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The log-concavity of the Hölder mean of two numbers, as a function of its index,
is presented first. The notion of α-cevian of a triangle is introduced next, for any
real number α. We use this property of the Hölder mean to find the smallest index
p(α) such that the length of an α-cevian of a triangle is less than or equal to the
p(α)-Hölder mean of the lengths of the two sides of the triangle that are adjacent
to that cevian.

1. Introduction

All parts of mathematics are interconnected, including two important branches,
geometry and analysis. Continuity, which is a fundamental notion in real analysis,
is used in Euclidean geometry as one axiom in Hilbert axiomatization, and in
proving Thales’ theorem for irrational ratios. On the other hand, geometry helps
real analysis by providing pictures that help us understand certain theorems. For
example, Euler’s theorem, which says that in any parallelogram the sum of the
squares of the lengths of its sides is equal to the sum of the squares of its diagonals,
provides a visual representation for the parallelogram identity that characterizes the
norms of inner product spaces.

There is an abundant literature of geometric inequalities concerning important
line segments in a triangle; see [Bottema et al. 1969; Mitrinović et al. 1989], for
example. Some of these inequalities improve previously existing inequalities.

In this paper we present an application of the log-concavity of the Hölder mean
with positive index, of two numbers, to find sharp inequalities relating lengths of
cevians and sides of a triangle. Using these inequalities we find the best possible
index for the Hölder mean, in a certain sense.

The paper is divided as follows:
In Section 2, we prove that the Hölder mean of two positive numbers, viewed

as a function of its index, is logarithmically concave on [0,∞). In Section 3,
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we define the notion of an α-cevian in a triangle, and find the smallest index
p(α) such that the length of every α-cevian is less than or equal to the p(α)-
Hölder mean of the lengths of the two sides of the triangle that are adjacent to that
cevian.

2. Log-concavity of Hölder means

Let a and b be two positive numbers. For any p∈ [−∞,∞], we define the p-Hölder
mean of a and b, as

Hp(a, b) :=


( 1

2a p
+

1
2 bp

)1/p if p ∈ R \ {0},
limp→0 Hp(a, b)=

√
ab if p = 0,

limp→−∞ Hp(a, b)=min{a, b} if p =−∞,
limp→∞ Hp(a, b)=max{a, b} if p =∞.

(2-1)

It follows from Jensen’s inequality that for all −∞≤ p < q ≤∞, we have

Hp(a, b)≤ Hq(a, b), (2-2)

and this inequality is strict if a 6= b; see [Bullen 1998; Bullen et al. 1988; Pólya
and Szegő 1972].

We prove now that the Hölder mean of two positive numbers, viewed as a function
of its index, is logarithmically concave on [0,∞).

Lemma 2.1. For all positive numbers a and b, the function f :[0,∞)→R, defined by

f (x) := ln(Hx(a, b)), (2-3)

is concave downward.

Proof. If a = b, then the lemma is obvious since f is a constant function, and its
value is f (x)= ln(a) for all x in [0,∞).

Let us assume now that 0< a < b. Then, defining c := b
a > 1 for all x ≥ 0, we

have

f (x)= ln(Hx(a, b))= ln
(

aHx

(
1, b

a

))
= ln(Hx(1, c))+ ln(a).

Thus the graph of f is just a vertical translation by ln(a) of the graph of g :
[0,∞)→ R, defined by

g(x)= ln(Hx(1, c)). (2-4)

Therefore, it suffices to show that g is concave downward on [0,∞).
We know that g is continuous on [0,∞), and so to achieve our goal we need to

prove that the second derivative of g is negative on (0,∞).
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Indeed, if ′ denotes the derivative with respect to x , then we have

g′(x)=
d

dx

[
1
x

ln(1+ cx)−
1
x

ln(2)
]

=−
1
x2 ln(1+ cx)+

1
x

cx ln(c)
1+ cx +

ln(2)
x2 . (2-5)

Differentiating one more time, we obtain

g′′(x)=
2
x3 ln(1+ cx)−

2
x2

cx ln(c)
1+ cx +

1
x

cx ln2(c)
(1+ cx)2

−
2 ln(2)

x3 . (2-6)

We make now the change of variable

y := cx
∈ (1,∞), (2-7)

which means

x =
ln(y)
ln(c)

. (2-8)

Substituting back in the formula of g′′(x), we obtain

g′′(x)=
2ln3(c)

ln3(y)
ln(1+y)−

2ln2(c)

ln2(y)

y ln(c)
1+y

+
ln(c)
ln(y)

y ln2(c)
(1+y)2

−
2ln(2) ln3(c)

ln3(y)
. (2-9)

Thus, to show that, for all x > 0, we have g′′(x) < 0, by multiplying both sides by
the positive number (1+ y)2 ln3(y)/ ln3(c), we have to prove that for all y > 1

h(y) := 2(1+ y)2 ln(1+ y)−2y(1+ y) ln(y)+ y ln2(y)−2(1+ y)2 ln(2) (2-10)

is negative.
The function h is defined even for y = 1, and we have h(1)= 0.
We will study the sign of the first, second, and third derivatives of h on [1,∞).
Using the product rule of differentiation, the derivative of h with respect to y is

h′(y)= 4(1+ y) ln(1+ y)+ 2(1+ y)2
1

1+ y
− 2(1+ y) ln(y)− 2y ln(y)

− 2y(1+ y)
1
y
+ ln2(y)+ 2y ln(y)

1
y
− 4(1+ y) ln(2)

= 4(1+ y) ln(1+ y)− 4y ln(y)+ ln2(y)− 4(1+ y) ln(2). (2-11)

Let us observe that h′(1)= 0.
Differentiating again, we obtain

h′′(y)= 4 ln(1+ y)+ 4(1+ y)
1

1+ y
− 4 ln(y)− 4y

1
y
+ 2

1
y

ln(y)− 4 ln(2)

= 4 ln(1+ y)− 4 ln(y)+
2 ln(y)

y
− 4 ln(2). (2-12)

We observe that h′′(1)= 0.
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Figure 1. Graph of y = ln[((1+ ax)/2)1/x
] for various values of a.

Finally, differentiating one more time, we obtain

h′′′(y)= 2
[

2
1+ y

−
2
y
+

1
y2 −

ln(y)
y2

]
= 2

[
1− y

y2(y+ 1)
−

ln(y)
y2

]
< 0 (2-13)

for all y > 1, since 1− y < 0 and − ln(y) < 0.
Thus, we conclude that h′′ is strictly decreasing on [1,∞). This implies that for

all y > 1, we have h′′(y) < h′′(1)= 0. Hence, h′ is strictly decreasing on [1,∞).
This implies that for all y > 1, we have h′(y) < h′(1)= 0. Therefore, h is strictly
decreasing on [1,∞). Finally, from this assertion we conclude that h(y) < h(1)= 0
for all y > 1. The last statement is equivalent to the fact that g′′(x) < 0 for all
x > 0, and this proves that f is strictly concave on [0,∞). Therefore, the Hölder
mean function of two positive, distinct numbers is strictly logarithmically concave
downward on [0,∞). �

A graphical illustration of the logarithmic concavity of the Hölder means of two
positive numbers 1 and a, for various values of a, is presented in Figure 1.

We make now the following simple observation.

Observation 2.2. The Hölder mean of two positive numbers is logarithmically
symmetric about the geometric mean of the two numbers. That means, if a and b
are positive numbers, then for all x ∈ [−∞,∞], we have

Hx(a, b)H−x(a, b)= H 2
0 (a, b). (2-14)

Proof. Indeed, if x =∞, then

H∞(a, b)H−∞(a, b)=max{a, b} min{a, b}

= ab = H 2
0 (a, b).
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On the other hand, for all x ∈ R \ {0}, we have

Hx(a, b)H−x(a, b)=
(

ax
+ bx

2

)1/x(a−x
+ b−x

2

)−1/x

=
(ax
+ bx)1/x

21/x

(2ax bx)1/x

(ax + bx)1/x = ab = H 2
0 (a, b). �

Corollary 2.3. Since for any two positive numbers a and b, the function x 7→
ln(Hx(a, b)) is concave downward on [0,∞), and its graph is symmetric about the
point (0, ln(

√
ab)), this function is concave upward on (−∞, 0].

3. Sharp inequalities concerning α-cevians in a triangle

In this section we use the logarithmic concavity property of the Hölder mean, of
two positive numbers, as a function of the index, to prove a sharp inequality for the
length of an α-cevian in a triangle.

We give first some definitions.

Definition 3.1. Given a triangle ABC in the plane, for any point M on the side BC,
we call AM a cevian.

If M ∈ BC , meaning M is between B and C, then we say that AM is an interior
cevian.

We say that sides AB and AC of the triangle ABC are adjacent to the cevian AM.

Definition 3.2. Given a triangle ABC in the plane and α a real number, if Mα ∈ BC ,
then we say that AMα is an α-interior cevian if

B Mα

C Mα

=

(
AB

AC

)α
. (3-1)

Here P Q denotes the length of the segment P Q for any two points P and Q in the
plane. See Figure 2.

Observation 3.3. For any real number α, the three α-interior cevians AMα , B Nα ,
and CPα of a triangle ABC are concurrent.

A

Nα

CMαB

Pα

Figure 2. A triangle and its three α-cevians.
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Proof. Indeed, we have (see Figure 2)

B Mα

C Mα

·
C Nα

ANα

·
APα
B Pα

=
ABα

ACα
·

BCα

B Aα
·

C Aα

C Bα
= 1.

It follows now from Ceva’s theorem that AMα, B Nα, and CPα are concurrent. �

Observation 3.4. We make the following observations:

• For α = 0, AM0, B N0, and CP0 are the medians of the triangle ABC and they
are concurrent in the centroid of the triangle ABC. The centroid of a triangle is
denoted by X (2) in [Kimberling 1994].

• For α= 1, AM1, B N1, and CP1 are the inner bisectors of the angles of the triangle
ABC and they are concurrent in the incenter of the triangle ABC. The incenter of
a triangle is denoted by X (1) in [Kimberling 1994].

• For α = 2, AM2, B N2, and CP2 are the symmedians (symmetric to the medians
about the corresponding bisectors) of the triangle ABC and they are concurrent in
the Lemoine point, also called the Grebe point, of the triangle ABC. The Lemoine
(Grebe) point of a triangle is denoted by X (6) in [Kimberling 1994].

Let us observe that if AM is an interior cevian of a triangle ABC, then at least
one of the angles ^AM B and ^AMC is obtuse or right. If the angle ^AM B is
obtuse or right, then in the triangle AM B, the side AB opposite to this angle, with
say AB = c, is the largest side of the triangle. Thus, we have AM < c.

Similarly, if the angle ^AMC is obtuse or right, then AM < b.
Therefore, in both cases we conclude that

AM <max{b, c} = H∞(b, c).

Starting from this simple inequality, we can ask the question:

Question 3.5. Given a real number α, what is the smallest number p = p(α) ∈
[−∞,∞] such that for all triangles ABC, if AMα is an α-interior cevian, we have

AMα ≤ Hp(AB, AC)? (3-2)

We have the following proposition:

Proposition 3.6. Let b and c be two fixed positive numbers. We denote by Tb,c the
set of all triangles ABC in the plane such that AB = c and AC = b. Then, we have

sup
ABC∈Tb,c

{AMα | AMαis an α-interior cevian in ABC} = bc
bα−1
+ cα−1

bα + cα
. (3-3)

Proof. We give a vectorial proof.
In triangle AB Mα we have

−−→
AMα =

−→
AB+

−−→
B Mα. (3-4)
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In triangle ACMα we have
−−→
AMα =

−→
AC +

−−→
C Mα. (3-5)

Let us first multiply both sides of (3-4) by bα, and both sides of (3-5) by cα, and
then add the two resulting equations. We obtain

(bα + cα)
−−→
AMα = bα

−→
AB+ cα

−→
AC + (bα

−−→
B Mα + cα

−−→
C Mα). (3-6)

Since AMα is an α-interior cevian, we have

B Mα

C Mα

=
cα

bα
.

This is equivalent to

bα
−−→
B Mα + cα

−−→
C Mα = 0. (3-7)

It follows now from (3-6) that

−−→
AMα =

1
bα + cα

(bα
−→
AB+ cα

−→
AC). (3-8)

Applying the triangle inequality in (3-8), we conclude that

AMα ≤
1

bα + cα
(bαAB+ cαAC)

=
1

bα + cα
(bαc+ cαb)= bc

bα−1
+ cα−1

bα + cα
. (3-9)

Since this happens for all triangles ABC such that AB= c and AC=b, we conclude
that

S ≤ bc
bα−1
+ cα−1

bα + cα
, (3-10)

where
S = sup

ABC∈Tb,c

{AMα | AMα is an α-interior cevian in ABC}.

On the other hand, we have

S ≥ lim
m(^B AC)→0+

AMα

= lim
m(^B AC)→0+

[
1

bα + cα

∣∣∣∣bα−→AB+ cα
−→
AC
∣∣∣∣]

=

[
1

bα + cα
(bαAB+ cαAC)

]
= bc

bα−1
+ cα−1

bα + cα
, (3-11)

where |Ev| denotes the length of the vector Ev for any vector Ev in R2.
The result of our proposition follows now from inequalities (3-10) and (3-11). �
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We can write

bc
bα−1
+ cα−1

bα + cα
= bc

(bα−1
+ cα−1)/2

(bα + cα)/2
= H 2

0 (b, c)
Hα−1
α−1 (b, c)

Hα
α (b, c)

. (3-12)

Thus, we obtain

S = H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

. (3-13)

Now, Question 3.5 becomes:

Question 3.7. Given a real number α, what is the smallest number p = p(α) ∈
[−∞,∞] such that for all b and c positive, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)? (3-14)

Before answering this question, we present the following necessary condition
for an inequality between two functions, whose graphs touch at one point, to hold.

Lemma 3.8. Let I ⊆ R be an interval, and let
◦

I := {x ∈ I | there exists r > 0 such that (x − r, x + r)⊂ I }

be the set of the interior points of I. Suppose f and g are two real-valued functions
such that:

(1) f (x)≤ g(x) for all x ∈ I.

(2) f and g are continuous on I.

(3) f and g are twice-differentiable on
◦

I.

(4) There exists x0 ∈
◦

I such that f (x0)= g(x0).

(5) f ′′ is continuous at x0.

Then, we must have f ′(x0)= g′(x0) and f ′′(x0)≤ g′′(x0).

Proof. Let h(x) := g(x)− f (x). Then, for all x ∈ I, we have

h(x)≥ 0= h(x0).

Thus, h has an absolute minimum value at x0, and since x0 is a point in the interior
of I, Fermat’s theorem implies h′(x0)= 0. This is equivalent to f ′(x0)= g′(x0).

Since x0 ∈
◦

I, there exists r > 0 such that (x0 − r, x0 + r) ⊂ I. Because the
function f is dominated by function g, for all 0< h < r , we have

f (x0+ h)≤ g(x0+ h),

f (x0− h)≤ g(x0− h),

−2 f (x0)=−2g(x0).
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Adding these three relations and dividing both sides by the positive number h2, we
obtain

f (x0+ h)+ f (x0− h)− 2 f (x0)

h2 ≤
g(x0+ h)+ g(x0− h)− 2g(x0)

h2 .

Passing to the limit as h→ 0+, we obtain

lim
h→0+

f (x0+ h)+ f (x0− h)− 2 f (x0)

h2

≤ lim
h→0+

g(x0+ h)+ g(x0− h)− 2g(x0)

h2 . (3-15)

Applying L’Hôpital’s rule in the 0
0 case, twice, or using Taylor’s formula with

Lagrange’s remainder, it is not hard to see that due to the continuity of f ′′ at x0,
the last inequality becomes

f ′′(x0)≤ g′′(x0). �

To answer Question 3.7, we will analyze four cases.

Case 1. If α ≥ 1, then the answer of Question 3.7 is given by the following
proposition.

Proposition 3.9. If α ≥ 1, then the smallest number p = p(α) ∈ [−∞,∞] such
that for all positive numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c) (3-16)

is
p(α)= 1− 2α. (3-17)

Proof. Step 1: We prove first the inequality p(α)≤ 1− 2α.
Indeed, using Observation 2.2, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

= (H1−2α(b, c)H2α−1(b, c))
Hα−1
α−1 (b, c)

Hα
α (b, c)

= H1−2α(b, c)
[

H (α−1)/α
α−1 (b, c)H 1/α

2α−1(b, c)

Hα(b, c)

]α
≤ H1−2α(b, c) · 1α = H1−2α(b, c), (3-18)

since 0≤ α− 1< α ≤ 2α− 1 (due to the fact that α ≥ 1),

α− 1
α

(α− 1)+
1
α
(2α− 1)= α, (3-19)

and so, because x 7→ Hx(b, c) is logarithmically concave on [0,∞), we have

H (α−1)/α
α−1 (b, c)H 1/α

2α−1(b, c)≤ Hα(b, c). (3-20)
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Step 2: We prove now that if p is a positive number such that for all positive
numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c),

then p ≥ 1− 2α.
Choosing b = 1 and c = x , where x is an arbitrary positive number, the above

inequality becomes

x
1+ xα−1

1+ xα
≤

(
1+ x p

2

)1/p

. (3-21)

We can see now that the hypotheses of Lemma 3.8 are satisfied for the functions

f (x) :=
x + xα

1+ xα
= 1+

x − 1
1+ xα

= 1+
1
2
(x − 1)+ (x − 1)

(
1

1+ xα
−

1
2

)
(3-22)

and

g(x) :=
(

1+ x p

2

)1/p

, (3-23)

and the point
x0 := 1. (3-24)

Thus, we obtain
f ′′(1)≤ g′′(1). (3-25)

Using Leibniz’s rule of differentiation and keeping only the nonzero terms, we obtain

f ′′(1)=
d2

dx2

[
1+

1
2
(x − 1)+ (x − 1)

(
1

1+ xα
−

1
2

)]∣∣∣∣
x=1

=
d2

dx2

[
(x − 1)

(
1

1+ xα
−

1
2

)]∣∣∣∣
x=1

=

(2
1

) d
dx
(x − 1)

∣∣∣∣
x=1

d
dx

(
1

1+ xα
−

1
2

)∣∣∣∣
x=1

= 2
(
−αxα−1

(1+ xα)2

)∣∣∣∣
x=1
=−

α

2
. (3-26)

On the other hand, we have

g′(x)=
1

21/p

d
dx
[(1+ x p)1/p

]

=
1

21/p

1
p
(1+ x p)(1/p)−1 px p−1

=
1

21/p

(
1+ x p

x p

)(1−p)/p

=
1

21/p (x
−p
+ 1)(1−p)/p.
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Thus, we obtain

g′′(x)=
1

21/p

1− p
p

(x−p
+ 1)(1−2p)/p(−p)x−p−1

=
p− 1
21/p (x

−p
+ 1)(1−2p)/px−p−1.

Hence, we have

g′′(1)=
p− 1

4
. (3-27)

Therefore, inequality (3-25) becomes

−
α

2
≤

p− 1
4

. (3-28)

This inequality is equivalent to

p ≥ 1− 2α, (3-29)

and so, our proof is complete. �

Case 2. If 1
2 < α < 1, then the answer to Question 3.7 is given by the following

proposition.

Proposition 3.10. If 1
2 < α < 1, then the smallest number p = p(α) ∈ [−∞,∞]

such that for all positive numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

is
p(α)= 0. (3-30)

Proof. Step 1: We prove first the inequality p(α)≤ 0. That means, we show that
for all positive numbers b and c we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ H0(b, c).

Indeed, using the symmetry of the function x 7→ ln(Hx(b, c)) with respect to the
origin

Hx(b, c)H−x(b, c)= H 2
0 (b, c), (3-31)

for x = α− 1, we obtain

Hα−1(b, c)=
H 2

0 (b, c)
H1−α(b, c)

. (3-32)
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Thus, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

= H 2
0 (b, c)

[
H 2

0 (b, c)
H1−α(b, c)

]α−1 1
Hα
α (b, c)

=
H 2α

0 (b, c)H 1−α
1−α (b, c)

Hα
α (b, c)

= H0(b, c)
[

H0(b, c)
Hα(b, c)

]2α−1[H1−α(b, c)
Hα(b, c)

]1−α

≤ H0(b, c) · 12α−1
· 11−α

= H0(b, c), (3-33)

since 0< α, 1−α < α, the function x 7→ Hx(b, c) is increasing, 2α− 1> 0, and
1−α > 0.

Step 2: We show now that if p < 0, then the inequality

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

cannot hold for all positive numbers b and c.
Indeed, if we assume by contradiction that it holds for all positive numbers b and c,

then choosing b = 1 and c = x , where x is an arbitrary positive number, we obtain

x
1+ xα−1

1+ xα
≤

(
1+ x p

2

)1/p

. (3-34)

Passing to the limit as x→∞, we get

lim
x→∞

x + xα

1+ xα
≤ lim

x→∞

(
1+ x p

2

)1/p

. (3-35)

Since α < 1 and p < 0, the last inequality becomes

∞≤
( 1

2

)1/p
,

which is a contradiction.
Thus the smallest number p for which inequality (3-14) holds is p(α)= 0. �

Case 3. If 0 ≤ α ≤ 1
2 , then the answer to Question 3.7 is given by the following

proposition.

Proposition 3.11. If 0 ≤ α ≤ 1, then the smallest number p = p(α) ∈ [−∞,∞]
such that for all positive numbers b and c we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

is
p(α)= 1− 2α. (3-36)



LOG-CONCAVITY OF HÖLDER MEANS 683

Proof. Step 1: We show first that p(α)≤ 1− 2α. Using the logarithmic symmetry
of the function x 7→ Hx(b, c), we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

= H 2
0 (b, c)

[
H 2

0 (b, c)
H1−α(b, c)

]α−1 1
Hα
α (b, c)

=
H 2α

0 (b, c)H 1−α
1−α (b, c)

Hα
α (b, c)

. (3-37)

Since 0 ≤ α ≤ 1
2 , we have 0 ≤ α ≤ 1 − α, and α can be written as a convex

combination of 0 and 1−α in the following way:

α =

(
1−

α

1−α

)
· 0+

α

1−α
· (1−α). (3-38)

Since x 7→ Hx(b, c) is logarithmically concave on [0,∞), applying Jensen’s in-
equality, we obtain

Hα ≥ H 1−α/(1−α)
0 Hα/(1−α)

1−α . (3-39)

Thus, using (3-37) and (3-39), we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

=
H 2α

0 (b, c)H 1−α
1−α (b, c)

Hα
α (b, c)

≤
H 2α

0 (b, c)H 1−α
1−α (b, c)

[H 1−α/(1−α)
0 (b, c)Hα/(1−α)

1−α (b, c)]α

= Hα/(1−α)
0 (b, c)H (1−2α)/(1−α)

1−α (b, c). (3-40)

Let us observe that α/(1−α) ∈ [0, 1], (1− 2α)/(1−α) ∈ [0, 1], and

α

1−α
+

1− 2α
1−α

= 1. (3-41)

Applying, Jensen’s inequality again, we obtain

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hα/(1−α)
0 (b, c)H (1−2α)/(1−α)

1−α (b, c)

≤ H[α/(1−α)]·0+[(1−2α)/(1−α)]·(1−α)(b, c)

= H1−2α(b, c). (3-42)

Step 2: We can prove now in exactly the same way as in the proof of Proposition 3.9
that if p is real number such that inequality (3-14) holds for all positive numbers b
and c, then

p ≥ 1− 2α. �
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Case 4. If α < 0, then the answer to Question 3.7 is given by the following
proposition.

Proposition 3.12. If α < 0, then the smallest (only) number p = p(α) ∈ [−∞,∞]
such that for all positive numbers b and c, we have

H 2
0 (b, c)

Hα−1
α−1 (b, c)

Hα
α (b, c)

≤ Hp(b, c)

is
p(α)=∞. (3-43)

Proof. Indeed, we saw geometrically at the beginning of the paper that for all
triangles ABC, and all interior cevians AM, we have

AM ≤max{AB, AC} = H∞(b, c),

where b := AC and c := AB.
To show that p(α) =∞, we must prove that for all p <∞, inequality (3-14)

cannot hold for all positive numbers b and c.
Supposing that for some p <∞ (we may assume p > 0) inequality (3-14) holds

for all positive numbers b and c, we can choose b = 1 and c = x , where x is an
arbitrary positive number. That means, for all x > 0, we have

x + xα

1+ xα
≤

(
1+ x p

2

)1/p

.

Passing to the limit in this inequality as x→ 0+, we obtain

lim
x→0+

x + xα

1+ xα
≤ lim

x→0+

(
1+ x p

2

)1/p

.

Since α < 0, the last inequality is equivalent to

1≤
( 1

2

)1/p
.

This inequality is impossible, since 0< 1
2 < 1 and 1

p > 0. �

Therefore, the function α 7→ p(α) that gives the smallest p such that in any
triangle ABC the α-interior cevian starting from A, AMα , has a length less than or
equal to the p-Hölder mean of AB and AC is P : R→ [−∞,∞], defined by

P(α)=


∞ if α < 0,
1− 2α if 0≤ α ≤ 1

2 ,

0 if 1
2 < α < 1,

1− 2α if α > 1.

(3-44)

See the graph of P in Figure 3.
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−1 1 2 3 4 5 6

−4

−2

2
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∞

P(α)=


∞ if α < 0,
1− 2α if 0≤ α ≤ 1

2 ,

0 if 1
2 < α < 1,

1− 2α if α ≥ 1

0
0

Figure 3. The graph of function y = P(α).

We observe that the function P is nonincreasing and lower semicontinuous.
The branching point α = 0 of the piecewise-defined function P corresponds to

the median AM0 of the triangle ABC.
The branching point α = 1 corresponds to the bisector AM1 of the angle ^B AC.
The branching point α= 1

2 corresponds to a cevian AM1/2 that is concurrent with
the corresponding cevians B N1/2 and C P1/2 in the point X (366) from [Kimberling
1994]. The point X (366) is the isogonal conjugate of X (365), the square root point,
which is the intersection point of the three 3

2 -interior cevians of the triangle ABC.
We summarize below our results, in the case of some classic cevians:

Proposition 3.13. Let ABC be a triangle with sides, starting from A, of lengths
AC = b and AB = c. Let M be a point on the side BC of this triangle. Then:

(1) If AM is the median corresponding to the vertex A, then its length satisfies

AM <
b+ c

2
. (3-45)

Moreover, for every p< 1, there exists a triangle ABC (depending on p) such that

AM >

(
bp
+ cp

2

)1/p

. (3-46)

(2) If AM is the interior bisector of the angle ^(B AC), then its length satisfies

AM <
2

1
a +

1
b

. (3-47)

Moreover, for every p <−1, there exists a triangle ABC such that

AM >

(
bp
+ cp

2

)1/p

. (3-48)
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(3) If AM is the symmedian corresponding to the vertex A, then its length satisfies

AM <

(
b−3
+ c−3

2

)−1/3

. (3-49)

Moreover, for every p <−3, there exists a triangle ABC such that

AM >

(
bp
+ cp

2

)1/p

. (3-50)
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inequalities, Math. Appl. (East Eur. Series) 28, Kluwer, Dordrecht, 1989. MR Zbl

[Pólya and Szegő 1972] G. Pólya and G. Szegő, Problems and theorems in analysis, I: Series, integral
calculus, theory of functions, Grundlehren der Math. Wissenschaften 193, Springer, 1972. MR Zbl

Received: 2018-05-23 Revised: 2018-11-09 Accepted: 2018-11-15

stan.7@osu.edu Department of Mathematics, Ohio State University at Marion,
Marion, OH, United States

zap14480@uvg.edu.gt Department of Mathematics,
Universidad del Valle de Guatemala, Guatemala, Guatemala

mathematical sciences publishers msp

http://msp.org/idx/mr/0262932
http://msp.org/idx/zbl/0174.52401
http://msp.org/idx/mr/1699271
http://msp.org/idx/zbl/0934.26003
http://dx.doi.org/10.1007/978-94-017-2226-1
http://msp.org/idx/mr/947142
http://msp.org/idx/zbl/0687.26005
https://tinyurl.com/encytria
http://dx.doi.org/10.1007/978-94-015-7842-4
http://dx.doi.org/10.1007/978-94-015-7842-4
http://msp.org/idx/mr/1022443
http://msp.org/idx/zbl/0679.51004
http://msp.org/idx/mr/0344042
http://msp.org/idx/zbl/0236.00003
mailto:stan.7@osu.edu
mailto:zap14480@uvg.edu.gt
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

Arthur T. Benjamin Harvey Mudd College, USA
Martin Bohner Missouri U of Science and Technology, USA

Nigel Boston University of Wisconsin, USA
Amarjit S. Budhiraja U of N Carolina, Chapel Hill, USA

Pietro Cerone La Trobe University, Australia
Scott Chapman Sam Houston State University, USA

Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Joel Foisy SUNY Potsdam, USA

Errin W. Fulp Wake Forest University, USA
Joseph Gallian University of Minnesota Duluth, USA

Stephan R. Garcia Pomona College, USA
Anant Godbole East Tennessee State University, USA

Ron Gould Emory University, USA
Sat Gupta U of North Carolina, Greensboro, USA

Jim Haglund University of Pennsylvania, USA
Johnny Henderson Baylor University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA
David Larson Texas A&M University, USA

Suzanne Lenhart University of Tennessee, USA

Chi-Kwong Li College of William and Mary, USA
Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Jonathon Peterson Purdue University, USA

Robert J. Plemmons Wake Forest University, USA
Carl B. Pomerance Dartmouth College, USA

Vadim Ponomarenko San Diego State University, USA
Bjorn Poonen UC Berkeley, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Javier Rojo Oregon State University, USA

Filip Saidak U of North Carolina, Greensboro, USA
Hari Mohan Srivastava University of Victoria, Canada

Andrew J. Sterge Honorary Editor
Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $195/year for the electronic
version, and $260/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2019 vol. 12 no. 4

541Euler’s formula for the zeta function at the positive even integers
SAMYUKTA KRISHNAMURTHY AND MICAH B. MILINOVICH

549Descents and des-Wilf equivalence of permutations avoiding certain
nonclassical patterns

CADEN BIELAWA, ROBERT DAVIS, DANIEL GREESON AND

QINHAN ZHOU

565The classification of involutions and symmetric spaces of modular groups
MARC BESSON AND JENNIFER SCHAEFER

585When is an
+ 1 the sum of two squares?

GREG DRESDEN, KYLIE HESS, SAIMON ISLAM, JEREMY ROUSE,
AARON SCHMITT, EMILY STAMM, TERRIN WARREN AND PAN

YUE

607Irreducible character restrictions to maximal subgroups of low-rank
classical groups of types B and C

KEMPTON ALBEE, MIKE BARNES, AARON PARKER, ERIC ROON

AND A. A. SCHAEFFER FRY

633Prime labelings of infinite graphs
MATTHEW KENIGSBERG AND OSCAR LEVIN

647Positional strategies in games of best choice
AARON FOWLKES AND BRANT JONES

659Graphs with at most two trees in a forest-building process
STEVE BUTLER, MISA HAMANAKA AND MARIE HARDT

671Log-concavity of Hölder means and an application to geometric inequalities
AUREL I. STAN AND SERGIO D. ZAPETA-TZUL

687Applying prospect theory to multiattribute problems with independence
assumptions

JACK STANLEY AND FRANK P. A. COOLEN

713On weight-one solvable configurations of the Lights Out puzzle
YUKI HAYATA AND MASAKAZU YAMAGISHI

involve
2019

vol.12,
no.4

http://dx.doi.org/10.2140/involve.2019.12.541
http://dx.doi.org/10.2140/involve.2019.12.549
http://dx.doi.org/10.2140/involve.2019.12.549
http://dx.doi.org/10.2140/involve.2019.12.565
http://dx.doi.org/10.2140/involve.2019.12.585
http://dx.doi.org/10.2140/involve.2019.12.607
http://dx.doi.org/10.2140/involve.2019.12.607
http://dx.doi.org/10.2140/involve.2019.12.633
http://dx.doi.org/10.2140/involve.2019.12.647
http://dx.doi.org/10.2140/involve.2019.12.659
http://dx.doi.org/10.2140/involve.2019.12.671
http://dx.doi.org/10.2140/involve.2019.12.687
http://dx.doi.org/10.2140/involve.2019.12.687
http://dx.doi.org/10.2140/involve.2019.12.713

	1. Introduction
	2. Log-concavity of Hölder means
	3. Sharp inequalities concerning alpha-cevians in a triangle
	Acknowledgements
	References
	
	

