\bullet
 involve

 a journal of mathematicsLog-concavity of Hölder means and an application to geometric inequalities

Aurel I. Stan and Sergio D. Zapeta-Tzul

Log-concavity of Hölder means and an application to geometric inequalities

Aurel I. Stan and Sergio D. Zapeta-Tzul
(Communicated by Sever S. Dragomir)

Abstract

The log-concavity of the Hölder mean of two numbers, as a function of its index, is presented first. The notion of α-cevian of a triangle is introduced next, for any real number α. We use this property of the Hölder mean to find the smallest index $p(\alpha)$ such that the length of an α-cevian of a triangle is less than or equal to the $p(\alpha)$-Hölder mean of the lengths of the two sides of the triangle that are adjacent to that cevian.

1. Introduction

All parts of mathematics are interconnected, including two important branches, geometry and analysis. Continuity, which is a fundamental notion in real analysis, is used in Euclidean geometry as one axiom in Hilbert axiomatization, and in proving Thales' theorem for irrational ratios. On the other hand, geometry helps real analysis by providing pictures that help us understand certain theorems. For example, Euler's theorem, which says that in any parallelogram the sum of the squares of the lengths of its sides is equal to the sum of the squares of its diagonals, provides a visual representation for the parallelogram identity that characterizes the norms of inner product spaces.

There is an abundant literature of geometric inequalities concerning important line segments in a triangle; see [Bottema et al. 1969; Mitrinović et al. 1989], for example. Some of these inequalities improve previously existing inequalities.

In this paper we present an application of the log-concavity of the Hölder mean with positive index, of two numbers, to find sharp inequalities relating lengths of cevians and sides of a triangle. Using these inequalities we find the best possible index for the Hölder mean, in a certain sense.

The paper is divided as follows:
In Section 2, we prove that the Hölder mean of two positive numbers, viewed as a function of its index, is logarithmically concave on $[0, \infty)$. In Section 3,

[^0]we define the notion of an α-cevian in a triangle, and find the smallest index $p(\alpha)$ such that the length of every α-cevian is less than or equal to the $p(\alpha)$ Hölder mean of the lengths of the two sides of the triangle that are adjacent to that cevian.

2. Log-concavity of Hölder means

Let a and b be two positive numbers. For any $p \in[-\infty, \infty]$, we define the p-Hölder mean of a and b, as

$$
H_{p}(a, b):= \begin{cases}\left(\frac{1}{2} a^{p}+\frac{1}{2} b^{p}\right)^{1 / p} & \text { if } p \in \mathbb{R} \backslash\{0\} \tag{2-1}\\ \lim _{p \rightarrow 0} H_{p}(a, b)=\sqrt{a b} & \text { if } p=0 \\ \lim _{p \rightarrow-\infty} H_{p}(a, b)=\min \{a, b\} & \text { if } p=-\infty \\ \lim _{p \rightarrow \infty} H_{p}(a, b)=\max \{a, b\} & \text { if } p=\infty\end{cases}
$$

It follows from Jensen's inequality that for all $-\infty \leq p<q \leq \infty$, we have

$$
\begin{equation*}
H_{p}(a, b) \leq H_{q}(a, b) \tag{2-2}
\end{equation*}
$$

and this inequality is strict if $a \neq b$; see [Bullen 1998; Bullen et al. 1988; Pólya and Szegő 1972].

We prove now that the Hölder mean of two positive numbers, viewed as a function of its index, is logarithmically concave on $[0, \infty)$.

Lemma 2.1. For all positive numbers a and b, the function $f:[0, \infty) \rightarrow \mathbb{R}$, defined by

$$
\begin{equation*}
f(x):=\ln \left(H_{x}(a, b)\right) \tag{2-3}
\end{equation*}
$$

is concave downward.
Proof. If $a=b$, then the lemma is obvious since f is a constant function, and its value is $f(x)=\ln (a)$ for all x in $[0, \infty)$.

Let us assume now that $0<a<b$. Then, defining $c:=\frac{b}{a}>1$ for all $x \geq 0$, we have

$$
f(x)=\ln \left(H_{x}(a, b)\right)=\ln \left(a H_{x}\left(1, \frac{b}{a}\right)\right)=\ln \left(H_{x}(1, c)\right)+\ln (a)
$$

Thus the graph of f is just a vertical translation by $\ln (a)$ of the graph of g : $[0, \infty) \rightarrow \mathbb{R}$, defined by

$$
\begin{equation*}
g(x)=\ln \left(H_{x}(1, c)\right) \tag{2-4}
\end{equation*}
$$

Therefore, it suffices to show that g is concave downward on $[0, \infty)$.
We know that g is continuous on $[0, \infty)$, and so to achieve our goal we need to prove that the second derivative of g is negative on $(0, \infty)$.

Indeed, if ' denotes the derivative with respect to x, then we have

$$
\begin{align*}
g^{\prime}(x) & =\frac{d}{d x}\left[\frac{1}{x} \ln \left(1+c^{x}\right)-\frac{1}{x} \ln (2)\right] \\
& =-\frac{1}{x^{2}} \ln \left(1+c^{x}\right)+\frac{1}{x} \frac{c^{x} \ln (c)}{1+c^{x}}+\frac{\ln (2)}{x^{2}} \tag{2-5}
\end{align*}
$$

Differentiating one more time, we obtain

$$
\begin{equation*}
g^{\prime \prime}(x)=\frac{2}{x^{3}} \ln \left(1+c^{x}\right)-\frac{2}{x^{2}} \frac{c^{x} \ln (c)}{1+c^{x}}+\frac{1}{x} \frac{c^{x} \ln ^{2}(c)}{\left(1+c^{x}\right)^{2}}-\frac{2 \ln (2)}{x^{3}} . \tag{2-6}
\end{equation*}
$$

We make now the change of variable

$$
\begin{equation*}
y:=c^{x} \in(1, \infty), \tag{2-7}
\end{equation*}
$$

which means

$$
\begin{equation*}
x=\frac{\ln (y)}{\ln (c)} . \tag{2-8}
\end{equation*}
$$

Substituting back in the formula of $g^{\prime \prime}(x)$, we obtain

$$
\begin{equation*}
g^{\prime \prime}(x)=\frac{2 \ln ^{3}(c)}{\ln ^{3}(y)} \ln (1+y)-\frac{2 \ln ^{2}(c)}{\ln ^{2}(y)} \frac{y \ln (c)}{1+y}+\frac{\ln (c)}{\ln (y)} \frac{y \ln ^{2}(c)}{(1+y)^{2}}-\frac{2 \ln (2) \ln ^{3}(c)}{\ln ^{3}(y)} . \tag{2-9}
\end{equation*}
$$

Thus, to show that, for all $x>0$, we have $g^{\prime \prime}(x)<0$, by multiplying both sides by the positive number $(1+y)^{2} \ln ^{3}(y) / \ln ^{3}(c)$, we have to prove that for all $y>1$

$$
\begin{equation*}
h(y):=2(1+y)^{2} \ln (1+y)-2 y(1+y) \ln (y)+y \ln ^{2}(y)-2(1+y)^{2} \ln (2) \tag{2-10}
\end{equation*}
$$ is negative.

The function h is defined even for $y=1$, and we have $h(1)=0$.
We will study the sign of the first, second, and third derivatives of h on $[1, \infty)$. Using the product rule of differentiation, the derivative of h with respect to y is

$$
\begin{align*}
h^{\prime}(y)= & 4(1+y) \ln (1+y)+2(1+y)^{2} \frac{1}{1+y}-2(1+y) \ln (y)-2 y \ln (y) \\
& \quad-2 y(1+y) \frac{1}{y}+\ln ^{2}(y)+2 y \ln (y) \frac{1}{y}-4(1+y) \ln (2) \\
= & 4(1+y) \ln (1+y)-4 y \ln (y)+\ln ^{2}(y)-4(1+y) \ln (2) . \tag{2-11}
\end{align*}
$$

Let us observe that $h^{\prime}(1)=0$.
Differentiating again, we obtain

$$
\begin{align*}
h^{\prime \prime}(y) & =4 \ln (1+y)+4(1+y) \frac{1}{1+y}-4 \ln (y)-4 y \frac{1}{y}+2 \frac{1}{y} \ln (y)-4 \ln (2) \\
& =4 \ln (1+y)-4 \ln (y)+\frac{2 \ln (y)}{y}-4 \ln (2) \tag{2-12}
\end{align*}
$$

We observe that $h^{\prime \prime}(1)=0$.

Figure 1. Graph of $y=\ln \left[\left(\left(1+a^{x}\right) / 2\right)^{1 / x}\right]$ for various values of a.

Finally, differentiating one more time, we obtain

$$
\begin{equation*}
h^{\prime \prime \prime}(y)=2\left[\frac{2}{1+y}-\frac{2}{y}+\frac{1}{y^{2}}-\frac{\ln (y)}{y^{2}}\right]=2\left[\frac{1-y}{y^{2}(y+1)}-\frac{\ln (y)}{y^{2}}\right]<0 \tag{2-13}
\end{equation*}
$$

for all $y>1$, since $1-y<0$ and $-\ln (y)<0$.
Thus, we conclude that $h^{\prime \prime}$ is strictly decreasing on $[1, \infty)$. This implies that for all $y>1$, we have $h^{\prime \prime}(y)<h^{\prime \prime}(1)=0$. Hence, h^{\prime} is strictly decreasing on $[1, \infty)$. This implies that for all $y>1$, we have $h^{\prime}(y)<h^{\prime}(1)=0$. Therefore, h is strictly decreasing on $[1, \infty)$. Finally, from this assertion we conclude that $h(y)<h(1)=0$ for all $y>1$. The last statement is equivalent to the fact that $g^{\prime \prime}(x)<0$ for all $x>0$, and this proves that f is strictly concave on $[0, \infty)$. Therefore, the Hölder mean function of two positive, distinct numbers is strictly logarithmically concave downward on $[0, \infty)$.

A graphical illustration of the logarithmic concavity of the Hölder means of two positive numbers 1 and a, for various values of a, is presented in Figure 1.

We make now the following simple observation.
Observation 2.2. The Hölder mean of two positive numbers is logarithmically symmetric about the geometric mean of the two numbers. That means, if a and b are positive numbers, then for all $x \in[-\infty, \infty]$, we have

$$
\begin{equation*}
H_{x}(a, b) H_{-x}(a, b)=H_{0}^{2}(a, b) \tag{2-14}
\end{equation*}
$$

Proof. Indeed, if $x=\infty$, then

$$
\begin{aligned}
H_{\infty}(a, b) H_{-\infty}(a, b) & =\max \{a, b\} \min \{a, b\} \\
& =a b=H_{0}^{2}(a, b)
\end{aligned}
$$

On the other hand, for all $x \in \mathbb{R} \backslash\{0\}$, we have

$$
\begin{aligned}
H_{x}(a, b) H_{-x}(a, b) & =\left(\frac{a^{x}+b^{x}}{2}\right)^{1 / x}\left(\frac{a^{-x}+b^{-x}}{2}\right)^{-1 / x} \\
& =\frac{\left(a^{x}+b^{x}\right)^{1 / x}}{2^{1 / x}} \frac{\left(2 a^{x} b^{x}\right)^{1 / x}}{\left(a^{x}+b^{x}\right)^{1 / x}}=a b=H_{0}^{2}(a, b)
\end{aligned}
$$

Corollary 2.3. Since for any two positive numbers a and b, the function $x \mapsto$ $\ln \left(H_{x}(a, b)\right)$ is concave downward on $[0, \infty)$, and its graph is symmetric about the point $(0, \ln (\sqrt{a b}))$, this function is concave upward on $(-\infty, 0]$.

3. Sharp inequalities concerning α-cevians in a triangle

In this section we use the logarithmic concavity property of the Hölder mean, of two positive numbers, as a function of the index, to prove a sharp inequality for the length of an α-cevian in a triangle.

We give first some definitions.
Definition 3.1. Given a triangle $A B C$ in the plane, for any point M on the side $B C$, we call $A M$ a cevian.

If $M \in B C$, meaning M is between B and C, then we say that $A M$ is an interior cevian.

We say that sides $A B$ and $A C$ of the triangle $A B C$ are adjacent to the cevian $A M$.
Definition 3.2. Given a triangle $A B C$ in the plane and α a real number, if $M_{\alpha} \in B C$, then we say that $A M_{\alpha}$ is an α-interior cevian if

$$
\begin{equation*}
\frac{\overline{B M}_{\alpha}}{\overline{C M}_{\alpha}}=\left(\frac{\overline{A B}}{\overline{A C}}\right)^{\alpha} . \tag{3-1}
\end{equation*}
$$

Here $\overline{P Q}$ denotes the length of the segment $P Q$ for any two points P and Q in the plane. See Figure 2.

Observation 3.3. For any real number α, the three α-interior cevians $A M_{\alpha}, B N_{\alpha}$, and $C P_{\alpha}$ of a triangle $A B C$ are concurrent.

Figure 2. A triangle and its three α-cevians.

Proof. Indeed, we have (see Figure 2)

$$
\frac{\overline{B M}_{\alpha}}{\overline{C M}_{\alpha}} \cdot \frac{\overline{C N}_{\alpha}}{\overline{A N}_{\alpha}} \cdot \frac{\overline{A P}_{\alpha}}{\overline{B P}_{\alpha}}=\frac{\overline{A B}^{\alpha}}{\overline{A C}^{\alpha}} \cdot \frac{\overline{B C}^{\alpha}}{\overline{B A}^{\alpha}} \cdot \frac{\overline{C A}^{\alpha}}{\overline{C B}^{\alpha}}=1 .
$$

It follows now from Ceva's theorem that $A M_{\alpha}, B N_{\alpha}$, and $C P_{\alpha}$ are concurrent.
Observation 3.4. We make the following observations:

- For $\alpha=0, A M_{0}, B N_{0}$, and $C P_{0}$ are the medians of the triangle $A B C$ and they are concurrent in the centroid of the triangle $A B C$. The centroid of a triangle is denoted by X (2) in [Kimberling 1994].
- For $\alpha=1, A M_{1}, B N_{1}$, and $C P_{1}$ are the inner bisectors of the angles of the triangle $A B C$ and they are concurrent in the incenter of the triangle $A B C$. The incenter of a triangle is denoted by $X(1)$ in [Kimberling 1994].
- For $\alpha=2, A M_{2}, B N_{2}$, and $C P_{2}$ are the symmedians (symmetric to the medians about the corresponding bisectors) of the triangle $A B C$ and they are concurrent in the Lemoine point, also called the Grebe point, of the triangle $A B C$. The Lemoine (Grebe) point of a triangle is denoted by X (6) in [Kimberling 1994].

Let us observe that if $A M$ is an interior cevian of a triangle $A B C$, then at least one of the angles $\varangle A M B$ and $\varangle A M C$ is obtuse or right. If the angle $\varangle A M B$ is obtuse or right, then in the triangle $A M B$, the side $A B$ opposite to this angle, with say $\overline{A B}=c$, is the largest side of the triangle. Thus, we have $\overline{A M}<c$.

Similarly, if the angle $\varangle A M C$ is obtuse or right, then $\overline{A M}<b$.
Therefore, in both cases we conclude that

$$
\overline{A M}<\max \{b, c\}=H_{\infty}(b, c) .
$$

Starting from this simple inequality, we can ask the question:
Question 3.5. Given a real number α, what is the smallest number $p=p(\alpha) \in$ $[-\infty, \infty]$ such that for all triangles $A B C$, if $A M_{\alpha}$ is an α-interior cevian, we have

$$
\begin{equation*}
\overline{A M}_{\alpha} \leq H_{p}(\overline{A B}, \overline{A C}) ? \tag{3-2}
\end{equation*}
$$

We have the following proposition:
Proposition 3.6. Let b and c be two fixed positive numbers. We denote by $\mathcal{T}_{b, c}$ the set of all triangles $A B C$ in the plane such that $\overline{A B}=c$ and $\overline{A C}=b$. Then, we have

$$
\begin{equation*}
\sup _{A B C \in \mathcal{T}_{b, c}}\left\{\overline{A M}_{\alpha} \mid A M_{\alpha} \text { is an } \alpha \text {-interior cevian in } A B C\right\}=b c \frac{b^{\alpha-1}+c^{\alpha-1}}{b^{\alpha}+c^{\alpha}} . \tag{3-3}
\end{equation*}
$$

Proof. We give a vectorial proof.
In triangle $A B M_{\alpha}$ we have

$$
\begin{equation*}
\overrightarrow{A M_{\alpha}}=\overrightarrow{A B}+\overrightarrow{B M_{\alpha}} . \tag{3-4}
\end{equation*}
$$

In triangle $A C M_{\alpha}$ we have

$$
\begin{equation*}
\overrightarrow{A M_{\alpha}}=\overrightarrow{A C}+\overrightarrow{C M_{\alpha}} \tag{3-5}
\end{equation*}
$$

Let us first multiply both sides of (3-4) by b^{α}, and both sides of (3-5) by c^{α}, and then add the two resulting equations. We obtain

$$
\begin{equation*}
\left(b^{\alpha}+c^{\alpha}\right) \overrightarrow{A M_{\alpha}}=b^{\alpha} \overrightarrow{A B}+c^{\alpha} \overrightarrow{A C}+\left(b^{\alpha} \overrightarrow{B M_{\alpha}}+c^{\alpha} \overrightarrow{C M_{\alpha}}\right) \tag{3-6}
\end{equation*}
$$

Since $A M_{\alpha}$ is an α-interior cevian, we have

$$
\frac{\overline{B M}_{\alpha}}{\overline{C M}_{\alpha}}=\frac{c^{\alpha}}{b^{\alpha}}
$$

This is equivalent to

$$
\begin{equation*}
b^{\alpha} \overrightarrow{B M_{\alpha}}+c^{\alpha} \overrightarrow{C M_{\alpha}}=0 \tag{3-7}
\end{equation*}
$$

It follows now from (3-6) that

$$
\begin{equation*}
\overrightarrow{A M_{\alpha}}=\frac{1}{b^{\alpha}+c^{\alpha}}\left(b^{\alpha} \overrightarrow{A B}+c^{\alpha} \overrightarrow{A C}\right) \tag{3-8}
\end{equation*}
$$

Applying the triangle inequality in (3-8), we conclude that

$$
\begin{align*}
\overline{A M}_{\alpha} & \leq \frac{1}{b^{\alpha}+c^{\alpha}}\left(b^{\alpha} \overline{A B}+c^{\alpha} \overline{A C}\right) \\
& =\frac{1}{b^{\alpha}+c^{\alpha}}\left(b^{\alpha} c+c^{\alpha} b\right)=b c \frac{b^{\alpha-1}+c^{\alpha-1}}{b^{\alpha}+c^{\alpha}} \tag{3-9}
\end{align*}
$$

Since this happens for all triangles $A B C$ such that $\overline{A B}=c$ and $\overline{A C}=b$, we conclude that

$$
\begin{equation*}
\mathcal{S} \leq b c \frac{b^{\alpha-1}+c^{\alpha-1}}{b^{\alpha}+c^{\alpha}} \tag{3-10}
\end{equation*}
$$

where

$$
\mathcal{S}=\sup _{A B C \in \mathcal{T}_{b, c}}\left\{\overline{A M}_{\alpha} \mid A M_{\alpha} \text { is an } \alpha \text {-interior cevian in } A B C\right\}
$$

On the other hand, we have

$$
\begin{align*}
\mathcal{S} & \geq \lim _{m(\varangle B A C) \rightarrow 0^{+}} \overline{A M}_{\alpha} \\
& =\lim _{m(\varangle B A C) \rightarrow 0^{+}}\left[\frac{1}{b^{\alpha}+c^{\alpha}}\left|b^{\alpha} \overrightarrow{A B}+c^{\alpha} \overrightarrow{A C}\right|\right] \\
& =\left[\frac{1}{b^{\alpha}+c^{\alpha}}\left(b^{\alpha} \overline{A B}+c^{\alpha} \overline{A C}\right)\right]=b c \frac{b^{\alpha-1}+c^{\alpha-1}}{b^{\alpha}+c^{\alpha}}, \tag{3-11}
\end{align*}
$$

where $|\vec{v}|$ denotes the length of the vector \vec{v} for any vector \vec{v} in \mathbb{R}^{2}.
The result of our proposition follows now from inequalities (3-10) and (3-11).

We can write

$$
\begin{equation*}
b c \frac{b^{\alpha-1}+c^{\alpha-1}}{b^{\alpha}+c^{\alpha}}=b c \frac{\left(b^{\alpha-1}+c^{\alpha-1}\right) / 2}{\left(b^{\alpha}+c^{\alpha}\right) / 2}=H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \tag{3-12}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
\mathcal{S}=H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \tag{3-13}
\end{equation*}
$$

Now, Question 3.5 becomes:
Question 3.7. Given a real number α, what is the smallest number $p=p(\alpha) \in$ $[-\infty, \infty]$ such that for all b and c positive, we have

$$
\begin{equation*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c) ? \tag{3-14}
\end{equation*}
$$

Before answering this question, we present the following necessary condition for an inequality between two functions, whose graphs touch at one point, to hold.

Lemma 3.8. Let $I \subseteq R$ be an interval, and let

$$
\stackrel{\circ}{I}:=\{x \in I \mid \text { there exists } r>0 \text { such that }(x-r, x+r) \subset I\}
$$

be the set of the interior points of I. Suppose f and g are two real-valued functions such that:
(1) $f(x) \leq g(x)$ for all $x \in I$.
(2) f and g are continuous on I.
(3) f and g are twice-differentiable on $\stackrel{\circ}{I}$.
(4) There exists $x_{0} \in \stackrel{\circ}{I}$ such that $f\left(x_{0}\right)=g\left(x_{0}\right)$.
(5) $f^{\prime \prime}$ is continuous at x_{0}.

Then, we must have $f^{\prime}\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)$ and $f^{\prime \prime}\left(x_{0}\right) \leq g^{\prime \prime}\left(x_{0}\right)$.
Proof. Let $h(x):=g(x)-f(x)$. Then, for all $x \in I$, we have

$$
h(x) \geq 0=h\left(x_{0}\right)
$$

Thus, h has an absolute minimum value at x_{0}, and since x_{0} is a point in the interior of I, Fermat's theorem implies $h^{\prime}\left(x_{0}\right)=0$. This is equivalent to $f^{\prime}\left(x_{0}\right)=g^{\prime}\left(x_{0}\right)$.

Since $x_{0} \in \stackrel{\circ}{I}$, there exists $r>0$ such that $\left(x_{0}-r, x_{0}+r\right) \subset I$. Because the function f is dominated by function g, for all $0<h<r$, we have

$$
\begin{aligned}
f\left(x_{0}+h\right) & \leq g\left(x_{0}+h\right), \\
f\left(x_{0}-h\right) & \leq g\left(x_{0}-h\right) \\
-2 f\left(x_{0}\right) & =-2 g\left(x_{0}\right)
\end{aligned}
$$

Adding these three relations and dividing both sides by the positive number h^{2}, we obtain

$$
\frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)}{h^{2}} \leq \frac{g\left(x_{0}+h\right)+g\left(x_{0}-h\right)-2 g\left(x_{0}\right)}{h^{2}}
$$

Passing to the limit as $h \rightarrow 0^{+}$, we obtain

$$
\begin{align*}
\lim _{h \rightarrow 0^{+}} \frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)-2 f\left(x_{0}\right)}{h^{2}} \tag{3-15}\\
\leq \lim _{h \rightarrow 0^{+}} \frac{g\left(x_{0}+h\right)+g\left(x_{0}-h\right)-2 g\left(x_{0}\right)}{h^{2}}
\end{align*}
$$

Applying L'Hôpital's rule in the $\frac{0}{0}$ case, twice, or using Taylor's formula with Lagrange's remainder, it is not hard to see that due to the continuity of $f^{\prime \prime}$ at x_{0}, the last inequality becomes

$$
f^{\prime \prime}\left(x_{0}\right) \leq g^{\prime \prime}\left(x_{0}\right)
$$

To answer Question 3.7, we will analyze four cases.
Case 1. If $\alpha \geq 1$, then the answer of Question 3.7 is given by the following proposition.

Proposition 3.9. If $\alpha \geq 1$, then the smallest number $p=p(\alpha) \in[-\infty, \infty]$ such that for all positive numbers b and c, we have

$$
\begin{equation*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c) \tag{3-16}
\end{equation*}
$$

is

$$
\begin{equation*}
p(\alpha)=1-2 \alpha \tag{3-17}
\end{equation*}
$$

Proof. Step 1: We prove first the inequality $p(\alpha) \leq 1-2 \alpha$.
Indeed, using Observation 2.2, we have

$$
\begin{align*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} & =\left(H_{1-2 \alpha}(b, c) H_{2 \alpha-1}(b, c)\right) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \\
& =H_{1-2 \alpha}(b, c)\left[\frac{H_{\alpha-1}^{(\alpha-1) / \alpha}(b, c) H_{2 \alpha-1}^{1 / \alpha}(b, c)}{H_{\alpha}(b, c)}\right]^{\alpha} \\
& \leq H_{1-2 \alpha}(b, c) \cdot 1^{\alpha}=H_{1-2 \alpha}(b, c) \tag{3-18}
\end{align*}
$$

since $0 \leq \alpha-1<\alpha \leq 2 \alpha-1$ (due to the fact that $\alpha \geq 1$),

$$
\begin{equation*}
\frac{\alpha-1}{\alpha}(\alpha-1)+\frac{1}{\alpha}(2 \alpha-1)=\alpha \tag{3-19}
\end{equation*}
$$

and so, because $x \mapsto H_{x}(b, c)$ is logarithmically concave on $[0, \infty)$, we have

$$
\begin{equation*}
H_{\alpha-1}^{(\alpha-1) / \alpha}(b, c) H_{2 \alpha-1}^{1 / \alpha}(b, c) \leq H_{\alpha}(b, c) \tag{3-20}
\end{equation*}
$$

Step 2: We prove now that if p is a positive number such that for all positive numbers b and c, we have

$$
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c)
$$

then $p \geq 1-2 \alpha$.
Choosing $b=1$ and $c=x$, where x is an arbitrary positive number, the above inequality becomes

$$
\begin{equation*}
x \frac{1+x^{\alpha-1}}{1+x^{\alpha}} \leq\left(\frac{1+x^{p}}{2}\right)^{1 / p} \tag{3-21}
\end{equation*}
$$

We can see now that the hypotheses of Lemma 3.8 are satisfied for the functions

$$
\begin{equation*}
f(x):=\frac{x+x^{\alpha}}{1+x^{\alpha}}=1+\frac{x-1}{1+x^{\alpha}}=1+\frac{1}{2}(x-1)+(x-1)\left(\frac{1}{1+x^{\alpha}}-\frac{1}{2}\right) \tag{3-22}
\end{equation*}
$$

and

$$
\begin{equation*}
g(x):=\left(\frac{1+x^{p}}{2}\right)^{1 / p} \tag{3-23}
\end{equation*}
$$

and the point

$$
\begin{equation*}
x_{0}:=1 . \tag{3-24}
\end{equation*}
$$

Thus, we obtain

$$
\begin{equation*}
f^{\prime \prime}(1) \leq g^{\prime \prime}(1) . \tag{3-25}
\end{equation*}
$$

Using Leibniz's rule of differentiation and keeping only the nonzero terms, we obtain

$$
\begin{align*}
f^{\prime \prime}(1) & =\left.\frac{d^{2}}{d x^{2}}\left[1+\frac{1}{2}(x-1)+(x-1)\left(\frac{1}{1+x^{\alpha}}-\frac{1}{2}\right)\right]\right|_{x=1} \\
& =\left.\frac{d^{2}}{d x^{2}}\left[(x-1)\left(\frac{1}{1+x^{\alpha}}-\frac{1}{2}\right)\right]\right|_{x=1} \\
& =\left.\left.\binom{2}{1} \frac{d}{d x}(x-1)\right|_{x=1} \frac{d}{d x}\left(\frac{1}{1+x^{\alpha}}-\frac{1}{2}\right)\right|_{x=1} \\
& =\left.2\left(\frac{-\alpha x^{\alpha-1}}{\left(1+x^{\alpha}\right)^{2}}\right)\right|_{x=1}=-\frac{\alpha}{2} \tag{3-26}
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{2^{1 / p}} \frac{d}{d x}\left[\left(1+x^{p}\right)^{1 / p}\right] \\
& =\frac{1}{2^{1 / p}} \frac{1}{p}\left(1+x^{p}\right)^{(1 / p)-1} p x^{p-1} \\
& =\frac{1}{2^{1 / p}}\left(\frac{1+x^{p}}{x^{p}}\right)^{(1-p) / p}=\frac{1}{2^{1 / p}}\left(x^{-p}+1\right)^{(1-p) / p} .
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
g^{\prime \prime}(x) & =\frac{1}{2^{1 / p}} \frac{1-p}{p}\left(x^{-p}+1\right)^{(1-2 p) / p}(-p) x^{-p-1} \\
& =\frac{p-1}{2^{1 / p}}\left(x^{-p}+1\right)^{(1-2 p) / p} x^{-p-1}
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
g^{\prime \prime}(1)=\frac{p-1}{4} \tag{3-27}
\end{equation*}
$$

Therefore, inequality (3-25) becomes

$$
\begin{equation*}
-\frac{\alpha}{2} \leq \frac{p-1}{4} \tag{3-28}
\end{equation*}
$$

This inequality is equivalent to

$$
\begin{equation*}
p \geq 1-2 \alpha \tag{3-29}
\end{equation*}
$$

and so, our proof is complete.
Case 2. If $\frac{1}{2}<\alpha<1$, then the answer to Question 3.7 is given by the following proposition.

Proposition 3.10. If $\frac{1}{2}<\alpha<1$, then the smallest number $p=p(\alpha) \in[-\infty, \infty]$ such that for all positive numbers b and c, we have

$$
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c)
$$

is

$$
\begin{equation*}
p(\alpha)=0 \tag{3-30}
\end{equation*}
$$

Proof. Step 1: We prove first the inequality $p(\alpha) \leq 0$. That means, we show that for all positive numbers b and c we have

$$
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{0}(b, c)
$$

Indeed, using the symmetry of the function $x \mapsto \ln \left(H_{x}(b, c)\right)$ with respect to the origin

$$
\begin{equation*}
H_{x}(b, c) H_{-x}(b, c)=H_{0}^{2}(b, c) \tag{3-31}
\end{equation*}
$$

for $x=\alpha-1$, we obtain

$$
\begin{equation*}
H_{\alpha-1}(b, c)=\frac{H_{0}^{2}(b, c)}{H_{1-\alpha}(b, c)} \tag{3-32}
\end{equation*}
$$

Thus, we have

$$
\begin{align*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} & =H_{0}^{2}(b, c)\left[\frac{H_{0}^{2}(b, c)}{H_{1-\alpha}(b, c)}\right]^{\alpha-1} \frac{1}{H_{\alpha}^{\alpha}(b, c)} \\
& =\frac{H_{0}^{2 \alpha}(b, c) H_{1-\alpha}^{1-\alpha}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \\
& =H_{0}(b, c)\left[\frac{H_{0}(b, c)}{H_{\alpha}(b, c)}\right]^{2 \alpha-1}\left[\frac{H_{1-\alpha}(b, c)}{H_{\alpha}(b, c)}\right]^{1-\alpha} \\
& \leq H_{0}(b, c) \cdot 1^{2 \alpha-1} \cdot 1^{1-\alpha}=H_{0}(b, c), \tag{3-33}
\end{align*}
$$

since $0<\alpha, 1-\alpha<\alpha$, the function $x \mapsto H_{x}(b, c)$ is increasing, $2 \alpha-1>0$, and $1-\alpha>0$.
Step 2: We show now that if $p<0$, then the inequality

$$
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c)
$$

cannot hold for all positive numbers b and c.
Indeed, if we assume by contradiction that it holds for all positive numbers b and c, then choosing $b=1$ and $c=x$, where x is an arbitrary positive number, we obtain

$$
\begin{equation*}
x \frac{1+x^{\alpha-1}}{1+x^{\alpha}} \leq\left(\frac{1+x^{p}}{2}\right)^{1 / p} \tag{3-34}
\end{equation*}
$$

Passing to the limit as $x \rightarrow \infty$, we get

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{x+x^{\alpha}}{1+x^{\alpha}} \leq \lim _{x \rightarrow \infty}\left(\frac{1+x^{p}}{2}\right)^{1 / p} \tag{3-35}
\end{equation*}
$$

Since $\alpha<1$ and $p<0$, the last inequality becomes

$$
\infty \leq\left(\frac{1}{2}\right)^{1 / p},
$$

which is a contradiction.
Thus the smallest number p for which inequality (3-14) holds is $p(\alpha)=0$.
Case 3. If $0 \leq \alpha \leq \frac{1}{2}$, then the answer to Question 3.7 is given by the following proposition.
Proposition 3.11. If $0 \leq \alpha \leq 1$, then the smallest number $p=p(\alpha) \in[-\infty, \infty]$ such that for all positive numbers b and c we have

$$
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c)
$$

is

$$
\begin{equation*}
p(\alpha)=1-2 \alpha . \tag{3-36}
\end{equation*}
$$

Proof. Step 1: We show first that $p(\alpha) \leq 1-2 \alpha$. Using the logarithmic symmetry of the function $x \mapsto H_{x}(b, c)$, we have

$$
\begin{align*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} & =H_{0}^{2}(b, c)\left[\frac{H_{0}^{2}(b, c)}{H_{1-\alpha}(b, c)}\right]^{\alpha-1} \frac{1}{H_{\alpha}^{\alpha}(b, c)} \\
& =\frac{H_{0}^{2 \alpha}(b, c) H_{1-\alpha}^{1-\alpha}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \tag{3-37}
\end{align*}
$$

Since $0 \leq \alpha \leq \frac{1}{2}$, we have $0 \leq \alpha \leq 1-\alpha$, and α can be written as a convex combination of 0 and $1-\alpha$ in the following way:

$$
\begin{equation*}
\alpha=\left(1-\frac{\alpha}{1-\alpha}\right) \cdot 0+\frac{\alpha}{1-\alpha} \cdot(1-\alpha) . \tag{3-38}
\end{equation*}
$$

Since $x \mapsto H_{x}(b, c)$ is logarithmically concave on $[0, \infty)$, applying Jensen's inequality, we obtain

$$
\begin{equation*}
H_{\alpha} \geq H_{0}^{1-\alpha /(1-\alpha)} H_{1-\alpha}^{\alpha /(1-\alpha)} . \tag{3-39}
\end{equation*}
$$

Thus, using (3-37) and (3-39), we have

$$
\begin{align*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} & =\frac{H_{0}^{2 \alpha}(b, c) H_{1-\alpha}^{1-\alpha}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \\
& \leq \frac{H_{0}^{2 \alpha}(b, c) H_{1-\alpha}^{1-\alpha}(b, c)}{\left[H_{0}^{1-\alpha /(1-\alpha)}(b, c) H_{1-\alpha}^{\alpha /(1-\alpha)}(b, c)\right]^{\alpha}} \\
& =H_{0}^{\alpha /(1-\alpha)}(b, c) H_{1-\alpha}^{(1-2 \alpha) /(1-\alpha)}(b, c) . \tag{3-40}
\end{align*}
$$

Let us observe that $\alpha /(1-\alpha) \in[0,1],(1-2 \alpha) /(1-\alpha) \in[0,1]$, and

$$
\begin{equation*}
\frac{\alpha}{1-\alpha}+\frac{1-2 \alpha}{1-\alpha}=1 \tag{3-41}
\end{equation*}
$$

Applying, Jensen's inequality again, we obtain

$$
\begin{align*}
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} & \leq H_{0}^{\alpha /(1-\alpha)}(b, c) H_{1-\alpha}^{(1-2 \alpha) /(1-\alpha)}(b, c) \\
& \leq H_{[\alpha /(1-\alpha)] \cdot 0+[(1-2 \alpha) /(1-\alpha)] \cdot(1-\alpha)}(b, c) \\
& =H_{1-2 \alpha}(b, c) . \tag{3-42}
\end{align*}
$$

Step 2: We can prove now in exactly the same way as in the proof of Proposition 3.9 that if p is real number such that inequality (3-14) holds for all positive numbers b and c, then

$$
p \geq 1-2 \alpha .
$$

Case 4. If $\alpha<0$, then the answer to Question 3.7 is given by the following proposition.

Proposition 3.12. If $\alpha<0$, then the smallest (only) number $p=p(\alpha) \in[-\infty, \infty]$ such that for all positive numbers b and c, we have

$$
H_{0}^{2}(b, c) \frac{H_{\alpha-1}^{\alpha-1}(b, c)}{H_{\alpha}^{\alpha}(b, c)} \leq H_{p}(b, c)
$$

is

$$
\begin{equation*}
p(\alpha)=\infty . \tag{3-43}
\end{equation*}
$$

Proof. Indeed, we saw geometrically at the beginning of the paper that for all triangles $A B C$, and all interior cevians $A M$, we have

$$
\overline{A M} \leq \max \{\overline{A B}, \overline{A C}\}=H_{\infty}(b, c),
$$

where $b:=\overline{A C}$ and $c:=\overline{A B}$.
To show that $p(\alpha)=\infty$, we must prove that for all $p<\infty$, inequality (3-14) cannot hold for all positive numbers b and c.

Supposing that for some $p<\infty$ (we may assume $p>0$) inequality (3-14) holds for all positive numbers b and c, we can choose $b=1$ and $c=x$, where x is an arbitrary positive number. That means, for all $x>0$, we have

$$
\frac{x+x^{\alpha}}{1+x^{\alpha}} \leq\left(\frac{1+x^{p}}{2}\right)^{1 / p} .
$$

Passing to the limit in this inequality as $x \rightarrow 0^{+}$, we obtain

$$
\lim _{x \rightarrow 0^{+}} \frac{x+x^{\alpha}}{1+x^{\alpha}} \leq \lim _{x \rightarrow 0^{+}}\left(\frac{1+x^{p}}{2}\right)^{1 / p}
$$

Since $\alpha<0$, the last inequality is equivalent to

$$
1 \leq\left(\frac{1}{2}\right)^{1 / p} .
$$

This inequality is impossible, since $0<\frac{1}{2}<1$ and $\frac{1}{p}>0$.
Therefore, the function $\alpha \mapsto p(\alpha)$ that gives the smallest p such that in any triangle $A B C$ the α-interior cevian starting from $A, A M_{\alpha}$, has a length less than or equal to the p-Hölder mean of $\overline{A B}$ and $\overline{A C}$ is $P: \mathbb{R} \rightarrow[-\infty, \infty]$, defined by

$$
P(\alpha)= \begin{cases}\infty & \text { if } \alpha<0 \tag{3-44}\\ 1-2 \alpha & \text { if } 0 \leq \alpha \leq \frac{1}{2}, \\ 0 & \text { if } \frac{1}{2}<\alpha<1, \\ 1-2 \alpha & \text { if } \alpha>1\end{cases}
$$

See the graph of P in Figure 3.

Figure 3. The graph of function $y=P(\alpha)$.
We observe that the function P is nonincreasing and lower semicontinuous.
The branching point $\alpha=0$ of the piecewise-defined function P corresponds to the median $A M_{0}$ of the triangle $A B C$.

The branching point $\alpha=1$ corresponds to the bisector $A M_{1}$ of the angle $\varangle B A C$.
The branching point $\alpha=\frac{1}{2}$ corresponds to a cevian $A M_{1 / 2}$ that is concurrent with the corresponding cevians $B N_{1 / 2}$ and $C P_{1 / 2}$ in the point $X(366)$ from [Kimberling 1994]. The point $X(366)$ is the isogonal conjugate of $X(365)$, the square root point, which is the intersection point of the three $\frac{3}{2}$-interior cevians of the triangle $A B C$.

We summarize below our results, in the case of some classic cevians:
Proposition 3.13. Let $A B C$ be a triangle with sides, starting from A, of lengths $\overline{A C}=b$ and $\overline{A B}=c$. Let M be a point on the side $B C$ of this triangle. Then:
(1) If $A M$ is the median corresponding to the vertex A, then its length satisfies

$$
\begin{equation*}
\overline{A M}<\frac{b+c}{2} \tag{3-45}
\end{equation*}
$$

Moreover, for every $p<1$, there exists a triangle $A B C$ (depending on p) such that

$$
\begin{equation*}
\overline{A M}>\left(\frac{b^{p}+c^{p}}{2}\right)^{1 / p} \tag{3-46}
\end{equation*}
$$

(2) If $A M$ is the interior bisector of the angle $\varangle(B A C)$, then its length satisfies

$$
\begin{equation*}
\overline{A M}<\frac{2}{\frac{1}{a}+\frac{1}{b}} . \tag{3-47}
\end{equation*}
$$

Moreover, for every $p<-1$, there exists a triangle $A B C$ such that

$$
\begin{equation*}
\overline{A M}>\left(\frac{b^{p}+c^{p}}{2}\right)^{1 / p} \tag{3-48}
\end{equation*}
$$

(3) If $A M$ is the symmedian corresponding to the vertex A, then its length satisfies

$$
\begin{equation*}
\overline{A M}<\left(\frac{b^{-3}+c^{-3}}{2}\right)^{-1 / 3} \tag{3-49}
\end{equation*}
$$

Moreover, for every $p<-3$, there exists a triangle $A B C$ such that

$$
\begin{equation*}
\overline{A M}>\left(\frac{b^{p}+c^{p}}{2}\right)^{1 / p} \tag{3-50}
\end{equation*}
$$

Acknowledgements

This research was carried out during the Sampling Advanced Mathematics for Minority Students (SAMMS) program, organized by The Ohio State University (OSU), Department of Mathematics, in Columbus, Ohio, July 10-August 4, 2017. The authors would like to express their gratitude to the OSU Department of Mathematics for supporting this research.

The authors would also like to thank Professor Clark Kimberling, from the University of Evansville, Indiana, for providing them the necessary information about the point $X(366)$.

The authors are extremely grateful to Professor Edward Overman, from the OSU Department of Mathematics for greatly helping them with the figures for this paper.

References

[Bottema et al. 1969] O. Bottema, R. Ž. Djordjević, R. R. Janić, D. S. Mitrinović, and P. M. Vasić, Geometric inequalities, Wolters-Noordhoff, Groningen, Netherlands, 1969. MR Zbl
[Bullen 1998] P. S. Bullen, A dictionary of inequalities, Pitman Monographs Surv. Pure Appl. Math. 97, Longman, Harlow, UK, 1998. MR Zbl
[Bullen et al. 1988] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and their inequalities, Math. Appl. (East Eur. Series) 31, Reidel, Dordrecht, 1988. MR Zbl
[Kimberling 1994] C. Kimberling, "Encyclopedia of triangle centers", website, 1994, available at https://tinyurl.com/encytria.
[Mitrinović et al. 1989] D. S. Mitrinović, J. E. Pečarić, and V. Volenec, Recent advances in geometric inequalities, Math. Appl. (East Eur. Series) 28, Kluwer, Dordrecht, 1989. MR Zbl
[Pólya and Szegő 1972] G. Pólya and G. Szegő, Problems and theorems in analysis, I: Series, integral calculus, theory of functions, Grundlehren der Math. Wissenschaften 193, Springer, 1972. MR Zbl

Received: 2018-05-23 Revised: 2018-11-09 Accepted: 2018-11-15
stan.7@osu.edu Department of Mathematics, Ohio State University at Marion, Marion, OH, United States
zap14480@uvg.edu.gt Department of Mathematics,
Universidad del Valle de Guatemala, Guatemala, Guatemala

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Emory University, USA
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 4

Euler's formula for the zeta function at the positive even integers 541
Samyukta Krishnamurthy and Micah B. Milinovich
Descents and des-Wilf equivalence of permutations avoiding certain 549nonclassical patternsCaden Bielawa, Robert Davis, Daniel Greeson andQinhan Zhou
The classification of involutions and symmetric spaces of modular groups 565
Marc Besson and Jennifer Schaefer
When is $a^{n}+1$ the sum of two squares? 585
Greg Dresden, Kylie Hess, Saimon Islam, Jeremy Rouse, Aaron Schmitt, Emily Stamm, Terrin Warren and Pan Yue
Irreducible character restrictions to maximal subgroups of low-rank 607
classical groups of types B and CKempton Albee, Mike Barnes, Aaron Parker, Eric Roonand A. A. Schaeffer Fry
Prime labelings of infinite graphs 633
Matthew Kenigsberg and Oscar Levin
Positional strategies in games of best choice647
Aaron Fowlkes and Brant Jones
Graphs with at most two trees in a forest-building process 659Steve Butler, Misa Hamanaka and Marie Hardt
Log-concavity of Hölder means and an application to geometric inequalities 671
Aurel I. Stan and Sergio D. Zapeta-TzulApplying prospect theory to multiattribute problems with independence687assumptionsJack Stanley and Frank P. A. Coolen
On weight-one solvable configurations of the Lights Out puzzle 713

[^0]: MSC2010: 26A06, 26D99.
 Keywords: Hölder mean, log-concavity, Jensen inequality, triangle, cevian.

