) > 0 and d−2 (y) > 0, as is required in the
assumption in (3). Substituting these into (17) and rearranging leads to the following
theorem.

Theorem 4. For attributes Y and Z with Z independent of Y but without Y being
independent of Z, the value function required for multiattribute prospect theory for
any point (y, z) with y ∈ Y and z ∈ Z can be evaluated as

v(y, z)=
{
v(y, z0)[1− v(y0, z)] + v(y, z1)v(y0, z) if z < z0,

v(y, z0)[1+ v(y0, z)] − v(y, z−1)v(y0, z) if z 4 z0.
(20)

If an individual is going to use Theorem 4 to help solve a multiattribute problem,
they are required to specify a few values initially to fix the unit of measure for each
of the value functions. This is something which is also done in the EUT case with
one independent attribute [Keeney and Raiffa 1976, p. 244, Theorem 5.6]. We have
already fixed the unit of measure for v(y0, z) for any z ∈ Z. However, we still need
to specify a unit of measure for the other value functions in formula (20), namely
v(y, z0), v(y, z1) and v(y, z−1).

At this point, we have already specified one value for each of these functions
(each of them evaluated at y0). Another two points are required for each value
function to specify the unit of measure. This is because v(y, z) is, by definition,
different for gains and losses. Therefore, we must fix the unit of measure for y � y0

and also for y ≺ y0. We can do this in a similar way to the EUT case.
For fixing the unit of measure of v(y, z0), we find points y2 � y0 � y−2 ∈ Y and

z2� z0� z−2 ∈Z such that the individual is indifferent between (y0, z2) and (y2, z0)

and between (y0, z−2) and (y−2, z0). The indifference means that v(y0, z2) =

v(y2, z0) and v(y0, z−2)= v(y−2, z0). Then, whether dealing with gains or losses
in the attribute Y, we will have fixed the unit of measure for v(y, z0). The same can
then be done for v(y, z1) and v(y, z−1) to fix their unit of measure. Assuming that
such points exist is a trivial assumption to make as if this is not the case, you are
in a much simpler situation and do not require the theories introduced in this paper.

Clearly, if attribute Y is independent of Z instead of Z being independent of Y,
(20) would have y and z swapped, with points y1, y−1 chosen instead of z1, z−1.
Therefore, Theorem 4 allows us to evaluate a value for all alternatives y, z with a
weaker requirement of only one attribute being independent of the other. However,
in exchange for this, there are more values that an individual will have to specify.

3.3. Calculating the coefficients for multiattribute PT. In this section, we are
going to focus on methods that can be used to evaluate the coefficients of the
value functions in (12). Within this, let us suppose that the individual has already
chosen the forms that their value functions will take. This means they will have
already specified v(y, z0) for all y ∈ Y and v(y0, z) for all z ∈ Z. This means we
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have four points which remain to be specified: v(y1, z1), v(y1, z−1), v(y−1, z1) and
v(y−1, z−1) for appropriately chosen y1, y−1, z1, z−1. But how do we make these
choices of points and resulting values?

Choosing what points to use as y1, y−1, z1 and z−1 is a free choice for the
decision maker, provided that they satisfy y1 � y0 � y−1 and z1 � z0 � z−1. This
is because the important consideration here is the values associated with them, not
the actual points. The values then form the coefficient of the value functions in the
piecewise part of (12).

Let us initially focus on working out v(y1, z1). A simple way to do this is to
attempt to find equivalences. For example, the decision maker should consider
what value of y ∈ Y means that they are indifferent between (y1, z1) and (y, z0).
As we have already specified the value function v(y, z0), we now have a value for
v(y1, z1). The same can be done for fixing Y at y0 and considering what value of
z ∈ Z leads to indifference between (y0, z) and (y1, z1). A sensible check which
the decision maker can complete is to do both and ensure that the values are the
same (or at least very similar). This simple method allows the decision maker to
accurately fix the coefficients of their value function in (12) and ensures that the
values chosen are in line with their beliefs.

If the value functions v(y, z0) and v(y0, z) have not already been specified, this
leads to a slightly more complicated situation. In this case, equivalence relations
would not be very useful and as such, it is likely that the decision maker will simply
have to choose these values. However, logic checks can be used to ensure that the val-
ues chosen are appropriate. For example, v(y1, z1) should be greater than v(y1, z0)

provided that z1 � z0. So, checking that more preferred values are given a higher
value is a simple logic check. Furthermore, the decision maker could use the equiva-
lence relations stated earlier once the value functions have been fully specified. This
will then ensure that the values that they have chosen are appropriate for their beliefs.

4. Process of solving a multiattribute decision problem

We now outline a “standard” process which can be used to help an individual solve a
decision problem with two attributes. The aim of this is to make it quicker and easier
for the individual to solve their decision problem and to ensure the best outcome
based on their beliefs. We suggest that the process of solving a multiattribute
decision problem can be broken down into a few stages. They are
• formulating the problem,
• independence and choosing a theory,
• applying the theory of choice.

We will now discuss the first two stages in the following two subsections. We will
not discuss applying the theory of choice as this is a very simple process once the
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previous two stages have been completed. However, when applying the theory of
choice, logic checks should be carried out to ensure that the individual is assigning
utilities/values in line with their underlying preferences and beliefs.

4.1. Formulating the problem. Formulating a multiattribute decision problem
involves several stages which all need to be completed fully and carefully. In
formulating the problem in this way, it will save time later in evaluating alternatives
and will ensure the individual fully understands the decision problem they are faced
with. At this point, we are going to assume that we know the individual who is
faced with the decision problem.

First, we need to establish what the decision problem actually is. What are the
alternatives that the individual is aiming to choose between? For example, the
alternatives could be different treatments which a doctor is choosing between to
give to a patient.

Following this, we need to be clear as to what is required as the outcome from the
decision problem. This could involve choosing a single best alternative, choosing
an acceptable region of alternatives or simply giving a ranking for all of the possible
alternatives. This helps the individual understand the problem they are faced with
and ensures they are getting the output that they desire.

It should also be specified to the decision maker whether there are any probabili-
ties involved in the decision problem. With probabilities involved, this would then
be an extra consideration for the decision maker to have when deciding between
EUT and PT. This is because they will have to consider the probability distribution
itself and consider whether the weighting function in PT better reflects how they
would view the probabilities.

We now need to understand what the attributes are that we are using to compare
the alternatives. In this paper, we have focussed on the case where there are two
attributes. It is important at this point to understand what these attributes actually
mean and the possible values they could take in the decision problem. Knowing the
domain of values for each attribute allows us to accurately scale the utility/value
function based around the best and worst possible outcomes, according to the
individual. Without this, mistakes could be made in that the individual may expect
a much higher value for an attribute than is actually possible. Therefore, it is vital
that the individual understands the possible values each attribute can take.

The individual should also be clear as to whether the attributes are continuous or
discrete. For example, a monetary attribute is continuous to two decimal places. So,
if the decision problem has two of the possible outcomes as £10.00 and £15.00, we
understand the values that would go between them. As such, it is conceivable to have
£12.50 as the reference point if we were using PT. However, if an attribute is consid-
ered to be discrete, this would not be the case. For example, suppose the attribute is
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different types of fruit and that two of the possible outcomes are apple and orange.
Clearly, it is not feasible to choose a reference point between these two outcomes.

It is also useful to understand a rough preference ordering for the attributes from
the decision maker. For some attributes, this is simpler than others. For example, a
monetary attribute is one where it is easy to suggest that an individual will simply
aim to minimise expenditure or maximise income. However, other attributes such
as colours of paint are much more subjective.

It could be suggested that a rough preference ordering is not needed at this stage.
However, we believe there to be a couple of reasons why it would be useful to
consider this now. First, it gives us a basis on which to ensure the individual is
acting logically. Secondly, it is useful at this stage to allow for cancellation. Once
the preference ordering has been considered, it may be that some alternatives are
better than others for both attributes. If this is the case (and the decision problem
is simply choosing a single best decision), then the alternative which is worse for
both attributes could be ignored. So, if we preferred blue paint to red paint and
blue was cheaper than red, then the red paint would be dominated and removed
from the decision problem.

We have now completed the process of formulating the problem. This was done
with the aim of simplifying the process later and assisting the decision maker in
understanding the problem with which they are faced.

4.2. Independence and choosing a theory. Now that we have formulated the deci-
sion problem, we have to consider whether either of the attributes are independent of
each other. This can be tested in the following way. Consider two particular values
of Y, say y1, y2 ∈ Y, that you can specify a preference and strength of preference
between. Now consider any value z1 ∈ Z. What is your preference and level of
preference between (y1, z1) and (y2, z1)? Now suppose that we choose a different
z2 ∈ Z with z2 6= z1. What is your preference and level of preference between
(y1, z2) and (y2, z2)? If the preference ordering and strength of preference remains
the same between the two options, irrespective of the value of Z, then we can say
that Y is independent of Z. As you would expect, to show that Z is independent of
Y uses a similar logic, but with the y and z values switched in the above.

However, can you be 100% sure of independence without testing the indifference
for all of the possible values of Y or Z? There is no guarantee that the indifference
will necessarily hold for all Y and Z. Unfortunately, attempting to test this for all
possible values of Y and Z would take a significant amount of time and potentially
be impossible. As such, it is easier to either test for a couple of potential Y, Z
combinations or to simply make an assumption.

It is worth considering at this point how individuals actually face multiattribute
decision problems — do most consider attributes as independent? Clearly the test
above can be used to see whether independence is a reasonable assumption. The
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theory level of independence number of choices

EUT mutual independence 2n+ 2
single independence 3n+ 1

PT mutual independence 2n+ 8
single independence 3n+ 7

Table 1. Comparison of the effect of independence on the number
of choices for both methods.

advantage of it is that it creates a simpler model from which to evaluate the possible
alternatives. Without this assumption, fitting a model to evaluate how good (or
bad) each alternative is becomes difficult. One possible alternative is to assume
independence and perform logic checks on the outcome to ensure rational decisions
have been made.

Suppose that we are in a situation where we assume some level of independence
between the attributes. A key consideration when choosing what level of indepen-
dence to assume is the number of choices that will be required. Clearly, this will be
different for EUT and PT and for different levels of independence. Let us consider
the general case of having attributes Y and Z, with n different alternatives to choose
between. We begin by considering the case of mutual independence in PT and
following Theorem 3 from Section 3.1.

To begin with, we make a choice of what the individual’s reference points y0 ∈Y
and z0 ∈ Z are. Once the individual has made these two choices, we have to choose
y1, y−1 ∈ Y, z1, z−1 ∈ Z that satisfy y1 � y0 � y−1 and z1 � z0 � z−1. Following
this, the individual will make eight choices to evaluate v(yi , z j ) for i, j =−1, 0, 1
using the methods in Section 3.3 (note, we already have v(y0, z0)= 0). This fixes
the constant values in the piecewise function of Theorem 3.

The individual will now need to specify conditional value functions v(y0, z) for
all z ∈ Z and, similarly, specify v(y, z0) for all y ∈ Y. This could be considered
to be four choices of value functions for each domain of Y and Z. However, they
would then need to be evaluated for all appropriate y ∈ Y, z ∈ Z that we have not
already specified. As such, we suggest that evaluating v(y, z0) for all y ∈Y will be
n− 3 choices and similarly for v(y0, z) for all z ∈ Z.

The individual is now ready to evaluate v(y, z) for any y ∈ Y and any z ∈ Z and
choose the pairing (y, z) with the highest value. To get to this point, the individual
has made 2+4+8+2(n−3)= 2n+8 choices. Applying similar logic to the other
three cases gives us the number of choices for each case; see Table 1.

Notice here that when n is not significantly large, there is not a huge difference
between the different levels of independence. However, if n gets large, this is
where having mutual independence would save significantly more time. We can
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also notice here that the number of choices is unlikely to have an impact when
choosing between EUT and PT. These extra choices for PT can be considered to be
a trade-off for the potentially more realistic modelling that PT provides.

When choosing between EUT and PT, it is worth considering whether there are
probabilities involved in the decision problem. With probabilities involved, the deci-
sion can become more complicated. For example, if the probability distribution has
some events occurring with certainty or with very low probabilities, the weighting
function in PT treats these differently [Kahneman and Tversky 1979, pp. 280–284],
making the decision more complicated. However, if the probabilities are away from
0 or 1, there is no significant difference between the probabilities and the weighting
function and as such, the choice remains the same as without probabilities.

For now, we are going to consider that we do not have probabilities involved and
compare the theories at a base level. The main difference comes in that PT has a
reference point from which to consider gains and losses, whereas EUT does not.
As such, if the alternatives contain gains and losses, PT is likely to be more useful
as it was designed to reflect how individuals deal with gains and losses better than
EUT. On the other hand, EUT is designed as a normative theory and as such, you
would expect that the decision made will be logical and rational. If we use PT, the
decision can be affected by how most people act.

Once the individual has decided the level of independence and which of the
theories they prefer, we are ready to apply the theory of choice and get the outcome
of the decision problem.

5. Solving multiattribute problems: breakdown cover

5.1. Introducing the example: purchasing breakdown cover. Let us consider a
real-life application where an individual is aiming to purchase breakdown cover for
their car. At this point, it should be emphasised that the policies that we will be
comparing are for vehicle cover for a general vehicle, with the prices a basic quote.
If an individual were to actually purchase breakdown cover, they would be required
to publish details of the vehicle that they have. Furthermore, we are only going to
consider vehicle breakdown cover as quoted by the AA1 and the RAC2 on the 26th
February 2018.

When deciding upon which cover to purchase, there are two things the individual
must consider: the cost and the extent of the cover. This is therefore an example
of a problem with two attributes to consider, as we require. To simplify notation,
we are going to assign the cost per month attribute to be represented by Y and the
level of cover attribute to be represented by Z.

1 https://www.theaa.com/breakdown-cover/
2 https://www.rac.co.uk/breakdown-cover/

https://www.theaa.com/breakdown-cover/
https://www.rac.co.uk/breakdown-cover/
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policy number level of cover cost per month notation

P0 no cover £0 (£0, 0)
P1 RA £5.50 (−£5.50, 1)
P2 RA and KR £7.50 (−£7.50, 2)
P3 RA and AH £8.00 (−£8.00, 3)
P4 RA, AH and NR £10.00 (−£10.00, 4)
P5 RA, NR and OT £12.00 (−£12.00, 5)
P6 RA, AH and KR £12.00 (−£12.00, 6)
P7 RA, NR and KR £12.00 (−£12.00, 7)
P8 RA, AH, NR and OT £12.50 (−£12.50, 8)
P9 RA, AH, NR and KR £13.50 (−£13.50, 9)
P10 RA, AH, NR, OT and KR £14.50 (−£14.50, 10)

Table 2. Summary of coverage costs for roadside assistance (RA),
key replace (KR), at home (AH), national recovery (NR), and
onward travel (OT).

Clearly, the attribute for cost is one which is going to be fairly simple to evaluate
as it is a quantitative one and utilities/values can be based off the cost. However, the
extent of the cover needs further specification. Using the AA and the RAC as the
potential providers, the possible policies we are going to compare and evaluate can
be seen in Table 2. To simplify the notation, we have used a numbering system to
represent each level of cover. For policy PI where I ∈ {0, 1, 2, . . . , 10}, we represent
the corresponding level of cover for that policy with the number I. Note that the
cost per month is a negative value as it is an amount of money that the individual
will spend on the cover. This is all summarised in Table 2.

Full details of what is included in each level of cover can be found in footnotes 1
and 2. We are going to assume that individuals prefer to minimise expenditure (and
hence maximise the attribute of money). Furthermore, we will assume individuals
prefer having a higher level of cover. However, differences in preferences between
things such as key replace and at home cover will need to be specified by the
individual in the stating of their utilities/values.

A significant difference between attributes Y and Z comes in that Y is a continuous
attribute (to 2 decimal places), whereas Z is a discrete attribute. This has a significant
impact on the choice of the reference point for PT, as was discussed in Section 4.1.

5.2. Formulating the problem. We are now going to apply the process discussed
in Section 4 to the example of purchasing breakdown cover for a vehicle. In the
introduction to the example, we have completed many of the tasks required in the
formulating of the problem. We (the authors) will be the ones who will be faced
with the decision problem and hence the outcome will be based on our preferences
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and beliefs. We have specified that we are aiming to choose a single best policy
from the options P0–P10, have identified that the attributes are cost per month (Y)
and level of cover (Z), and identified the relevant values they can take.

The only part of formulating the problem which we have not completed in the
introduction is specifying a rough preference ordering between the values that the
attributes can take. For attribute Y which represents cost per month, it is trivial
to suggest that the decision maker will aim to reduce the expenditure and hence
maximise the money they have. However, for attribute Z which represents level of
cover, it is slightly more difficult. While we can easily say that the decision maker
would prefer more cover to less cover, it is hard to distinguish between some of the
options which have similar levels of cover but with slightly different things involved.

Let us suppose we have our rough preference ordering as follows:

0≺ 1≺ 2≺ 3≺ 6≺ 7≺ 4≺ 5≺ 9≺ 8≺ 10.

This is built on the rough idea that we prefer onward travel (OT) to national recovery
(NR) to at home (AH) cover to key replace (KR). Now that we have specified this
rough preference ordering, we can simplify the problem significantly. For example,
we can remove P9 as it is dominated by P8 due to having a lower cost per month
and a more preferable level of cover. Similarly, P6 and P7 are dominated by P4.
As such, we can remove policies P6, P7 and P9 from the problem and we are left
with eight different policies to choose between. We have now fully formulated the
problem and can move on to the next stage.

5.3. Independence and choosing a theory. Now that we have formulated the prob-
lem, we need to consider whether we have any independence between the attributes
Y and Z. At this point, we can notice we have eight alternatives and, as such, the
difference in the number of choices between the different methods is not significant.
Therefore, we should base the choice of independence on the tests discussed at the
start of Section 4.2. For this particular example, we are going to cover both levels
of independence assumption and compare the outcomes.

We are now going to move on to applying the theory. Usually at this stage,
we would make a decision on whether we want to use EUT or PT. However, we
are going to apply both theories for each case of independence and compare the
different outcomes.

5.4. Applying the theories. In this section we will be applying the multiattribute
PT formulas to the example. Within this, we will analyse the impact that each choice
we make will have and will compare the outcomes to those when using multiattribute
EUT. Applying multiattribute EUT to the example is presented in Appendix A.

5.4.1. Mutually independent attributes. We will begin by considering the attributes
as mutually independent and look to apply Theorem 3 and PT to the example.
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The instance of mutually independent attributes and applying EUT can be seen in
Appendix A.1. An interesting consideration is how the choice of reference point
impacts the decision that is made. This is something we will explore within this
section. With the eight policies we are considering, we know that we will have 24
(= 2n+ 8) choices that we need to make.

We consider three different choices for the reference points. They are as follows:

Choice 1: y0 =−£10.00, z0 = 4.

Choice 2: y0 =−£12.00, z0 = 3.

Choice 3: y0 =−£9.00, z0 = 5.

At this point, we can decide on what points we want to choose as y1, y−1, z1,
z−1 with y1 � y0 � y−1 and z1 � z0 � z−1. We will choose these points now and
use the same points for each of the choices of reference points. We will choose
y1 = −£7.50, y−1 = −£12.50, z1 = 8 and z−1 = 2. As in the EUT case, these
choices are arbitrary.

However, unlike the EUT case, we choose what values we give to them rather
than in the EUT case where it had utility 1. The values that are chosen have
an impact on the coefficient of the v(y0, z)v(y, z0) term (which could be con-
sidered as an interaction term) and so have a similar impact to the impact that
the constants chosen in the EUT case have. These will therefore need to be
specified for each choice of reference point. The values chosen can be seen in
Appendix B.1.

Now that we have decided upon these values, we are ready to state the conditional
value functions for each attribute Y and Z. In other words, we are now going to
decide the values v(y, z0) for all y ∈ Y and v(y0, z) for all z ∈ Z. The choices
made were based on the previously stated preference ordering and can be found in
Appendix B.1.

After these values have been stated, we can now evaluate the values of each of
the policies using (12) from Theorem 3. This then gives us the following:

v(policy)= v(y, z) choice 1 choice 2 choice 3

P0= (£0, 0) 0.645 −3.501 −0.663
P1= (−£5.50, 1) 0.401 −0.973 −0.370
P2= (−£7.50, 2) 0.200 .750 −0.350
P3= (−£8.00, 3) 0.252 1.350 −0.276
P4= (−£10.00, 4) 0.000 1.080 −0.632
P5= (−£12.00, 5) −0.038 0.800 −0.750
P8= (−£12.50, 8) 0.400 0.700 −0.150

P10= (−£14.50, 10) 0.972 −0.238 1.210
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We have highlighted the best policy under each choice in bold. We can see
that with choices 1 and 3 for the reference point, we choose policy P10 to be the
best option. However, when we have choice 2 for the reference point, we choose
policy P3. In fact, for choice 2, policy P10 was one of the worst options. This
is clearly significantly different and shows how changing the reference point can
impact what decision is made regarding an “acceptable” level of cover for the
appropriate cost.

5.4.2. One independent attribute. We are now going to focus on the instance where
we have independence in one direction. In this paper, we will focus on the case
where Z is independent of Y. This means we will be applying Theorem 4 from
Section 3.2 to the breakdown cover example. As such, it will require 31 (= 3n+ 7)
choices to be made by the decision maker, more than has been required in any other
circumstance. We begin by deciding on the reference point (y0, z0). When making
this decision in the mutual independence case, we considered several different
choices of reference point and considered the impact they would have on the final
decision. Therefore, we are once again going to consider the same three pairs of
reference points and compare the outcomes.

Following the choice of reference point, we must choose z1, z−1 ∈ Z such that
z1 � z0 � z−1. These choices need to be carefully made as we need z1 such that
v(y0, z1)= 1 and z−1 such that v(y0, z−1)=−1. Let our choices be the following:

Choice 1: y0 =−£10.00, z0 = 4, z1 = 8, z−1 = 2.

Choice 2: y0 =−£12.00, z0 = 3, z1 = 5, z−1 = 1.

Choice 3: y0 =−£9.00, z0 = 5, z1 = 8, z−1 = 3.

Once these choices have been made, we need to fix the units of measure of v(y, z0),
v(y, z1) and v(y, z−1). As with the other theories, this is done by finding equiva-
lences. So, for example, to fix the unit of measure for v(y, z0), we need to choose
y2, y−2 ∈ Y and z2, z−2 ∈ Z such that (y0, z2)∼ (y2, z0) and (y0, z−2)∼ (y−2, z0).
Similarly, we need y3, y−3, y4, y−4 ∈ Y and z3, z−3, z4, z−4 ∈ Z such that we have
(y3, z1) ∼ (y0, z3), (y−3, z1) ∼ (y0, z−3), (y4, z−1) ∼ (y0, z4) and (y−4, z−1) ∼

(y0, z−4). The choices we will make for each choice of reference point are:

Choice 1: z2 = z3 = z4 = 5, z−2 = z−3 = z−4 = 3,

y2 =−£8.00, y3 =−£12.00, y4 =−£6.00,

y−2 =−£12.50, y−3 =−£14.50, y−4 =−£9.00.

Choice 2: z2 = z3 = z4 = 4, z−2 = z−3 = z−4 = 2,

y2 =−£10.00, y3 =−£13.50, y4 =−£8.00,

y−2 =−£13.50, y−3 =−£16.50, y−4 =−£10.00.
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Choice 3: z2 = z3 = z4 = 10, z−2 = z−3 = z−4 = 4,

y2 =−£7.50, y3 =−£8.00, y4 =−£2.50

y−2 =−£11.00, y−3 =−£13.00, y−4 =−£8.00.

Notice here that similar values of attribute Z are chosen to formulate equivalences
with. This is because Z is a discrete attribute with only eight conceivable outcomes so
equivalences would be difficult to work with if changing Z at all times. Furthermore,
as Y is continuous to two decimal places, we can fix Z at certain levels and change
the attribute Y to allow for the required equivalence relations.

Now that these choices have been made, we can state the conditional value
functions v(y0, z) for all z ∈Z and v(y, z−1), v(y, z0), v(y, z1) for all y ∈Y. These
can be found in Appendix B.2.

Now that all these have been specified, we are in a position to be able to evaluate
the value of each of the policies. The results are as follows:

v(policy)= v(y, z) choice 1 choice 2 choice 3

P0= (£0, 0) 0.735 1.100 0.715
P1= (−£5.50, 1) 0.413 0.900 0.100
P2= (−£7.50, 2) −0.100 0.685 −0.725
P3= (−£8.00, 3) −0.020 0.750 −0.450
P4= (−£10.00, 4) 0.000 0.780 −0.695
P5= (−£12.00, 5) −0.140 1.000 −0.600
P8= (−£12.50, 8) 0.200 1.110 −0.100

P10= (−£14.50, 10) −0.375 0.475 −0.380

As we can see, in this situation, the best policy is P0 for choices 1 and 3 and P8
for choice 2. It is interesting to see here that the best policy for choices 1 and 3 is to
have no breakdown cover at all. Furthermore, for choice 2, policy P0 is very close to
being chosen as the best option. This clearly suggests that for this context, there is
an underlying attitude that losing money is worse than having a lower level of cover.

While choosing cheaper policies has an obvious financial benefit in the short
term, it could lead to financial problems in the long term if the vehicle encountered
problems. This is something we could potentially account for if we included
probabilities and the corresponding financial outlay if problems occurred. However,
it would reduce it to a single attribute problem in which the costs and corresponding
probabilities are difficult to construct.

6. Concluding remarks

In this paper, we have applied PT to multiattribute problems with different indepen-
dence assumptions. We have also introduced a process which can be followed to
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assist in effectively and efficiently solving a multiattribute decision problem. Using
these two developments allows an individual to apply PT to a decision problem
with two attributes. This is especially useful for problems where there are gains
and losses to consider with respect to certain attributes.

An example of where this can be useful is seen in Section 5 where we apply
the results of this paper to a real-life example of purchasing breakdown cover. If
you already had a certain level of breakdown cover, it is easy to see how you could
consider the different costs and levels of cover as gains and losses. This shows how
multiattribute PT can be useful in solving real-life problems. However, there is
a lot more further research which can be done into applying PT to multiattribute
problems.

First, extending PT so that it can be applied to problems with more than two
attributes is interesting. This may require different methods to be used, although
independence assumptions could still be useful. Secondly, research into the reference
point in PT will be interesting. Can the reference point be adapted so that you can
choose a set of values as a reference point? This would allow the individual to
select an acceptable region as their reference point and then consider gains and
losses from that set. Finally, this paper focusses on the instance where we have at
least a certain level of independence assumption between the attributes. Could PT
be adapted so that we do not require any independence between the attributes?

Appendix A: Breakdown cover EUT calculations

A.1. Mutually independent attributes — multiattribute EUT. Using multiattribute
EUT for this context of mutually independent attributes, we will be applying
Theorem 5.2 from [Keeney and Raiffa 1976, p. 234]. For this instance, we choose
y0 =−£14.50, y1 =−£12.00, y∗ = 0, z0 = 0, z1 = 4 and z∗ = 10.

We are now required to choose the values for the constants kY and kZ which
subsequently decide kYZ and k. These choices have a significant impact on the
overall utilities we assign to each of the policies. As such, we are going to con-
sider three possible pairs of values and see how changing these values affects the
overall utilities and decisions. The pairs of values we are going to consider are as
follows:

Choice 1: kY = 0.2, kZ = 0.35.

Choice 2: kY = kZ = 0.5.

Choice 3: kY = 0.6, kZ = 0.8.

So, with choice 1, we have that kYZ = 0.45 and k = 45
7 > 0, which implies that

the attributes Y and Z are complimentary. Choice 2 would give the formulas from
additive independence and would also imply there is no interaction between the
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attributes. Choice 3 would make kYZ =−0.4 and k =− 5
6 < 0, which implies the

attributes Y and Z are substitutes.
After specifying the values for the constants, we have now fully defined what

we need for the theorem and hence can begin to evaluate the utilities for all of the
policies. To do this, we are going to consider the conditional utility functions for
each of the attributes Y and Z and evaluate a utility for each alternative. We choose
the utility values as follows:

uY(−£14.50)= 0, uY(−£8.00)= 1.75,
uY(−£12.50)= 0.8, uY(−£7.50)= 1.9,
uY(−£12.00)= 1, uY(−£5.50)= 2.2,
uY(−£10.00)= 1.35, uY(£0)= 2.9,

uZ(0)= 0, uZ(4)= 1,
uZ(1)= 0.25, uZ(5)= 1.25,
uZ(2)= 0.4, uZ(8)= 1.6,
uZ(3)= 0.65, uZ(10)= 2.2.

The result of choosing these utility values and applying Theorem 5.2 is the following:

u(policy)= u(y, z) choice 1 choice 2 choice 3

P0= (£0, 0) 0.580 1.450 1.740
P1= (−£5.50, 1) 0.775 1.225 1.300
P2= (−£7.50, 2) 0.862 1.150 1.156
P3= (−£8.00, 3) 1.089 1.200 1.115
P4= (−£10.00, 4) 1.228 1.175 1.070
P5= (−£12.00, 5) 1.200 1.125 1.100
P8= (−£12.50, 8) 1.296 1.200 1.248

P10= (−£14.50, 10) 0.770 1.100 1.760

We have highlighted the best option for each choice in bold. We can see that
for choice 1, the best option is policy P8; for choice 2, the best option is policy P0
and for choice 3, the best option is P10. It is not a surprise to see one of the more
extreme options (i.e., P0 or P10) being the chosen option for choice 3 as this was
the instance where the attributes are substitutes.

A.2. One independent attribute — multiattribute EUT. We are now going to fo-
cus on the instance where we only have one attribute which is independent of
the other. For this paper, we are going to focus on the instance where we have Z
independent of Y. This involves applying Theorem 5.6 from [Keeney and Raiffa
1976, p. 244].
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We begin by choosing y0 ∈ Y and z0, z1 ∈ Z such that u(y0, z0) = 0 and
u(y0, z1) = 1. In this instance, we are going to choose y0 = −£14.50, z0 = 0
(as in the mutual independence case) and z1 = 4. Following this, we are required
to fix the unit of measure of u(y, z0) and u(y, z1). This comes from choosing
y2 ∈ Y, z2 ∈ Z such that (y0, z2) ∼ (y2, z0) and, similarly, y3 ∈ Y, z3 ∈ Z such
that (y0, z3) ∼ (y3, z1). Let us choose y2 = −£5.50, z2 = 3, y3 = −£12.00 and
z3 = 8.

Now that these decisions have been made, we are required to evaluate the
conditional utility functions u(y0, z) for all z ∈ Z and u(y, z0), u(y, z1) for all
y ∈ Y. To begin with, we assign the utilities u(y0, z) for all z ∈ Z and using these,
then assign the remaining u(y, z0) and u(y, z1) for all y ∈Y. The choices we make
are as follows:

u(y0, 0)= 0, u(y0, 4)= 1,
u(y0, 1)= 0.2, u(y0, 5)= 1.25,
u(y0, 2)= 0.45, u(y0, 8)= 1.6,
u(y0, 3)= 0.8, u(y0, 10)= 2.1,

u(−£14.50, z0)= 0, u(−£8.00, z0)= 0.45,
u(−£12.50, z0)= 0.1, u(−£7.50, z0)= 0.55,
u(−£12.00, z0)= 0.15, u(−£5.50, z0)= 0.8,
u(−£10.00, z0)= 0.25, u(£0.00, z0)= 1.25,

u(−£14.50, z1)= 1, u(−£8.00, z1)= 2.6,
u(−£12.50, z1)= 1.6, u(−£7.50, z1)= 2.7,
u(−£12.00, z1)= 1.8, u(−£5.50, z1)= 3.1,
u(−£10.00, z1)= 2.25, u(£0.00, z1)= 3.7.

Now that these choices have been made, we can calculate the utilities of each of
the policies and choose the one with the highest utility value. The corresponding
utilities are

u(P0)= 1.25, u(P4)= 2.25,

u(P1)= 1.26, u(P5)= 2.2125,

u(P2)= 1.5175, u(P8)= 2.5,
u(P3)= 2.17, u(P10)= 2.1.

We can see from this that when we have Z independent of Y, we choose policy
P8 to be the best policy. P8 was the same policy that we chose for choice 1 of the
mutually independent EUT case but different from all other choices we have made
so far. This shows how different choices can come from the same decision maker
dependent on how they formulate the problem and choose independence.
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Appendix B: Breakdown cover PT choices

B.1. Mutually independent attributes.

Choice 1: v(y1, z1)= 1.7, v(y1, z0)= 0.8, v(y1, z−1)= 0.2,

v(y0, z1)= 0.85, v(y0, z0)= 0, v(y0, z−1)=−0.7,

v(y−1, z1)= 0.4, v(y−1, z0)=−0.5, v(y−1, z−1)=−1.3.

Choice 2: v(y1, z1)= 2.5, v(y1, z0)= 1.6, v(y1, z−1)= 0.75,

v(y0, z1)= 1.4, v(y0, z0)= 0, v(y0, z−1)=−0.3,

v(y−1, z1)= 0.7, v(y−1, z0)=−0.4, v(y−1, z−1)=−0.7.

Choice 3: v(y1, z1)= 1.1, v(y1, z0)= 0.65, v(y1, z−1)=−0.35,

v(y0, z1)= 0.4, v(y0, z0)= 0, v(y0, z−1)=−0.95,

v(y−1, z1)=−0.15, v(y−1, z0)=−0.9, v(y−1, z−1)=−1.7.

Our choices for v(y, z0) for all possible y ∈ Y are as follows:

Choice 1: v(£0, z0)= 1.9, v(−£10.00, z0)= 0,

v(−£5.50, z0)= 1.35, v(−£12.00, z0)=−0.35,

v(−£7.50, z0)= 0.8, v(−£12.50, z0)=−0.5,

v(−£8.00, z0)= 0.65, v(−£14.50, z0)=−1.05.

Choice 2: v(£0, z0)= 3.1, v(−£10.00, z0)= 0.7,

v(−£5.50, z0)= 2.35, v(−£12.00, z0)= 0,

v(−£7.50, z0)= 1.6, v(−£12.50, z0)=−0.4,

v(−£8.00, z0)= 1.35, v(−£14.50, z0)=−1.1.

Choice 3: v(£0, z0)= 1.8, v(−£10.00, z0)=−0.25,

v(−£5.50, z0)= 1.1, v(−£12.00, z0)=−0.75,

v(−£7.50, z0)= 0.65, v(−£12.50, z0)=−0.9,

v(−£8.00, z0)= 0.45, v(−£14.50, z0)=−1.6.

Similarly, we can state our values v(y0, z) for all z ∈ Z as:

Choice 1: v(y0, 0)=−1.9, v(y0, 3)=−0.45, v(y0, 8)= 0.85,

v(y0, 1)=−1.25, v(y0, 4)= 0, v(y0, 10)= 1.8.

v(y0, 2)=−0.7, v(y0, 5)= 0.3,
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Choice 2: v(y0, 0)=−1.45, v(y0, 3)= 0, v(y0, 8)= 1.4,

v(y0, 1)=−0.9, v(y0, 4)= 0.45, v(y0, 10)= 2.1.

v(y0, 2)=−0.3, v(y0, 5)= 0.8,

Choice 3: v(y0, 0)=−2.15, v(y0, 3)=−0.7, v(y0, 8)= 0.4,

v(y0, 1)=−1.35, v(y0, 4)=−0.4, v(y0, 10)= 1.1.

v(y0, 2)=−0.95, v(y0, 5)= 0,

B.2. Single independence. We evaluate v(y0, z) for all z ∈ Z as:

Choice 1: v(y0, 0)=−1.7, v(y0, 3)=−0.6, v(y0, 8)= 1,

v(y0, 1)=−1.25, v(y0, 4)= 0, v(y0, 10)= 1.45.

v(y0, 2)=−1, v(y0, 5)= 0.4,

Choice 2: v(y0, 0)=−1.5, v(y0, 3)= 0, v(y0, 8)= 1.4,

v(y0, 1)=−1, v(y0, 4)= 0.4, v(y0, 10)= 1.75.

v(y0, 2)=−0.55, v(y0, 5)= 1,

Choice 3: v(y0, 0)=−2.1, v(y0, 3)=−1, v(y0, 8)= 1,

v(y0, 1)=−1.7, v(y0, 4)=−0.45, v(y0, 10)= 1.45.

v(y0, 2)=−1.45, v(y0, 5)= 0,

Following this, we evaluate v(y, z0) for all y ∈ Y as:

Choice 1: v(−£14.50, z0)=−1.1, v(−£8.00, z0)= 0.4,

v(−£12.50, z0)=−0.6, v(−£7.50, z0)= 0.45,

v(−£12.00, z0)=−0.5, v(−£5.50, z0)= 0.85,

v(−£10.00, z0)= 0, v(£0.00, z0)= 1.5.

Choice 2: v(−£14.50, z0)=−0.75, v(−£8.00, z0)= 0.75,

v(−£12.50, z0)=−0.15, v(−£7.50, z0)= 0.85,

v(−£12.00, z0)= 0, v(−£5.50, z0)= 1.2,

v(−£10.00, z0)= 0.4, v(£0.00, z0)= 1.85.

Choice 3: v(−£14.50, z0)=−1.25, v(−£8.00, z0)= 1.05,

v(−£12.50, z0)=−0.8, v(−£7.50, z0)= 1.45,

v(−£12.00, z0)=−0.6, v(−£5.50, z0)= 1.8,

v(−£10.00, z0)=−0.2, v(£0.00, z0)= 2.5.
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Similarly, we evaluate v(y, z1) for all y ∈ Y as:

Choice 1: v(−£14.50, z1)=−0.6, v(−£8.00, z1)= 1.4,

v(−£12.50, z1)= 0.2, v(−£7.50, z1)= 1.55,

v(−£12.00, z1)= 0.4, v(−£5.50, z1)= 1.8,

v(−£10.00, z1)= 1, v(£0.00, z1)= 2.4.

Choice 2: v(−£14.50, z1)=−0.05, v(−£8.00, z1)= 1.8,

v(−£12.50, z1)= 0.75, v(−£7.50)= 1.9,

v(−£12.00, z1)= 1, v(−£5.50, z1)= 2.35,

v(−£10.00, z1)= 1.35, v(£0.00, z1)= 2.9.

Choice 3: v(−£14.50, z1)=−0.65, v(−£8.00, z1)= 1.45,

v(−£12.50, z1)=−0.1, v(−£7.50, z1)= 1.6,

v(−£12.00, z1)= 0.3, v(−£5.50, z1)= 2.05,

v(−£10.00, z1)= 0.85, v(£0.00, z1)= 2.75.

Finally, we evaluate v(y, z−1) for all y ∈ Y as:

Choice 1: v(−£14.50, z−1)=−2.05, v(−£8.00, z−1)=−0.3,

v(−£12.50, z−1)=−1.65, v(−£7.50, z−1)=−0.1,

v(−£12.00, z−1)=−1.5, v(−£5.50, z−1)= 0.5,

v(−£10.00, z−1)=−1, v(£0, z−1)= 1.05.

Choice 2: v(−£14.50, z−1)=−1.6, v(−£8.00, z−1)= 0.4,

v(−£12.50, z−1)=−1.15, v(−£7.50, z−1)= 0.55,

v(−£12.00, z−1)=−1, v(−£5.50, z−1)= 0.9,

v(−£10.00, z−1)=−0.55, v(£0.00, z−1)= 1.35.

Choice 3: v(−£14.50, z−1)=−2.55, v(−£8.00, z−1)=−0.45,

v(−£12.50, z−1)=−2, v(−£7.50, z−1)=−0.05,

v(−£12.00, z−1)=−1.85, v(−£5.50, z−1)= 0.8,

v(−£10.00, z−1)=−1.3, v(£0, z−1)= 1.65.
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