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A frequent topic in the study of pattern avoidance is identifying when two sets
of patterns 5,5′ are Wilf equivalent, that is, when |Avn(5)| = |Avn(5

′)| for
all n. In recent work of Dokos et al. the notion of Wilf equivalence was refined
to reflect when avoidance of classical patterns preserves certain statistics. We
continue their work by examining des-Wilf equivalence when avoiding certain
nonclassical patterns.

1. Introduction

Let Sn denote the set of permutations of [n] :={1, . . . , n}, and let S=S1∪S2∪· · ·

be the set of all permutations of finite length. We write σ ∈Sn as σ = a1a2 · · · an to
indicate that σ(i)=ai . A function st :Sn→N is called a statistic, and the systematic
study of permutation statistics is generally accepted to have begun with MacMahon
[1960, Volume I, Section III, Chapter V]. Four of the most well-known statistics
are the descent, inversion, major, and excedance statistics, defined respectively by

des(σ )= |Des(σ )|,

inv(σ )= |{(i, j) ∈ [n]2 | i < j and ai > aj }|,

maj(σ )=
∑

i∈Des(σ )

i,

exc(σ )= |{i ∈ [n] | ai > i}|,

where Des(σ )= {i ∈ [n− 1] | ai > ai+1}. Given any statistic st, one may form the
generating function

F st
n (q)=

∑
σ∈Sn

qst σ .
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A famous result due to [MacMahon 1960] states that Fdes
n (q) = Fexc

n (q), and
that both are equal to the Eulerian polynomial An(q). Similarly, it is known that
F inv

n (q)= Fmaj
n (q)= [n]q ! , where

[n]q = 1+ q + · · ·+ qn−1 and [n]q ! = [n]q [n− 1]q · · · [1]q .

Let A⊆ [n], and denote by SA the set of permutations of the elements of A. The
standardization of σ =a1 · · · a|A|∈SA is the element of S|A| whose letters are in the
same relative order as those of σ ; we denote this permutation by std(σ ). Now, we say
that a permutation σ ∈Sn contains the pattern π ∈Sk if there exists a subsequence
σ ′ = ai1 · · · aik of σ such that std(σ ′) = π . If no such subsequence exists, then
we say that σ avoids the pattern π . Since we will introduce additional notions of
patterns, we may call such a pattern a classical pattern to avoid confusion. If5⊆S,
then we say σ avoids 5 if σ avoids every element of 5. The set of all permutations
of Sn avoiding 5 is denoted by Avn(5). In a mild abuse of notation, if 5= {π},
we will write Avn(π). If 5,5′ are two sets of patterns and |Avn(5)| = |Avn(5

′)|

for all n, then we say 5 and 5′ are Wilf equivalent and write 5≡5′.
These ideas may be combined by setting

F st
n (5; q)=

∑
σ∈Avn(5)

qst σ .

This allows one to say that 5,5′ are st-Wilf equivalent if F st
n (5; q)= F st

n (5
′
; q)

for all n, and write this as 5
st
≡5′. Thus, 5 and 5′ may be Wilf equivalent without

being st-Wilf equivalent. As a concrete example, 123 and 321 are clearly not
des-Wilf equivalent, even though they are Wilf equivalent. It is straightforward to
check that st-Wilf equivalence is indeed an equivalence relation on S.

Since it is generally a difficult question to determine whether two sets are
nontrivially Wilf equivalent, one should not expect it to be any easier to determine
st-Wilf equivalence. However, it is certainly possible to obtain some results; see
[Dokos et al. 2012] for results regarding F inv

n and Fmaj
n , and [Baxter 2014; Cameron

and Killpatrick 2015] for further results, including a study of enumeration strategies
for questions of this nature. In this article, we will study Fdes

n (5; q) for certain
nonclassical patterns, called mesh patterns and barred patterns. Special cases will
allow us to identify des-Wilf equivalences. We will also present several conjectural
des-Wilf equivalences and provide computational evidence for these.

2. Pattern avoidance background

Classical patterns. In order to work most efficiently, it is important to recognize
that certain Wilf equivalences are almost immediate to establish. For example, it
is obvious that |Avn(123)| = |Avn(321)|, since a1 · · · an ∈ Avn(123) if and only if
anan−1 · · · a1 ∈ Avn(321). This idea can be generalized significantly.
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Figure 1. The plot of 342516.

The plot of σ ∈Sn is the set of pairs (i, σ (i))∈R2 and will be denoted by P(σ ).
The plot of 342516 is shown in Figure 1. Let

D4 = {R0, R90, R180, R270, r−1, r0, r1, r∞},

where Rθ is counterclockwise rotation of a plot by an angle of θ degrees and
rm is reflection across a line of slope m. A couple of these rigid motions have
easy descriptions in terms of the one-line notation for permutations. If π =
a1a2 · · · ak then its reversal is πr

= ak · · · a2a1 = r∞(π), and its complement
is π c

= (k+ 1− a1)(k+ 1− a2) · · · (k+ 1− ak)= r0(π).
Note that σ ∈ Avn(π) if and only if f (σ ) ∈ Avn( f (π)) for any f ∈ D4; hence

π ≡ f (π). For this reason, the equivalences induced by the dihedral action on a
square are often referred to as the trivial Wilf equivalences.

Using these techniques, it is easy to show that 123 and 321 are trivially Wilf
equivalent, as are all of 132, 213, 231, and 312. It is less obvious, however, whether
123 and 132 are Wilf equivalent. This question was settled by independent results
due to [MacMahon 1960] and [Knuth 1969], whose combined work showed that
Avn(132) and Avn(123) are enumerated by the n-th Catalan number

Cn =
1

n+1

(2n
n

)
.

The Catalan numbers are famous for appearing in a multitude of combinatorial
situations; see [Stanley 2015] for many of them.

One of the most well-known combinatorial objects enumerated by the Catalan
numbers are Dyck paths. A Dyck path of length 2n is a lattice path in R2 starting
at (0, 0) and ending at (2n, 0), using steps (1, 1) and (1,−1), which never goes
below the x-axis. See Figure 2 for an example Dyck path of length 8.

Figure 2. A Dyck path of length 8.
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Nonclassical patterns. In this section, we will define two classes of nonclassical
patterns and describe what it means for a permutation to contain or avoid them.
The definitions of Wilf equivalence and des-Wilf equivalence then extend to these
patterns in the same way as classical patterns, so their precise definitions will be
omitted.

A mesh pattern is a pair (π,M), where π ∈ Sk and M ⊆ [0, k]2. Mesh
patterns are a vast generalization of classical patterns and were first introduced
by Brändén and Claesson [2011]. It is convenient to represent a mesh pattern
as a grid which plots π and shades in the unit squares whose bottom-left cor-
ners are the elements of M . For example, one may represent the mesh pattern
(π0,M0)= (4213, {(0, 2), (1, 0), (1, 1), (3, 3), (3, 4), (4, 3)}) as follows:

(π0,M0)= .

Containment of mesh patterns is most easily understood by an informal statement
and illustrative examples; the formal definition, given in [Brändén and Claesson
2011], shows that the intuition developed this way behaves as expected. We say
that σ ∈ Sn contains the mesh pattern (π,M) if σ contains an occurrence of π
and the shaded regions of P(π) corresponding to this occurrence contain no other
elements of P(σ ). If σ does not contain (π,M), then we say σ avoids (π,M).

For the illustrative examples, first consider σ = 612435. Notice that while 6435
is an occurrence of 4213 in σ , it is not an occurrence of the mesh pattern (π0,M0)

given above, since the shaded regions in P(σ ) dictated by M0 yield

Now consider σ ′ = 153624. In this case, 5324 is an occurrence of both 4213 and
(π0,M0) in σ ′, since the shading in this case is

In certain cases, determining which permutations avoid a mesh pattern (π,M)
with M nonempty is equivalent to determining which permutations avoid π as a
classical pattern. When this happens, we say that (π,M) has superfluous mesh, and
Tenner [2013] identified when exactly a mesh pattern has superfluous mesh. To
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do this, we first define an enclosed diagonal of (π,M) to be a triple ((i, j), ε, `)
where ε ∈ {−1, 1}, `≥ 1, and the following three properties hold:

(1) The plot of π contains the set {(i + d, j + εd) | 1≤ d < `}.

(2) The plot of π contains neither (i, j) nor (i + `, j + ε`).

(3) {(i + d, j + εd) | 0≤ d < `} ⊆ M .

Note that an enclosed diagonal may consist of a single element, as long as the
corresponding box in the mesh pattern contains no element of P(π). To illustrate,
the following three mesh patterns all have a unique enclosed diagonal:

However, none of the following five mesh patterns have any enclosed diagonals:

The following theorem gives the characterization of when a pattern has superfluous
mesh. As a result, we will not focus on any patterns with superfluous mesh, but we
will still use the theorem briefly.

Theorem 2.1 [Tenner 2013, Theorem 3.5′]. A mesh pattern has superfluous mesh
if and only if it has no enclosed diagonals.

Mesh patterns also generalize 1-barred patterns, in which a classical pattern is
allowed (but not required) to have a bar above one letter. This is a special case of
barred patterns, in which each letter is allowed to have a bar above it. The bars
above letters indicate that certain additional rules are required in order to define
containment of the pattern. We will not give the precise definition of containment
and avoidance of barred patterns in general, but will observe that if there are two or
more bars in the pattern, there is not necessarily a simple translation of the barred
pattern into a mesh pattern. In some instances, a barred pattern may be described as
a decorated mesh pattern [Úlfarsson 2011/12], but this is not always possible. To
avoid this difficulty in the statement and proof of Proposition 3.7, we will simply
describe here what it means for a permutation to avoid two specific barred patterns.

We say that σ = a1 · · · an avoids 1̄2̄43 if, whenever ai aj is an occurrence of 21,
then there are some integers k, l such that k < l < i and akalai aj is an occurrence of
1243. We also say that σ avoids 1̄324̄ if, whenever ai aj is an occurrence of 21, then
there are some integers k, l such that k < i < j < l and akai aj al is an occurrence of
1324. As an example, σ = 124635 avoids 1̄2̄43 since all occurrences of 21, which
are 43, 63, and 65, extend to an occurrence of 1243 by placing 12 before them.
However, σ contains 1̄324̄ since 63, which is an occurrence of 21, does not play
the role of 32 in any occurrence of 1324 in σ .
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3. Main results

We now have all of the tools we need to begin proving results. We begin with a
simple application of several known theorems.

Proposition 3.1. If (132,M1) and (312,M2) are mesh patterns, neither of which
contain an enclosed diagonal, then

(132,M1)
des
≡ (312,M2).

Proof. By Theorem 2.1, Avn((312,M2)) = Avn(312), so (312,M2)
des
≡ 312. It

then follows directly from [Reifegerste 2003, Remark 2.5(b)] that the number of
elements in Avn(312) with exactly k descents is

Nn,k :=
1
n

(n
k

)( n
k+1

)
.

Since the sequence {Nn,k}
n−1
k=0 is symmetric for fixed n, and since

des(σ )= n− 1− des(σ c),

we have

(312,M2)
des
≡ 312

des
≡ 132.

Again by Theorem 2.1, we have Avn(132)=Avn((132,M1)), so these two patterns
are des-Wilf equivalent as well. Connecting the equivalences, the claim follows. �

Characterizing the des-Wilf classes for mesh patterns (π,M) where π ∈S4 is
difficult, and we will not attempt to fully characterize the des-Wilf equivalence
classes of such patterns. In what follows, we merely wish to present a step toward
understanding these in more depth, but first we need two more definitions.

If A ⊆ [n], f ∈ D4, and σ ∈SA, then we let f A(σ ) denote the unique element
of SA whose standardization is f (std(σ )). We say that f A is a dihedral action
relative to A. As a simple example, if 7461 ∈S{1,4,6,7}, then std(7461)= 4231 and
R{1,4,6,7}90 (σ )= 1647.

Theorem 3.2. We have

des
≡

des
≡ .

Proof. First consider

(π1,M1)= and (π2,M2)= .
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To prove their des-Wilf equivalence, we will form a des-preserving bijection

α :Sn \Avn((π1,M1))→Sn \Avn((π2,M2)),

that is, a des-preserving bijection between permutations in Sn containing (π1,M1)

and those containing (π2,M2).
Suppose σ = a1 · · · an ∈ Sn contains (π1,M1). If σ contains (π2,M2), then

set α(σ) = σ . Otherwise, let j be the smallest index in which an occurrence of
(π1,M1) begins, and consider ai ai+1 · · · ap, where

p =min{m | m > j + 2, am > aj },

i =min{m | m ≤ j, am, am+1, . . . , aj < ap}.

Let A = {ai , ai+1, . . . , ap}, and set

R A
180(ai · · · ap)= bi · · · bp,

and further set
α(σ)= a1 · · · ai−1bi · · · bp ap+1 · · · an.

Since R A
180 is a des-preserving map, we have that for any k ∈ {1, . . . , p− 1− i},

i + k ∈ Des(σ ) if and only if p − k ∈ Des(α(σ )). Additionally, for any k ∈
{1, . . . , i−1, p, p+1, . . . , n−1}, k ∈Des(σ ) if and only if k ∈Des(α(σ )). Thus,
α is des-preserving.

To show that α is invertible, we will construct a map

β :Sn \Avn((π2,M2))→Sn \Avn((π1,M1))

and show that β ◦ α is the identity map on Sn \Avn((π1,M1)). If σ ′ = a′1 · · · a
′
n

contains (π2,M2), then we create β(σ) by first testing a construction similar to the
one from the previous paragraph. Namely, let j ′ be the smallest index in which an
occurrence of (π2,M2) begins, and consider a′i a

′

i+1 · · · a
′
p, where

p′ =min{m | m > j ′+ 2, a′m > a′j ′+1},

i ′ =min{m | m ≤ j ′, a′m, a′m+1, . . . , aj ′ < a′p}.

This time, let A′ = {a′i , a′i+1, . . . , a′p}, and set

R A′
180(a

′

i · · · a
′

p)= b′i · · · b
′

p.

If a′1 · · · a
′

i−1b′i · · · b
′

p′a
′

p′+1 · · · a
′
n contains both (π2,M2) and (π1,M1), then set

β(σ ′)= σ ′. Otherwise, set

β(σ ′)= a′1 · · · a
′

i−1b′i · · · b
′

p′ a
′

p′+1 · · · a
′

n.

The fact that β ◦ α is the identity map on Sn \Avn((π1,M1)) follows from con-
struction.
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Now consider (π2,M2) and

(π3,M3)= .

Suppose σ =a1a2 · · · an and aj aj+1aj+2ap is the first copy of (π3,M3), as identified
in the second paragraph in this proof. If ap is the only al for which l > j + 2 and
al > aj , then set α(σ) to be σ with aj+1 and ap transposed. Otherwise, choose

r =min{l | aj < al < aj+1, l > j + 2}.

Let S={ar ,ar+1, . . . ,aq}where q is the maximum index for which {ar ,ar+1, . . . ,aq}

is increasing and aj < ak < aj+1 for all k ∈ S. Set α(σ) to be σ with aj+1 and
max S transposed. By choosing the maximum of S we are guaranteeing that α is
des-preserving. By construction, α(σ) contains an occurrence of (π2,M2). Using
an argument similar to the first part of this proof, α is invertible and is therefore a
bijection. �

Recall that the Stirling numbers of the second kind, denoted by S(n, k), record
the number of ways to partition [n] into k nonempty blocks. Here, we will begin to
find useful the notation

Avdes,k
n (5)= {σ ∈ Avn(5) | des(σ )= k}.

Proposition 3.3. Let

(π,M)= .

For all n, we have

Fdes
n ((π,M); q)=

n−1∑
k=0

S(n, k+ 1)qk .

Proof. Let 6n,k denote the collection of set partitions of [n] into exactly k nonempty
blocks. We will create a bijection

f : Avdes,k
n ((π,M))→6n,k+1,

from which the conclusion follows.
First, let σ = a1 · · · an ∈Avdes,k

n ((π,M)). It follows from [Burstein and Lankham
2005/07, Theorem 4.1] that any such permutation is the concatenation of substrings

a1 < · · ·< ai0,

ai0+1 < · · ·< ai1,
...

aik+1 < · · ·< an,
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where a1 < ai j+1 > ai j+1+1 for all j . In particular, the values ai0, . . . , aik determine
the entire permutation.

Associate to σ the set partition

f (σ )= {{a1, . . . , ai0}, {ai0+1, . . . , ai1}, . . . , {aik+1, . . . , an}}.

Note that if σ =12 · · · n, then k=0, so this partition consists of only one block. Thus,
if σ has k descents, then the partition obtained has k+1 blocks. Because each choice
of the ai j determines σ , we know that f (σ ) 6= f (σ ′) whenever σ ′ ∈Avdes,k

n ((π,M))
and σ 6= σ ′. That is, f is injective.

Now we will show that f is surjective. Consider a set partition B={B1, . . . , Bk+1}

of [n] into k+ 1 blocks. We are free to write the Bi such that

Bi = {bi,1 < · · ·< bi,il } and min Bi <min Bi+1

for all i . Construct the permutation

bk+1,1bk+1,2 · · · bk+1,ik+1bk,1bk,2 · · · bk,ik · · · b1,1b1,2 · · · b1,i1 .

We claim that this permutation is an element of Avdes,k
n ((π,M)).

Any occurrence of

,

say, bαbβbγ , implies that bα ∈ Bi , bβ ∈ Bj , and bγ ∈ Bk for some i ≤ j < k. Since
the sequence of minima of the blocks is decreasing, we know that min Bk < bα < bγ .
Thus, the string

bαbβ(min Bk)bγ

is an occurrence of

.

Since the elements of the blocks strictly increase, the minima decrease, and since
there are k+1 blocks, there are k descents in the permutation. Thus f is surjective,
completing the proof. �

Example 3.4. Consider the permutation

3427156 ∈ Avdes,2
6

( )
.

Our construction in the previous proof associates to this permutation the partition

{{3, 4}, {2, 7}, {1, 5, 6}}.
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Figure 3. A Motzkin path of length 10 with 3 up-steps.

In the other direction, given the set partition

{{5}, {3, 1, 4}, {7, 2, 6}} = {{5}, {2, 6, 7}, {1, 3, 4}},

we obtain the permutation 5267134, which the reader may verify is indeed an
element of

Avdes,2
7

( )
.

A Motzkin path of length n is a lattice path from (0, 0) to (n, 0) using only
up-steps (1, 1), down-steps (1,−1), and horizontal steps (1, 0) such that the path
does not go below the x-axis. An example is shown in Figure 3. We let Mn,k

denote the set of Motzkin paths of length n with exactly k up-steps.
The next result we present was first proven in [Chen et al. 2002/03] by writing

Motzkin paths according to a “strip decomposition” and by writing permutations
according to canonical reduced decompositions. Here, we present a new, simpler
proof. To do so, we only need a few more definitions.

If i is a descent of σ = a1 · · · an , then we call ai a descent top and ai+1 a descent
bottom. Let Destop(σ ) denote the set of descent tops of σ and let Desbot(σ )
denote the set of descent bottoms of σ . A valley in σ is an element i for which
ai−1 > ai < ai+1.

Theorem 3.5 [Chen et al. 2002/03, Theorem 3.1]. Let

5= {(π4,M4), (π5,M5)},

where

(π4,M4)= , (π5,M5)= .

For all n,

Fdes
n (5; q)=

n∑
k=0

|Mn,k |qk .

Proof. We will form a bijection

µ : Avdes,k
n (5)→Mn,k .

For σ = a1 · · · an ∈ Avdes,k
n (5), let µ(σ) be the lattice path obtained by making

step ai a down-step if ai is a descent bottom, an up-step if ai is a descent top, and a
horizontal step if ai is neither.
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First, we need to check that µ is well-defined. Note that no letter of σ can be
both a descent top and a descent bottom, since this would imply σ contains an
instance of π4, which is forbidden. So, since the sets of descent tops and of descent
bottoms are disjoint, and these appear in pairs, we can be certain that the path
constructed by µ has length n and ends at (n, 0). Moreover, since a descent top
always appears before a descent bottom, at no step of the path can there have been
more down-steps than up-steps. This establishes that µ(σ) is a Motzkin path of
length n. Finally, since there are k descents, there are k descent tops, and µ(σ) will
have k up-steps. Hence, µ(σ) ∈Mn,k .

Next we will show that µ is injective. To do so, we will determine exactly the
structure of the elements in Avn(5). Notice that the descent bottoms of σ must
appear in increasing order in σ , since, otherwise, there would be an occurrence
of π4. For the same reason, the descent tops must appear in increasing order in σ .

Let σ = a1 · · · an ∈ Avdes,k
n (5) and suppose that i is neither a descent top nor

a descent bottom. Suppose for now that j is the first descent greater than i . If
aj+1 < ai < aj , then ai aj aj+1 is an occurrence of 231. Since σ avoids (π5,M5),
there must be some l for which σ has the subsequence ai alaj aj+1 and al < aj+1.
This implies that some integer i+1, i+2, . . . , l−1 is a descent, which contradicts
the fact that j is the first descent greater than i . So, it must be true that ai <aj+1<aj .
Since j is the first descent greater than i , it follows that ai ai+1 · · · aj−1aj+1 is an
increasing sequence. It follows that the subsequence of σ consisting of all letters
that are not descent tops is an increasing sequence.

Now we will show that µ is injective. If µ(σ1)=µ(σ2) for σ1, σ2 ∈Avn(5), then
Destop(σ1)= Destop(σ2) and Desbot(σ1)= Desbot(σ2), since these are identified
by the up-steps and down-steps in the Motzkin path. Our description of elements
of Avn(5) shows that once the descent-top sets and descent-bottom sets have been
identified, there is a unique σ in the avoidance class with those sets. Therefore,
σ1 = σ2, and µ is injective.

Finally, we will show that µ is surjective. Let A ∈Mn,k , and label its steps
1, . . . , n from left to right. We will construct its preimage in stages. First write down
1, . . . , n, but exclude the labels on the down-steps. Then insert the label on the
i-th down-step immediately before the label of the i-th up-step. Call the resulting
permutation σA. Using the description of elements of Avn(5) from earlier in this
proof, we see that σA ∈ Avn(5). Additionally, it is clear that µ(σA) = A by our
construction of σA and the definition of µ. Therefore, µ is surjective, completing
the proof. �

Example 3.6. Let A be the Motzkin path in Figure 3. Steps 2, 3, and 8 are up-steps,
and therefore will be descents bottoms. Steps 4, 6, and 10 are down-steps, so
these will be descent tops. The remaining numbers will be neither descent tops nor
bottoms.
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When the descent tops are removed from µ−1(A), the result will be an increas-
ing string of numbers: 1235789. The descent tops are then placed immediately
preceding the descent bottoms, to obtain 1426357(10)89.

For the final result of the section, we make two notes. First, recall that the
Eulerian polynomial An(q) is the polynomial∑

σ∈Sn

qdes(σ )
= An(q).

It should be noted that some authors, e.g., in [Stanley 1997], define the Eulerian
polynomials using qdes(σ )+1 rather than the definition given here. So, one should
take care when encountering Eulerian polynomials in the literature. Second, recall
from the end of Section 2 what it means for a permutation to contain and avoid the
barred patterns 1̄2̄43 or 1̄324̄.

Proposition 3.7. For all n,

Fdes
n (1̄2̄43; q)= Fdes

n (1̄324̄; q)=
{

1 if n = 0, 1,
An−2(q) if n ≥ 2.

Proof. We will first show that Fn(1̄2̄43; q) satisfies the right-hand side. The
conclusion is clearly true for n < 2, so we will restrict our attention to when
n ≥ 2. Choose σ = a1 · · · an ∈ Avn(1̄2̄43). Note first that a1 < a2 since, if a1 > a2,
then a1a2 would be an occurrence of u(1̄2̄43) = 21 but this cannot extend to an
occurrence of 1243.

Now, suppose a2 > 2. Setting am = min{ai | 3 ≤ i ≤ n} we have a2 > am , so
a2am is an occurrence of u(1̄2̄43) in σ . However, there is only letter to the left of
a2, so this pattern does not extend to an instance of 1243. Thus, a2 = 2. Together
with the previous paragraph, we know a1 = 1 as well. In particular, a1 < a2 < ai

for all i ≥ 3.
Now, take any occurrence ai aj of 21 in which 2< i < j . Clearly, a1a2ai aj is an

extension to 1243. This holds for any possible permutation of 3, . . . , n as the final
n− 2 letters. Since 1 and 2 are never descents of these permutations, we have

Fdes
n (1̄2̄43; q)= An−2(q),

as claimed.
Now we will show that the same formula holds for 1̄324̄. This time, assume

σ ∈ Avn(1̄324̄). If ai = 1 for some i > 1, then a1ai would be an occurrence of 21.
However, this can never extend to 1324 since there is no letter to the left of a1.
Thus, a1 = 1. An analogous argument shows an = n.

This allows a2 · · · an−1 to be any arrangement of 2, 3, . . . , n−1, since, whenever
ai aj is an occurrence of 21 for 2≤ i, j ≤ n−1, this extends to 1ai aj n. So, we have
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the bijection

a1a2 · · · an 7→ (a2− 1)(a3− 1) · · · (an−1− 1)

with elements of Sn−2. Since 1 and n are never descents in Avn(1̄324̄), this is a
des-preserving bijection. Therefore, Fdes

n (1̄2̄43; q)= An−2(q). �

4. Conjectures and further directions

In this section, we provide a few conjectures, supporting data, and additional
direction in which this work could proceed. In all cases, no closed forms for the
functions Fdes

n (5; q) are known. We refer the reader to Table 1 for all known
polynomials Fdes

n (5; q) for 4≤ n ≤ 8, since, for these choices of 5, Fdes
n (5; q)=

Fdes
n (∅; q) for n ≤ 3.

Conjecture 4.1. The following des-Wilf equivalences hold:

des
≡ and

des
≡ .

To state our next conjecture, we must discuss a particular sorting of permutations.
Let σ =a1 · · · an ∈Sn and suppose ai = n. Let 0 be the operator defined recursively
as

0(σ)= 0(a1 · · · ai−1)0(ai+1 · · · an)n.

We say that σ is West-t-stack-sortable if 0t(σ ) is the identity permutation. Note
that the 2-West-stack-sortable permutations [West 1990] are exactly those in

Avn

(
,

)
.

Conjecture 4.2. The following des-Wilf equivalence holds:{
,

}
des
≡

{
,

}
.

If this conjecture is true, then from [Bóna 2002] it follows that

Fdes
n

({
,

}
;q

)
= Fdes

n

({
,

}
;q

)

=

n−1∑
k=0

(n+k)!(2n−k−1)!
(k+1)!(n−k)!(2k+1)!(2n−2k−1)!

qk .
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5 n Fdes
n (5;q)

{ }
,

{ } 4 1+10q+11q2
+q3

5 1+20q+57q2
+26q3

+q4

6 1+35q+204q2
+252q3

+57q4
+q5

7 1+56q+581q2
+1500q3

+969q4
+120q5

+q6

8 1+84q+1414q2
+6588q3

+9117q4
+3426q5

+247q6
+q7

{ }
,

{ } 4 1+10q+11q2
+q3

5 1+20q+56q2
+26q3

+q4

6 1+35q+196q2
+241q3

+57q4
+q5

7 1+56q+546q2
+1361q3

+897q4
+120q5

+q6

8 1+84q+1302q2
+5675q3

+7739q4
+3060q5

+247q6
+q7

Table 1. The polynomials Fdes
n (5; q) for certain sets of patterns 5.

Instead of generalizing the patterns being avoided, one may generalize permuta-
tions themselves. One way to do this is to consider the colored permutations

Gr,n := {(ε, σ ) | ε ∈ Zr , σ ∈Sn}.

In this case, we say that (ε, σ ) ∈ Gr,n contains (ζ, π) ∈ Gs,m if there are elements
1 ≤ i1 < i2 < · · · < is ≤ n such that std(σi1 · · · σis ) = π and εi j = ζj for all j . If
no such choice of i j exist, then we say (ε, σ ) avoids (ζ, π). For a set of colored
permutations 5, let

Avr,n(5)= {(ε, σ ) ∈ Gr,n | (ε, σ ) avoids all (ζ, π) ∈5}.

Question 4.3. What can be said about the polynomials

F st
r,n(5; q)=

∑
(ε,σ )∈Avr,n(5)

qst(ε,σ )?

We close by noting that Gr,n is the set of elements in the wreath product Zr oSn ,
a fact which may be useful when addressing the above questions.
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