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(Communicated by Kenneth S. Berenhaut)

We study a variation of the game of best choice (also known as the secretary
problem or game of googol) under an additional assumption that the ranks of
interview candidates are restricted using permutation pattern-avoidance. We
describe the optimal positional strategies and develop formulas for the probability
of winning.

1. Introduction

The game of best choice, also known as the “secretary problem,” appeared in
Martin Gardner’s 1960 Scientific American column (reprinted in [Gardner 1995]),
although it has a history which predates this; see, e.g., [Kadison 1994]. Gilbert and
Mosteller [1966] gave a nice survey of the problem and solved some variations.
The basic idea is to try to hire the best candidate out of N applicants for a job, each
candidate having a specific ranking 1 (worst) through N (best). When interviewing
the candidates, the decision must be made to hire them or not, on the spot, and
candidates cannot be recalled later. The order of the interviews is (uniformly)
random and so the interviewer does not know when the top candidate will come in.

As an example, suppose the interviews have rank order 574239618. The inter-
viewer will be able to rank each initial segment of candidates relative to each other,
but will not know their rank overall out of N. So the interviewer will see

1, 12, 231, 3421, 45312, 453126, . . .

and must decide when to stop and hire. We count the game as a win if the best
candidate out of N is hired and as a loss otherwise, with all losses having equal
value. The optimal strategy, for N sufficiently large, turns out to be to reject the
first N/e of the candidates (about 37%) and then hire the next candidate who is
better than all earlier candidates.

Now, suppose that a consulting firm (with some oracular powers) agrees to filter
candidates for the interviewer. They offer two strategies. In the first strategy, they
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will guarantee that each time a candidate B ranks lower than some candidate A
already interviewed (“disappointing”), no future candidates will rank lower than B.
In the second strategy, they guarantee that each time a candidate B ranks higher
than some candidate A already interviewed (“raising the bar”), no future candidates
will rank lower than A. All other aspects of the game remain the same.

Is there any difference between these? Are they better or worse than the classical
case?

2. Refinement

Interview rank orders are permutations of some fixed size N which we write using
the notation p1 p2 · · · pN , where the pi are the values 1, 2, . . . , N arranged in some
order. In this work, we restrict the interview rank orders using pattern-avoidance.

Definition 2.1. We say that the permutation p = p1 p2 · · · pN contains the pattern
q = q1q2q3 if there exist i < j < k such that pi , pj , pk are in the same relative
order as q1, q2, q3.

So, the “disappointment-free” consulting strategy is equivalent to requiring the
interview rank orders to be 321-avoiding. Similarly, the “bar-raising” situation is
the same as 231-avoiding. See the textbook [Bóna 2012] for a gentle introduction
to pattern-avoidance. Putting aside the story about the consultants, we believe
that pattern-avoidance is a natural mechanism for modeling the effect of domain
learning by the player during the game. More precisely, as the interviewer ranks the
current candidates at each step, they acquire information that allows them to hone
the pool to include more relevant candidates at future time steps. We represent this
honing process using pattern-avoidance.

The left-to-right maxima in a permutation p consist of elements pj that are larger
in value than every element pi to the left (i.e., for i < j). In the game of best
choice, it is never optimal to select a candidate that is not a left-to-right maximum.
A positional strategy for the game of best choice is one in which the interviewer
transitions from rejection to hiring based on the position of the interview. More
precisely, the interviewer may play the k-positional strategy on a permutation p
by rejecting candidates p1, p2, . . . , pk and then accepting the next left-to-right
maximum thereafter. If k is set too high, it is likely the player will miss the best
candidate. If k is set too low, they will probably not have set their standards high
enough to capture the best candidate. We say that a particular interview rank order is
k-winnable if transitioning from rejection to hiring after the k-th interview captures
the best candidate. For example, 574239618 is k-winnable for k = 2, 3, 4, and 5. It
is straightforward to verify that a permutation p is k-winnable precisely when k
lies between the last two left-to-right maxima in p.
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In this paper, we restrict to using these positional strategies applied to a permuta-
tion chosen uniformly at random among those avoiding 321 (or, alternatively, 231)
in order to facilitate comparison with the classical case. For each model, we seek
to determine the optimal transition position k and probability of winning for finite
N and asymptotically as N →∞.

We now mention some ties to recent work. Several authors have investigated the
distribution of various permutation statistics for a random model in which a pattern-
avoiding permutation is chosen uniformly at random. For example, [Miner and Pak
2014] finds the positions of smallest and largest elements as well as the number of
fixed points in a random permutation avoiding a single pattern of size 3; [Madras
and Pehlivan 2016] finds the probability that one or two specified points occur
in a random permutation avoiding 312; and the work of several authors [Deutsch
et al. 2002/03; Firro et al. 2007] determines the lengths of the longest monotone
and alternating subsequences in a random permutation avoiding a single pattern
of size 3. We also consider uniformly random 321-avoiding and 231-avoiding
permutations in our work, but the statistics we are concerned with arise from the
game of best choice. In some sense, our results refine the question of where a
uniformly random pattern-avoiding permutation achieves its maximum because in
our problem we want to transition so as to capture the maximum value. We also
consider asymptotics for both of our models, thus obtaining a “limit-strategy,” just
as in the classical game.

In addition, Wilf [1995] has collected some results on distributions of left-to-right
maxima and Prodinger [2002] has studied these under a geometric random model.
Although we phrase our results in terms of the game of best choice, they may also
be viewed as an extension of the literature on distributions of left-to-right maxima
to subsets of pattern-avoiding permutations.

3. Raising the bar

An extension of a permutation p = p1 p2 · · · pN−1 is the result of inserting value N
into one of the N positions before, between, or after entries in p.

Lemma 3.1. Let p be a 231-permutation of size N − 1 and 0≤ k ≤ N − 1. Then
there exists a unique extension of p that is k-winnable for N.

Proof. Fix N and k. Let p1 p2 · · · pk | pk+1 · · · pN−1 be a 231-avoiding permutation
of size N − 1, with pm =max{p1, p2, . . . , pk}.

Define pw to be the leftmost value greater than pm among {pk+1, pk+2, . . . , pN−1},
and let q be the result of inserting N into the position directly prior to pw (or into
the last position if pw does not exist). So we have

q = p1 p2 · · · pm · · · pk | pk+1 · · · pw−1 N pw · · · pN−1.
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We claim that q is the unique 231-avoiding k-winnable extension of p. To see
this, observe that:

• By construction, all elements of {pk+1, . . . , pw−1} are less than pm , so q is
k-winnable.

• We began with a 231-avoiding permutation p. If q contains 231, the value N
must play the role of “3”. Therefore, it suffices to show that all of the values lying
to the left of N are less than all values lying to the right of N. By construction,
pm =max{p1, p2, . . . , pw−1} and pm < pw. If there exists some element y < pm

among the entries pw+1, pw+2, . . . , pN−1 then (pm, pw, y) forms a 231-instance,
contradicting that p is 231-avoiding. Hence, no such y exists and q is 231-avoiding.

• If the extension q were not unique, we would have two positions L1 and L2,
say, where N could be inserted to the right of pk to produce distinct k-winnable
permutations of size N. In particular, there must exist at least one element pv

between L1 and L2. But the previous paragraph shows that we would require
pm < pv for the extension q using L1 to be 231-avoiding, so the extension using
L2 is not k-winnable, a contradiction. Hence, the extension is unique. �

It is well known that the Catalan numbers

CN =
1

N+1

(2N
N

)
count the number of 231-avoiding permutations of size N ; see, e.g., [Bóna 2012].
Hence, we obtain the following result.

Corollary 3.2. There are exactly CN−1 permutations of size N that are 231-
avoiding and k-winnable.

Proof. For fixed k, the set of 231-avoiding permutations of size N−1 are in bijection
with the set of 231-avoiding k-winnable permutations of size N by Lemma 3.1. �

Notice the curious consequence that it does not matter which positional strategy
we use: for fixed N, the probability of selecting the best candidate is the same for
all k. From the explicit formula, it is straightforward to work out the asymptotic
probability of success

lim
N→∞

CN−1

CN
=

1
4
.

4. Avoiding disappointment

Next, we consider positional strategies for the 321-avoiding interview rank orders.
Recall that a permutation is k-winnable if and only if k lies between its last two
left-to-right maxima. Hence, we study the distribution of left-to-right maxima in
321-avoiding permutations. For this, we make use of Dyck paths. These may be
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viewed as paths in the Cartesian plane from (0, 0) to (N , N ), consisting of (0, 1)

steps (i.e., north) and (1, 0) steps (i.e., east), staying above the line y = x . The
northeast corners in a Dyck path consist of a north step immediately followed by
an east step. We label each northeast corner by the column and height at the end of
its east step.

Example 4.1. The Dyck paths for N = 3 are shown below:

Their sets of northeast corners are

{(1,3)}, {(1,2), (2,3)}, {(1,2), (3,3)}, {(1,1), (2,3)}, {(1,1), (2,2), (3,3)}

respectively.

Lemma 4.2. The possible sets {pi1, pi2, . . . , pim } of values and positions of left-to-
right maxima arising from the various permutations of N are in bijection with the
sets of northeast corners

{(i j , pi j ) : j = 1, . . . , m}

of Dyck paths of size N.

Proof. The defining property for a Dyck path is that at each step along the path, the
number of east steps taken so far is less than or equal to the number of north steps
taken so far. Equivalently, we may consider paths whose northeast corners satisfy
the following two conditions:

• There is always a northeast corner in the first column.

• Whenever we add a northeast corner corresponding to pi j , we take at most
pi j − i j east steps until we reach the next column with a northeast corner.

But this is precisely equivalent to the conditions that define sets of left-to-right
maxima in a permutation:

• The first position is always a left-to-right maximum.

• Whenever we add a left-to-right maximum corresponding to pi j , we have (by
definition) at most pi j − i j complementary values that are smaller than pi j and
have not yet been used. Hence, there are at most pi j − i j entries until we reach
the next left-to-right maximum.

Given a Dyck path representing a set of left-to-right maxima, we can produce a
canonical permutation p that realizes this set of left-to-right maxima as follows:
Place each pi j into position i j and then fill the complementary positions with
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position

value

4 1

7 2

8 3 5 6

Figure 1. Completing the set of left-to-right maxima {p1=4, p3=7, p5=8}.

the complementary values {1, 2, . . . , N } \ {pi1, . . . , pim } arranged increasingly. In
terms of the Dyck path, we can label each northeast corner by the value of its
corresponding left-to-right maximum, and then label the remaining horizontal edges
with the complementary values, arranged increasingly as we read north and east
along the path. Thus, the label for column i of the Dyck path gives the value for
the i-th position of the permutation. �

As an example in N = 8, if p1 = 4, p3 = 7, and p5 = 8 are the pi j , we obtain
p = 41728356; this is illustrated in Figure 1.

Recall that the Catalan numbers CN count 321-avoiding permutations of size N,
and also count the number of Dyck paths of size N ; see, e.g., [Bóna 2012]. Hence,
we obtain the following result.

Corollary 4.3. A 321-avoiding permutation p of size N is uniquely determined by
the values and positions of its left-to-right maxima.

Proof. The construction in the previous proof produces CN distinct permutations
of size N that have the structure of two increasing sequences shuffled together
(namely, the sequence of left-to-right maxima, and the sequence of complementary
values). Hence, the permutations constructed from Dyck paths in the previous result
are all 321-avoiding. Since there are Catalan-many of each, there must be exactly
one 321-avoiding permutation for each Dyck path. �

Definition 4.4. For 1 ≤ i ≤ N − 1 define Ti (N ) to be the total number of partial
Dyck paths from (0, 0) to (N − 1− i, N − 1), and define Si (N ) to be the number
of Dyck paths from (0, 0) to (N , N ) where column N − i lies weakly right of the
next-to-last northeast corner and strictly left of the last northeast corner in the path.
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N\k −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

2 1
3 3 2
4 6 8 5
5 10 20 23 14
6 15 40 65 70 42
7 21 70 145 214 222 132
8 28 112 280 514 717 726 429
9 36 168 490 1064 1817 2442 2431 1430

10 45 240 798 1988 3962 6446 8437 8294 4862
11 55 330 1230 3444 7784 14636 22997 29510 28730 16796
12 66 440 1815 5628 14154 29924 53937 82550 104312 100776 58786

Table 1. Number of k-winnable 321-avoiding permutations of N.

By Corollary 4.3, Si (N ) is the number of (N − i)-winnable permutations of N.
For example, the path in Figure 1 would be counted in Si (N ) for N − i ∈ {3, 4}
because the last two northeast corners occur in columns 3 and 5, respectively. Some
initial values are given in Table 1. If we divide by the N -th Catalan number we
obtain the probability of success for the corresponding (N−i)-positional strategy.
These are illustrated in Table 2. It turns out that the Ti (N ) are Catalan triangle
entries at (N − 1, i), namely

Ti (N )=
i+1

N

(2(N−1)−i
N−1

)
,

but we do not use this in our development.
Now, define an operation 1 that acts on a function of N by replacing N with N−1.

That is, 1 f (N )= f (N − 1). We prefer to use this operator, with the argument N
suppressed, as a notational convenience for our formulas and figures (although all
of our results can be obtained without it). We next prove recurrences for the Si

and Ti that will facilitate their computation.

Theorem 4.5. We have
Ti = Ti−1−1Ti−2,

with T1 = CN−1 and T2 = CN−1−CN−2, and

Si = i Ti +1Si−1,

with S1 = CN−1.

Proof. See Figure 2 for a schematic illustrating these recurrences.
The recurrence for T follows because each path counted by Ti−1(N ) must

end with a vertical step or a horizontal step; these are counted by 1Ti−2(N ) =

Ti−2(N − 1) and Ti (N ), respectively.
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N\k −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1

2 50.0
3 60.0 40.0
4 42.8 57.1 35.7
5 23.8 47.6 54.7 33.3
6 11.3 30.3 49.2 53.0 31.8
7 4.89 16.3 33.7 49.8 51.7 30.7
8 1.95 7.83 19.5 35.9 50.1 50.7 30.0
9 0.74 3.45 10.0 21.8 37.3 50.2 50.0 29.4

10 0.26 1.42 4.75 11.8 23.5 38.3 50.2 49.3 28.9
11 0.09 0.56 2.09 5.85 13.2 24.8 39.1 50.1 48.8 28.5
12 0.03 0.21 0.87 2.7 6.8 14.3 25.9 39.6 50.1 48.4 28.2
13 0.07 0.34 1.18 3.26 7.61 15.3 26.7 40.1 50.0 48.0 28.0
14 0.13 0.49 1.47 3.76 8.31 16.1 27.4 40.4 50.0 47.7 27.7
15 0.19 0.63 1.75 4.21 8.92 16.8 28.0 40.7 49.9 47.5 27.5
16 0.26 0.78 2.01 4.61 9.46 17.3 28.5 41.0 49.9 47.2 27.4
17 0.33 0.92 2.26 4.98 9.93 17.8 28.9 41.2 49.8 47.0 27.2
18 0.4 1.05 2.48 5.31 10.3 18.3 29.2 41.3 49.7 46.8 27.1
...

105 2.73 4.49 7.22 11.3 17.1 24.9 34.2 43.3 48.4 43.7 25.0

Table 2. Percentage of k-winnable 321-avoiding permutations of N.

The recurrence for S follows because each path counted by Si (N ) passes through
column N−i at level N−1 or passes through column N−i below level N−1. The
first set of paths is counted by iTi (N ) because any path ending at (N−1− i, N−1)

can be extended in i ways depending on which of the columns N− i , N− i+2, . . . ,
N − 1 is used for the last vertical step. The second set of paths is counted by
1Si−1(N )= Si−1(N − 1) because we can bijectively extend any path passing the
required column and ending at (N−1, N−1) to end at (N , N ) instead by inserting
one more pair of vertical/horizontal steps at the last northeast corner. �

Using this theorem, we may write each Si and Ti as a linear combination of
Catalan numbers. On the one hand, applying 1 to Si , say, simply restricts the Dyck
paths we are counting to end at (N − 1, N − 1) instead of (N , N ). Algebraically,
applying 1 replaces each Catalan number in the linear combination with the previous
Catalan number.

Example 4.6. Applying the recurrences from Theorem 4.5, we have

T3 = (Cn−1−Cn−2)−1(Cn−1)= Cn−1− 2Cn−2,

T4 = (Cn−1− 2Cn−2)−1(Cn−1−Cn−2)= Cn−1− 3Cn−2+Cn−3,

T5 = (Cn−1− 3Cn−2+Cn−3)−1(Cn−1− 2Cn−2)= Cn−1− 4Cn−2+ 3Cn−3
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(0, 0)

(N, N )k = N−4

T4 T3 T2 T1

1T11T21S3

Figure 2. Schematic for path recurrences.

and

S2= 2(Cn−1−Cn−2)+1(Cn−1)= 2Cn−1−Cn−2,

S3= 3(Cn−1−2Cn−2)+1(2Cn−1−Cn−2)= 3Cn−1−4Cn−2−Cn−3,

S4= 4(Cn−1−3Cn−2+Cn−3)+1(3Cn−1−4Cn−2−Cn−3)= 4Cn−1−9Cn−2−Cn−4,

S5= 5(Cn−1−4Cn−2+3Cn−3)+1(4Cn−1−9Cn−2−Cn−4)

= 5Cn−1−16Cn−2+6Cn−3−Cn−5.

Lemma 4.7. Let i ≤ N −5 and X i be a linear combination of the Catalan numbers
CN−1, CN−2, . . . , CN−i . Then,

1
4

X i

CN
<

1X i

CN
≤

1
3

X i

CN
.

Proof. Observe that
1
4

<
CN−1

CN
≤

1
3

for all N ≥ 5. Since

1CN−i

CN
=

CN−i−1

CN
=

CN−i−1

CN−i

CN−i

CN
,

we have
1
4

CN−i

CN
<

1CN−i

CN
≤

1
3

CN−i

CN

for all N − i ≥ 5, and the result follows by linearity. �
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Lemma 4.8. For all i ≤ N − 5, we have

Ti

CN
≤

1
3

(3
4

)i−1
.

Proof. It is straightforward to verify that the result holds for i = 1 and i = 2.
Suppose the result holds for i − 1. Then,

Ti

CN
=

Ti−1

CN
−

1Ti−2

CN
<

Ti−1

CN
−

1
4

Ti−2

CN

by Lemma 4.7. From their definition in terms of lattice paths, it is also clear that
the Ti are decreasing in i (for each fixed N ). Hence,

Ti−1

CN
−

1
4

Ti−2

CN
≤

Ti−1

CN
−

1
4

Ti−1

CN
=

3
4

Ti−1

CN
≤

1
3

(3
4

)i−1

by induction. �

Theorem 4.9. We have
S3

CN
>

Si

CN

for all N ≥ 9 and all i > 3.

Proof. We have

Si

CN
=

iTi +1Si−1

CN
≤

i
3

(3
4

)i−1
+

1
3

Si−1

CN
.

An exercise using calculus proves i
3

( 3
4

)i−1 is decreasing once i >−1/ ln
( 3

4

)
(which

is between 3 and 4) and i
3

( 3
4

)i−1 is less than 1
4 for all i ≥ 11. Consequently, once

Si/CN < 3
8 , it remains so as i increases for all i ≥ 11.

In fact, using the linear combinations of Catalan numbers obtained from
Theorem 4.5 as in Example 4.6, we can verify that Si/CN < 3

8 for all 5 ≤ i ≤ 11
as illustrated in Table 2. More precisely, when we express Si/CN as a linear
combination of ratios of Catalan numbers, the limiting value as N →∞ can be
obtained by plugging in powers of 1

4 for each ratio of Catalan numbers; as these
limits are each smaller than 3

8 , we reduce to a finite computation. In detail, we use
the bounds

0.25 j <
CN− j

CN
< 0.254 j

for N > 95 + j to verify that Si/CN < 3
8 for each of the linear combinations

i = 5, 6, . . . , 11 (and check remaining finite cases for N manually).
Thus, the optimal value of Si/CN must occur in i ≤ 4 for all N. Using the

formulas from Example 4.6 again, we then find that S1/CN is optimal for N = 2,
that S2/CN is optimal for 3≤ N ≤ 8, and that S3/CN is optimal for all N ≥ 9. �
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Corollary 4.10. The optimal k-positional strategy for the game of best choice
restricted to the 321-avoiding interview rank orders is

k =


N − 1 if N = 2,

N − 2 if 3≤ N ≤ 8,

N − 3 otherwise.

The asymptotic probability of success is

lim
N→∞

3CN−1− 4CN−2−CN−3

CN
=

31
64
= 0.484375.

Using André’s reflection method or a straightforward induction argument, one
can show that the number of partial Dyck paths (i.e., lying above the line y = x)
from (0, 0) to (a, b) (where a < b) is given by the formula

C(a,b) =

(a+b
a

)b− a+ 1
b+ 1

.

Using this, we can also give a direct count of the Dyck paths for which column k
lies between the last two northeast corners of the path.

Theorem 4.11. The probability that a 321-avoiding permutation of length N is
k-winnable is

1
CN

N−k∑
i=1

(
(k−1)+(N−i)

k−1

)(N − k− i + 2)

(N − i)+ 1
(N − k− i + 1).

Proof. Set a = k − 1, and let b range over k, k + 1, k + 2, . . . , N − 1. Once the
path passes through (a, b), there are b − k + 1 ways to complete it so that it is
k-winnable. �

5. Conclusions

It seems fair to say that these results are somewhat surprising and further investiga-
tion is warranted. The “bar-raising” model has a robust strategy but only allows
a 25% success rate. The optimal strategy in the “disappointment-free” model
reviews and rejects most of the applicants yet has a success rate that is close to 50%.
Remarkably, these are not mutually exclusive and the k = N − 3 positional strategy
is asymptotically optimal in both models simultaneously.
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