-
 in Olve a journal of mathematics

Descents and des-Wilf equivalence of permutations avoiding certain nonclassical patterns

Caden Bielawa, Robert Davis, Daniel Greeson and Qinhan Zhou

Descents and des-Wilf equivalence of permutations avoiding certain nonclassical patterns

Caden Bielawa, Robert Davis, Daniel Greeson and Qinhan Zhou

(Communicated by Jim Haglund)

Abstract

A frequent topic in the study of pattern avoidance is identifying when two sets of patterns Π, Π^{\prime} are Wilf equivalent, that is, when $\left|\operatorname{Av}_{n}(\Pi)\right|=\left|\operatorname{Av}_{n}\left(\Pi^{\prime}\right)\right|$ for all n. In recent work of Dokos et al. the notion of Wilf equivalence was refined to reflect when avoidance of classical patterns preserves certain statistics. We continue their work by examining des-Wilf equivalence when avoiding certain nonclassical patterns.

1. Introduction

Let \mathfrak{S}_{n} denote the set of permutations of $[n]:=\{1, \ldots, n\}$, and let $\mathfrak{S}=\mathfrak{S}_{1} \cup \mathfrak{S}_{2} \cup \ldots$ be the set of all permutations of finite length. We write $\sigma \in \mathfrak{S}_{n}$ as $\sigma=a_{1} a_{2} \cdots a_{n}$ to indicate that $\sigma(i)=a_{i}$. A function st: $\mathfrak{S}_{n} \rightarrow \mathbb{N}$ is called a statistic, and the systematic study of permutation statistics is generally accepted to have begun with MacMahon [1960, Volume I, Section III, Chapter V]. Four of the most well-known statistics are the descent, inversion, major, and excedance statistics, defined respectively by

$$
\begin{aligned}
\operatorname{des}(\sigma) & =|\operatorname{Des}(\sigma)| \\
\operatorname{inv}(\sigma) & =\mid\left\{(i, j) \in[n]^{2} \mid i<j \text { and } a_{i}>a_{j}\right\} \mid \\
\operatorname{maj}(\sigma) & =\sum_{i \in \operatorname{Des}(\sigma)} i \\
\operatorname{exc}(\sigma) & =\left|\left\{i \in[n] \mid a_{i}>i\right\}\right|
\end{aligned}
$$

where $\operatorname{Des}(\sigma)=\left\{i \in[n-1] \mid a_{i}>a_{i+1}\right\}$. Given any statistic st, one may form the generating function

$$
F_{n}^{\mathrm{st}}(q)=\sum_{\sigma \in \mathfrak{S}_{n}} q^{\mathrm{st} \sigma}
$$

[^0]A famous result due to [MacMahon 1960] states that $F_{n}^{\text {des }}(q)=F_{n}^{\text {exc }}(q)$, and that both are equal to the Eulerian polynomial $A_{n}(q)$. Similarly, it is known that $F_{n}^{\text {inv }}(q)=F_{n}^{\text {maj }}(q)=[n]_{q}!$, where

$$
[n]_{q}=1+q+\cdots+q^{n-1} \quad \text { and } \quad[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q} .
$$

Let $A \subseteq[n]$, and denote by \mathfrak{S}_{A} the set of permutations of the elements of A. The standardization of $\sigma=a_{1} \cdots a_{|A|} \in \mathfrak{S}_{A}$ is the element of $\mathfrak{S}_{|A|}$ whose letters are in the same relative order as those of σ; we denote this permutation by $\operatorname{std}(\sigma)$. Now, we say that a permutation $\sigma \in \mathfrak{S}_{n}$ contains the pattern $\pi \in \mathfrak{S}_{k}$ if there exists a subsequence $\sigma^{\prime}=a_{i_{1}} \cdots a_{i_{k}}$ of σ such that $\operatorname{std}\left(\sigma^{\prime}\right)=\pi$. If no such subsequence exists, then we say that σ avoids the pattern π. Since we will introduce additional notions of patterns, we may call such a pattern a classical pattern to avoid confusion. If $\Pi \subseteq \mathfrak{S}$, then we say σ avoids Π if σ avoids every element of Π. The set of all permutations of \mathfrak{S}_{n} avoiding Π is denoted by $\operatorname{Av}_{n}(\Pi)$. In a mild abuse of notation, if $\Pi=\{\pi\}$, we will write $\mathrm{Av}_{n}(\pi)$. If Π, Π^{\prime} are two sets of patterns and $\left|\mathrm{Av}_{n}(\Pi)\right|=\left|\mathrm{Av}_{n}\left(\Pi^{\prime}\right)\right|$ for all n, then we say Π and Π^{\prime} are Wilf equivalent and write $\Pi \equiv \Pi^{\prime}$.

These ideas may be combined by setting

$$
F_{n}^{\mathrm{st}}(\Pi ; q)=\sum_{\sigma \in \operatorname{Av}_{n}(\Pi)} q^{\mathrm{st} \sigma} .
$$

This allows one to say that Π, Π^{\prime} are st-Wilf equivalent if $F_{n}^{\text {st }}(\Pi ; q)=F_{n}^{\text {st }}\left(\Pi^{\prime} ; q\right)$ for all n, and write this as $\Pi \stackrel{\text { st }}{=} \Pi^{\prime}$. Thus, Π and Π^{\prime} may be Wilf equivalent without being st-Wilf equivalent. As a concrete example, 123 and 321 are clearly not des-Wilf equivalent, even though they are Wilf equivalent. It is straightforward to check that st-Wilf equivalence is indeed an equivalence relation on \mathfrak{S}.

Since it is generally a difficult question to determine whether two sets are nontrivially Wilf equivalent, one should not expect it to be any easier to determine st-Wilf equivalence. However, it is certainly possible to obtain some results; see [Dokos et al. 2012] for results regarding F_{n}^{inv} and F_{n}^{maj}, and [Baxter 2014; Cameron and Killpatrick 2015] for further results, including a study of enumeration strategies for questions of this nature. In this article, we will study $F_{n}^{\text {des }}(\Pi ; q)$ for certain nonclassical patterns, called mesh patterns and barred patterns. Special cases will allow us to identify des-Wilf equivalences. We will also present several conjectural des-Wilf equivalences and provide computational evidence for these.

2. Pattern avoidance background

Classical patterns. In order to work most efficiently, it is important to recognize that certain Wilf equivalences are almost immediate to establish. For example, it is obvious that $\left|\operatorname{Av}_{n}(123)\right|=\left|\mathrm{Av}_{n}(321)\right|$, since $a_{1} \cdots a_{n} \in \mathrm{Av}_{n}(123)$ if and only if $a_{n} a_{n-1} \cdots a_{1} \in \operatorname{Av}_{n}(321)$. This idea can be generalized significantly.

Figure 1. The plot of 342516.

The plot of $\sigma \in \mathfrak{S}_{n}$ is the set of pairs $(i, \sigma(i)) \in \mathbb{R}^{2}$ and will be denoted by $P(\sigma)$. The plot of 342516 is shown in Figure 1. Let

$$
D_{4}=\left\{R_{0}, R_{90}, R_{180}, R_{270}, r_{-1}, r_{0}, r_{1}, r_{\infty}\right\}
$$

where R_{θ} is counterclockwise rotation of a plot by an angle of θ degrees and r_{m} is reflection across a line of slope m. A couple of these rigid motions have easy descriptions in terms of the one-line notation for permutations. If $\pi=$ $a_{1} a_{2} \cdots a_{k}$ then its reversal is $\pi^{r}=a_{k} \cdots a_{2} a_{1}=r_{\infty}(\pi)$, and its complement is $\pi^{c}=\left(k+1-a_{1}\right)\left(k+1-a_{2}\right) \cdots\left(k+1-a_{k}\right)=r_{0}(\pi)$.

Note that $\sigma \in \operatorname{Av}_{n}(\pi)$ if and only if $f(\sigma) \in \operatorname{Av}_{n}(f(\pi))$ for any $f \in D_{4}$; hence $\pi \equiv f(\pi)$. For this reason, the equivalences induced by the dihedral action on a square are often referred to as the trivial Wilf equivalences.

Using these techniques, it is easy to show that 123 and 321 are trivially Wilf equivalent, as are all of $132,213,231$, and 312. It is less obvious, however, whether 123 and 132 are Wilf equivalent. This question was settled by independent results due to [MacMahon 1960] and [Knuth 1969], whose combined work showed that $\operatorname{Av}_{n}(132)$ and $\operatorname{Av}_{n}(123)$ are enumerated by the n-th Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

The Catalan numbers are famous for appearing in a multitude of combinatorial situations; see [Stanley 2015] for many of them.

One of the most well-known combinatorial objects enumerated by the Catalan numbers are Dyck paths. A Dyck path of length $2 n$ is a lattice path in \mathbb{R}^{2} starting at $(0,0)$ and ending at $(2 n, 0)$, using steps $(1,1)$ and $(1,-1)$, which never goes below the x-axis. See Figure 2 for an example Dyck path of length 8 .

Figure 2. A Dyck path of length 8.

Nonclassical patterns. In this section, we will define two classes of nonclassical patterns and describe what it means for a permutation to contain or avoid them. The definitions of Wilf equivalence and des-Wilf equivalence then extend to these patterns in the same way as classical patterns, so their precise definitions will be omitted.

A mesh pattern is a pair (π, M), where $\pi \in \mathfrak{S}_{k}$ and $M \subseteq[0, k]^{2}$. Mesh patterns are a vast generalization of classical patterns and were first introduced by Brändén and Claesson [2011]. It is convenient to represent a mesh pattern as a grid which plots π and shades in the unit squares whose bottom-left corners are the elements of M. For example, one may represent the mesh pattern $\left(\pi_{0}, M_{0}\right)=(4213,\{(0,2),(1,0),(1,1),(3,3),(3,4),(4,3)\})$ as follows:

$$
\left(\pi_{0}, M_{0}\right)=
$$

Containment of mesh patterns is most easily understood by an informal statement and illustrative examples; the formal definition, given in [Brändén and Claesson 2011], shows that the intuition developed this way behaves as expected. We say that $\sigma \in \mathfrak{S}_{n}$ contains the mesh pattern (π, M) if σ contains an occurrence of π and the shaded regions of $P(\pi)$ corresponding to this occurrence contain no other elements of $P(\sigma)$. If σ does not contain (π, M), then we say σ avoids (π, M).

For the illustrative examples, first consider $\sigma=612435$. Notice that while 6435 is an occurrence of 4213 in σ, it is not an occurrence of the mesh pattern $\left(\pi_{0}, M_{0}\right)$ given above, since the shaded regions in $P(\sigma)$ dictated by M_{0} yield

Now consider $\sigma^{\prime}=153624$. In this case, 5324 is an occurrence of both 4213 and (π_{0}, M_{0}) in σ^{\prime}, since the shading in this case is

In certain cases, determining which permutations avoid a mesh pattern (π, M) with M nonempty is equivalent to determining which permutations avoid π as a classical pattern. When this happens, we say that (π, M) has superfluous mesh, and Tenner [2013] identified when exactly a mesh pattern has superfluous mesh. To
do this, we first define an enclosed diagonal of (π, M) to be a triple $((i, j), \varepsilon, \ell)$ where $\varepsilon \in\{-1,1\}, \ell \geq 1$, and the following three properties hold:
(1) The plot of π contains the set $\{(i+d, j+\varepsilon d) \mid 1 \leq d<\ell\}$.
(2) The plot of π contains neither (i, j) nor $(i+\ell, j+\varepsilon \ell)$.
(3) $\{(i+d, j+\varepsilon d) \mid 0 \leq d<\ell\} \subseteq M$.

Note that an enclosed diagonal may consist of a single element, as long as the corresponding box in the mesh pattern contains no element of $P(\pi)$. To illustrate, the following three mesh patterns all have a unique enclosed diagonal:

However, none of the following five mesh patterns have any enclosed diagonals:

The following theorem gives the characterization of when a pattern has superfluous mesh. As a result, we will not focus on any patterns with superfluous mesh, but we will still use the theorem briefly.
Theorem 2.1 [Tenner 2013, Theorem 3.5']. A mesh pattern has superfluous mesh if and only if it has no enclosed diagonals.

Mesh patterns also generalize 1-barred patterns, in which a classical pattern is allowed (but not required) to have a bar above one letter. This is a special case of barred patterns, in which each letter is allowed to have a bar above it. The bars above letters indicate that certain additional rules are required in order to define containment of the pattern. We will not give the precise definition of containment and avoidance of barred patterns in general, but will observe that if there are two or more bars in the pattern, there is not necessarily a simple translation of the barred pattern into a mesh pattern. In some instances, a barred pattern may be described as a decorated mesh pattern [Úlfarsson 2011/12], but this is not always possible. To avoid this difficulty in the statement and proof of Proposition 3.7, we will simply describe here what it means for a permutation to avoid two specific barred patterns.

We say that $\sigma=a_{1} \cdots a_{n}$ avoids $\overline{1} \overline{2} 43$ if, whenever $a_{i} a_{j}$ is an occurrence of 21, then there are some integers k, l such that $k<l<i$ and $a_{k} a_{l} a_{i} a_{j}$ is an occurrence of 1243. We also say that σ avoids $\overline{1} 32 \overline{4}$ if, whenever $a_{i} a_{j}$ is an occurrence of 21 , then there are some integers k, l such that $k<i<j<l$ and $a_{k} a_{i} a_{j} a_{l}$ is an occurrence of 1324. As an example, $\sigma=124635$ avoids $\overline{1} 243$ since all occurrences of 21 , which are 43,63 , and 65 , extend to an occurrence of 1243 by placing 12 before them. However, σ contains $\overline{1} 32 \overline{4}$ since 63 , which is an occurrence of 21, does not play the role of 32 in any occurrence of 1324 in σ.

3. Main results

We now have all of the tools we need to begin proving results. We begin with a simple application of several known theorems.

Proposition 3.1. If $\left(132, M_{1}\right)$ and $\left(312, M_{2}\right)$ are mesh patterns, neither of which contain an enclosed diagonal, then

$$
\left(132, M_{1}\right) \stackrel{\text { des }}{=}\left(312, M_{2}\right) .
$$

Proof. By Theorem 2.1, $\operatorname{Av}_{n}\left(\left(312, M_{2}\right)\right)=\operatorname{Av}_{n}(312)$, so $\left(312, M_{2}\right) \stackrel{\text { des }}{\equiv} 312$. It then follows directly from [Reifegerste 2003, Remark 2.5(b)] that the number of elements in Av_{n} (312) with exactly k descents is

$$
N_{n, k}:=\frac{1}{n}\binom{n}{k}\binom{n}{k+1} .
$$

Since the sequence $\left\{N_{n, k}\right\}_{k=0}^{n-1}$ is symmetric for fixed n, and since

$$
\operatorname{des}(\sigma)=n-1-\operatorname{des}\left(\sigma^{c}\right),
$$

we have

$$
\left(312, M_{2}\right) \stackrel{\text { des }}{\equiv} 312 \stackrel{\text { des }}{\equiv} 132
$$

Again by Theorem 2.1, we have $\operatorname{Av}_{n}(132)=\operatorname{Av}_{n}\left(\left(132, M_{1}\right)\right)$, so these two patterns are des-Wilf equivalent as well. Connecting the equivalences, the claim follows.

Characterizing the des-Wilf classes for mesh patterns (π, M) where $\pi \in \mathfrak{S}_{4}$ is difficult, and we will not attempt to fully characterize the des-Wilf equivalence classes of such patterns. In what follows, we merely wish to present a step toward understanding these in more depth, but first we need two more definitions.

If $A \subseteq[n], f \in D_{4}$, and $\sigma \in \mathfrak{S}_{A}$, then we let $f^{A}(\sigma)$ denote the unique element of \mathfrak{S}_{A} whose standardization is $f(\operatorname{std}(\sigma))$. We say that f^{A} is a dihedral action relative to A. As a simple example, if $7461 \in \mathfrak{S}_{\{1,4,6,7\}}$, then $\operatorname{std}(7461)=4231$ and $R_{90}^{\{1,4,6,7\}}(\sigma)=1647$.

Theorem 3.2. We have

Proof. First consider

$$
\left(\pi_{1}, M_{1}\right)=\frac{\bullet}{\frac{0}{0}} \quad \text { and } \quad\left(\pi_{2}, M_{2}\right)=\frac{0}{t} .
$$

To prove their des-Wilf equivalence, we will form a des-preserving bijection

$$
\alpha: \mathfrak{S}_{n} \backslash \operatorname{Av}_{n}\left(\left(\pi_{1}, M_{1}\right)\right) \rightarrow \mathfrak{S}_{n} \backslash \operatorname{Av}_{n}\left(\left(\pi_{2}, M_{2}\right)\right),
$$

that is, a des-preserving bijection between permutations in \mathfrak{S}_{n} containing (π_{1}, M_{1}) and those containing (π_{2}, M_{2}).

Suppose $\sigma=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$ contains (π_{1}, M_{1}). If σ contains $\left(\pi_{2}, M_{2}\right)$, then set $\alpha(\sigma)=\sigma$. Otherwise, let j be the smallest index in which an occurrence of $\left(\pi_{1}, M_{1}\right)$ begins, and consider $a_{i} a_{i+1} \cdots a_{p}$, where

$$
\begin{aligned}
p & =\min \left\{m \mid m>j+2, a_{m}>a_{j}\right\}, \\
i & =\min \left\{m \mid m \leq j, a_{m}, a_{m+1}, \ldots, a_{j}<a_{p}\right\} .
\end{aligned}
$$

Let $A=\left\{a_{i}, a_{i+1}, \ldots, a_{p}\right\}$, and set

$$
R_{180}^{A}\left(a_{i} \cdots a_{p}\right)=b_{i} \cdots b_{p}
$$

and further set

$$
\alpha(\sigma)=a_{1} \cdots a_{i-1} b_{i} \cdots b_{p} a_{p+1} \cdots a_{n} .
$$

Since R_{180}^{A} is a des-preserving map, we have that for any $k \in\{1, \ldots, p-1-i\}$, $i+k \in \operatorname{Des}(\sigma)$ if and only if $p-k \in \operatorname{Des}(\alpha(\sigma))$. Additionally, for any $k \in$ $\{1, \ldots, i-1, p, p+1, \ldots, n-1\}, k \in \operatorname{Des}(\sigma)$ if and only if $k \in \operatorname{Des}(\alpha(\sigma))$. Thus, α is des-preserving.

To show that α is invertible, we will construct a map

$$
\beta: \mathfrak{S}_{n} \backslash \operatorname{Av}_{n}\left(\left(\pi_{2}, M_{2}\right)\right) \rightarrow \mathfrak{S}_{n} \backslash \operatorname{Av}_{n}\left(\left(\pi_{1}, M_{1}\right)\right)
$$

and show that $\beta \circ \alpha$ is the identity map on $\mathfrak{S}_{n} \backslash \operatorname{Av}_{n}\left(\left(\pi_{1}, M_{1}\right)\right)$. If $\sigma^{\prime}=a_{1}^{\prime} \cdots a_{n}^{\prime}$ contains (π_{2}, M_{2}), then we create $\beta(\sigma)$ by first testing a construction similar to the one from the previous paragraph. Namely, let j^{\prime} be the smallest index in which an occurrence of $\left(\pi_{2}, M_{2}\right)$ begins, and consider $a_{i}^{\prime} a_{i+1}^{\prime} \cdots a_{p}^{\prime}$, where

$$
\begin{aligned}
p^{\prime} & =\min \left\{m \mid m>j^{\prime}+2, a_{m}^{\prime}>a_{j^{\prime}+1}^{\prime}\right\}, \\
i^{\prime} & =\min \left\{m \mid m \leq j^{\prime}, a_{m}^{\prime}, a_{m+1}^{\prime}, \ldots, a_{j^{\prime}}<a_{p}^{\prime}\right\} .
\end{aligned}
$$

This time, let $A^{\prime}=\left\{a_{i}^{\prime}, a_{i+1}^{\prime}, \ldots, a_{p}^{\prime}\right\}$, and set

$$
R_{180}^{A^{\prime}}\left(a_{i}^{\prime} \cdots a_{p}^{\prime}\right)=b_{i}^{\prime} \cdots b_{p}^{\prime} .
$$

If $a_{1}^{\prime} \cdots a_{i-1}^{\prime} b_{i}^{\prime} \cdots b_{p^{\prime}}^{\prime} a_{p^{\prime}+1}^{\prime} \cdots a_{n}^{\prime}$ contains both $\left(\pi_{2}, M_{2}\right)$ and $\left(\pi_{1}, M_{1}\right)$, then set $\beta\left(\sigma^{\prime}\right)=\sigma^{\prime}$. Otherwise, set

$$
\beta\left(\sigma^{\prime}\right)=a_{1}^{\prime} \cdots a_{i-1}^{\prime} b_{i}^{\prime} \cdots b_{p^{\prime}}^{\prime} a_{p^{\prime}+1}^{\prime} \cdots a_{n}^{\prime} .
$$

The fact that $\beta \circ \alpha$ is the identity map on $\mathfrak{S}_{n} \backslash \operatorname{Av}_{n}\left(\left(\pi_{1}, M_{1}\right)\right)$ follows from construction.

Now consider (π_{2}, M_{2}) and

Suppose $\sigma=a_{1} a_{2} \cdots a_{n}$ and $a_{j} a_{j+1} a_{j+2} a_{p}$ is the first copy of (π_{3}, M_{3}), as identified in the second paragraph in this proof. If a_{p} is the only a_{l} for which $l>j+2$ and $a_{l}>a_{j}$, then set $\alpha(\sigma)$ to be σ with a_{j+1} and a_{p} transposed. Otherwise, choose

$$
r=\min \left\{l \mid a_{j}<a_{l}<a_{j+1}, l>j+2\right\} .
$$

Let $S=\left\{a_{r}, a_{r+1}, \ldots, a_{q}\right\}$ where q is the maximum index for which $\left\{a_{r}, a_{r+1}, \ldots, a_{q}\right\}$ is increasing and $a_{j}<a_{k}<a_{j+1}$ for all $k \in S$. Set $\alpha(\sigma)$ to be σ with a_{j+1} and $\max S$ transposed. By choosing the maximum of S we are guaranteeing that α is des-preserving. By construction, $\alpha(\sigma)$ contains an occurrence of (π_{2}, M_{2}). Using an argument similar to the first part of this proof, α is invertible and is therefore a bijection.

Recall that the Stirling numbers of the second kind, denoted by $S(n, k)$, record the number of ways to partition $[n]$ into k nonempty blocks. Here, we will begin to find useful the notation

$$
\operatorname{Av}_{n}^{\operatorname{des}, k}(\Pi)=\left\{\sigma \in \operatorname{Av}_{n}(\Pi) \mid \operatorname{des}(\sigma)=k\right\} .
$$

Proposition 3.3. Let

$$
(\pi, M)=\underset{\rightarrow \bullet V_{\lambda}}{\dagger} .
$$

For all n, we have

$$
F_{n}^{\mathrm{des}}((\pi, M) ; q)=\sum_{k=0}^{n-1} S(n, k+1) q^{k} .
$$

Proof. Let $\Sigma_{n, k}$ denote the collection of set partitions of $[n]$ into exactly k nonempty blocks. We will create a bijection

$$
f: \operatorname{Av}_{n}^{\mathrm{des}, k}((\pi, M)) \rightarrow \Sigma_{n, k+1},
$$

from which the conclusion follows.
First, let $\sigma=a_{1} \cdots a_{n} \in \mathrm{Av}_{n}^{\mathrm{des}, k}((\pi, M))$. It follows from [Burstein and Lankham 2005/07, Theorem 4.1] that any such permutation is the concatenation of substrings

$$
\begin{gathered}
a_{1}<\cdots<a_{i_{0}}, \\
a_{i_{0}+1}<\cdots<a_{i_{1}}, \\
\vdots \\
a_{i_{k}+1}<\cdots<a_{n},
\end{gathered}
$$

where $a_{1}<a_{i_{j}+1}>a_{i_{j+1}+1}$ for all j. In particular, the values $a_{i_{0}}, \ldots, a_{i_{k}}$ determine the entire permutation.

Associate to σ the set partition

$$
f(\sigma)=\left\{\left\{a_{1}, \ldots, a_{i_{0}}\right\},\left\{a_{i_{0}+1}, \ldots, a_{i_{1}}\right\}, \ldots,\left\{a_{i_{k}+1}, \ldots, a_{n}\right\}\right\} .
$$

Note that if $\sigma=12 \cdots n$, then $k=0$, so this partition consists of only one block. Thus, if σ has k descents, then the partition obtained has $k+1$ blocks. Because each choice of the $a_{i_{j}}$ determines σ, we know that $f(\sigma) \neq f\left(\sigma^{\prime}\right)$ whenever $\sigma^{\prime} \in \mathrm{Av}_{n}^{\mathrm{des}, k}((\pi, M))$ and $\sigma \neq \sigma^{\prime}$. That is, f is injective.

Now we will show that f is surjective. Consider a set partition $B=\left\{B_{1}, \ldots, B_{k+1}\right\}$ of $[n]$ into $k+1$ blocks. We are free to write the B_{i} such that

$$
B_{i}=\left\{b_{i, 1}<\cdots<b_{i, i_{l}}\right\} \quad \text { and } \quad \min B_{i}<\min B_{i+1}
$$

for all i. Construct the permutation

$$
b_{k+1,1} b_{k+1,2} \cdots b_{k+1, i_{k+1}} b_{k, 1} b_{k, 2} \cdots b_{k, i_{k}} \cdots b_{1,1} b_{1,2} \cdots b_{1, i_{1}} .
$$

We claim that this permutation is an element of $\mathrm{Av}_{n}^{\text {des }, k}((\pi, M))$.
Any occurrence of

say, $b_{\alpha} b_{\beta} b_{\gamma}$, implies that $b_{\alpha} \in B_{i}, b_{\beta} \in B_{j}$, and $b_{\gamma} \in B_{k}$ for some $i \leq j<k$. Since the sequence of minima of the blocks is decreasing, we know that $\min B_{k}<b_{\alpha}<b_{\gamma}$. Thus, the string

$$
b_{\alpha} b_{\beta}\left(\min B_{k}\right) b_{\gamma}
$$

is an occurrence of

Since the elements of the blocks strictly increase, the minima decrease, and since there are $k+1$ blocks, there are k descents in the permutation. Thus f is surjective, completing the proof.

Example 3.4. Consider the permutation

Our construction in the previous proof associates to this permutation the partition

$$
\{\{3,4\},\{2,7\},\{1,5,6\}\} .
$$

Figure 3. A Motzkin path of length 10 with 3 up-steps.
In the other direction, given the set partition

$$
\{\{5\},\{3,1,4\},\{7,2,6\}\}=\{\{5\},\{2,6,7\},\{1,3,4\}\},
$$

we obtain the permutation 5267134 , which the reader may verify is indeed an element of

A Motzkin path of length n is a lattice path from $(0,0)$ to $(n, 0)$ using only up-steps $(1,1)$, down-steps $(1,-1)$, and horizontal steps $(1,0)$ such that the path does not go below the x-axis. An example is shown in Figure 3. We let $\mathcal{M}_{n, k}$ denote the set of Motzkin paths of length n with exactly k up-steps.

The next result we present was first proven in [Chen et al. 2002/03] by writing Motzkin paths according to a "strip decomposition" and by writing permutations according to canonical reduced decompositions. Here, we present a new, simpler proof. To do so, we only need a few more definitions.

If i is a descent of $\sigma=a_{1} \cdots a_{n}$, then we call a_{i} a descent top and a_{i+1} a descent bottom. Let $\operatorname{Destop}(\sigma)$ denote the set of descent tops of σ and let $\operatorname{Desbot}(\sigma)$ denote the set of descent bottoms of σ. A valley in σ is an element i for which $a_{i-1}>a_{i}<a_{i+1}$.

Theorem 3.5 [Chen et al. 2002/03, Theorem 3.1]. Let

$$
\Pi=\left\{\left(\pi_{4}, M_{4}\right),\left(\pi_{5}, M_{5}\right)\right\}
$$

where

For all n,

$$
F_{n}^{\mathrm{des}}(\Pi ; q)=\sum_{k=0}^{n}\left|\mathcal{M}_{n, k}\right| q^{k}
$$

Proof. We will form a bijection

$$
\mu: \mathrm{Av}_{n}^{\mathrm{des}, k}(\Pi) \rightarrow \mathcal{M}_{n, k} .
$$

For $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}^{\operatorname{des}, k}(\Pi)$, let $\mu(\sigma)$ be the lattice path obtained by making step a_{i} a down-step if a_{i} is a descent bottom, an up-step if a_{i} is a descent top, and a horizontal step if a_{i} is neither.

First, we need to check that μ is well-defined. Note that no letter of σ can be both a descent top and a descent bottom, since this would imply σ contains an instance of π_{4}, which is forbidden. So, since the sets of descent tops and of descent bottoms are disjoint, and these appear in pairs, we can be certain that the path constructed by μ has length n and ends at ($n, 0$). Moreover, since a descent top always appears before a descent bottom, at no step of the path can there have been more down-steps than up-steps. This establishes that $\mu(\sigma)$ is a Motzkin path of length n. Finally, since there are k descents, there are k descent tops, and $\mu(\sigma)$ will have k up-steps. Hence, $\mu(\sigma) \in \mathcal{M}_{n, k}$.

Next we will show that μ is injective. To do so, we will determine exactly the structure of the elements in $\mathrm{Av}_{n}(\Pi)$. Notice that the descent bottoms of σ must appear in increasing order in σ, since, otherwise, there would be an occurrence of π_{4}. For the same reason, the descent tops must appear in increasing order in σ.

Let $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}^{\text {des, } k}(\Pi)$ and suppose that i is neither a descent top nor a descent bottom. Suppose for now that j is the first descent greater than i. If $a_{j+1}<a_{i}<a_{j}$, then $a_{i} a_{j} a_{j+1}$ is an occurrence of 231. Since σ avoids $\left(\pi_{5}, M_{5}\right)$, there must be some l for which σ has the subsequence $a_{i} a_{l} a_{j} a_{j+1}$ and $a_{l}<a_{j+1}$. This implies that some integer $i+1, i+2, \ldots, l-1$ is a descent, which contradicts the fact that j is the first descent greater than i. So, it must be true that $a_{i}<a_{j+1}<a_{j}$. Since j is the first descent greater than i, it follows that $a_{i} a_{i+1} \cdots a_{j-1} a_{j+1}$ is an increasing sequence. It follows that the subsequence of σ consisting of all letters that are not descent tops is an increasing sequence.

Now we will show that μ is injective. If $\mu\left(\sigma_{1}\right)=\mu\left(\sigma_{2}\right)$ for $\sigma_{1}, \sigma_{2} \in \operatorname{Av}_{n}(\Pi)$, then $\operatorname{Destop}\left(\sigma_{1}\right)=\operatorname{Destop}\left(\sigma_{2}\right)$ and $\operatorname{Desbot}\left(\sigma_{1}\right)=\operatorname{Desbot}\left(\sigma_{2}\right)$, since these are identified by the up-steps and down-steps in the Motzkin path. Our description of elements of $\mathrm{Av}_{n}(\Pi)$ shows that once the descent-top sets and descent-bottom sets have been identified, there is a unique σ in the avoidance class with those sets. Therefore, $\sigma_{1}=\sigma_{2}$, and μ is injective.

Finally, we will show that μ is surjective. Let $A \in \mathcal{M}_{n, k}$, and label its steps $1, \ldots, n$ from left to right. We will construct its preimage in stages. First write down $1, \ldots, n$, but exclude the labels on the down-steps. Then insert the label on the i-th down-step immediately before the label of the i-th up-step. Call the resulting permutation σ_{A}. Using the description of elements of $\operatorname{Av}_{n}(\Pi)$ from earlier in this proof, we see that $\sigma_{A} \in \operatorname{Av}_{n}(\Pi)$. Additionally, it is clear that $\mu\left(\sigma_{A}\right)=A$ by our construction of σ_{A} and the definition of μ. Therefore, μ is surjective, completing the proof.

Example 3.6. Let A be the Motzkin path in Figure 3. Steps 2, 3, and 8 are up-steps, and therefore will be descents bottoms. Steps 4, 6, and 10 are down-steps, so these will be descent tops. The remaining numbers will be neither descent tops nor bottoms.

When the descent tops are removed from $\mu^{-1}(A)$, the result will be an increasing string of numbers: 1235789. The descent tops are then placed immediately preceding the descent bottoms, to obtain $1426357(10) 89$.

For the final result of the section, we make two notes. First, recall that the Eulerian polynomial $A_{n}(q)$ is the polynomial

$$
\sum_{\sigma \in \mathfrak{S}_{n}} q^{\operatorname{des}(\sigma)}=A_{n}(q)
$$

It should be noted that some authors, e.g., in [Stanley 1997], define the Eulerian polynomials using $q^{\operatorname{des}(\sigma)+1}$ rather than the definition given here. So, one should take care when encountering Eulerian polynomials in the literature. Second, recall from the end of Section 2 what it means for a permutation to contain and avoid the barred patterns $\overline{1} \overline{2} 43$ or $\overline{1} 32 \overline{4}$.

Proposition 3.7. For all n,

$$
F_{n}^{\operatorname{des}}(\overline{1} \overline{2} 43 ; q)=F_{n}^{\operatorname{des}}(\overline{1} 32 \overline{4} ; q)= \begin{cases}1 & \text { if } n=0,1, \\ A_{n-2}(q) & \text { if } n \geq 2 .\end{cases}
$$

Proof. We will first show that $F_{n}(\overline{1} \overline{2} 43 ; q)$ satisfies the right-hand side. The conclusion is clearly true for $n<2$, so we will restrict our attention to when $n \geq 2$. Choose $\sigma=a_{1} \cdots a_{n} \in \operatorname{Av}_{n}(\overline{1} \overline{2} 43)$. Note first that $a_{1}<a_{2}$ since, if $a_{1}>a_{2}$, then $a_{1} a_{2}$ would be an occurrence of $u(\overline{2} 43)=21$ but this cannot extend to an occurrence of 1243 .

Now, suppose $a_{2}>2$. Setting $a_{m}=\min \left\{a_{i} \mid 3 \leq i \leq n\right\}$ we have $a_{2}>a_{m}$, so $a_{2} a_{m}$ is an occurrence of $u(\overline{1} 43)$ in σ. However, there is only letter to the left of a_{2}, so this pattern does not extend to an instance of 1243. Thus, $a_{2}=2$. Together with the previous paragraph, we know $a_{1}=1$ as well. In particular, $a_{1}<a_{2}<a_{i}$ for all $i \geq 3$.

Now, take any occurrence $a_{i} a_{j}$ of 21 in which $2<i<j$. Clearly, $a_{1} a_{2} a_{i} a_{j}$ is an extension to 1243 . This holds for any possible permutation of $3, \ldots, n$ as the final $n-2$ letters. Since 1 and 2 are never descents of these permutations, we have

$$
F_{n}^{\operatorname{des}}(\overline{1} \overline{2} 43 ; q)=A_{n-2}(q),
$$

as claimed.
Now we will show that the same formula holds for $\overline{1} 32 \overline{4}$. This time, assume $\sigma \in \operatorname{Av}_{n}(\overline{1} 32 \overline{4})$. If $a_{i}=1$ for some $i>1$, then $a_{1} a_{i}$ would be an occurrence of 21 . However, this can never extend to 1324 since there is no letter to the left of a_{1}. Thus, $a_{1}=1$. An analogous argument shows $a_{n}=n$.

This allows $a_{2} \cdots a_{n-1}$ to be any arrangement of $2,3, \ldots, n-1$, since, whenever $a_{i} a_{j}$ is an occurrence of 21 for $2 \leq i, j \leq n-1$, this extends to $1 a_{i} a_{j} n$. So, we have
the bijection

$$
a_{1} a_{2} \cdots a_{n} \mapsto\left(a_{2}-1\right)\left(a_{3}-1\right) \cdots\left(a_{n-1}-1\right)
$$

with elements of \mathfrak{S}_{n-2}. Since 1 and n are never descents in $\operatorname{Av}_{n}(\overline{1} 32 \overline{4})$, this is a des-preserving bijection. Therefore, $F_{n}^{\operatorname{des}}(\overline{1} \overline{2} 43 ; q)=A_{n-2}(q)$.

4. Conjectures and further directions

In this section, we provide a few conjectures, supporting data, and additional direction in which this work could proceed. In all cases, no closed forms for the functions $F_{n}^{\text {des }}(\Pi ; q)$ are known. We refer the reader to Table 1 for all known polynomials $F_{n}^{\mathrm{des}}(\Pi ; q)$ for $4 \leq n \leq 8$, since, for these choices of $\Pi, F_{n}^{\mathrm{des}}(\Pi ; q)=$ $F_{n}^{\mathrm{des}}(\varnothing ; q)$ for $n \leq 3$.

Conjecture 4.1. The following des-Wilf equivalences hold:

To state our next conjecture, we must discuss a particular sorting of permutations. Let $\sigma=a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$ and suppose $a_{i}=n$. Let Γ be the operator defined recursively as

$$
\Gamma(\sigma)=\Gamma\left(a_{1} \cdots a_{i-1}\right) \Gamma\left(a_{i+1} \cdots a_{n}\right) n
$$

We say that σ is West-t-stack-sortable if $\Gamma^{t}(\sigma)$ is the identity permutation. Note that the 2-West-stack-sortable permutations [West 1990] are exactly those in

Conjecture 4.2. The following des-Wilf equivalence holds:

If this conjecture is true, then from [Bóna 2002] it follows that

$$
\begin{aligned}
& \} ; q)=F_{n}^{\operatorname{des}}\left(\left\{\begin{array}{l}
\stackrel{+}{\bullet}- \\
\underset{\rightarrow}{\bullet}
\end{array},\right.\right. \\
& \left.\left.\begin{array}{c}
\substack{\bullet \\
\hdashline-\infty} \\
\hdashline \rightarrow 0
\end{array}\right\} ; q\right) \\
& =\sum_{k=0}^{n-1} \frac{(n+k)!(2 n-k-1)!}{(k+1)!(n-k)!(2 k+1)!(2 n-2 k-1)!} q^{k} \text {. }
\end{aligned}
$$

Π	n	$F_{n}^{\text {des }}(\Pi ; q)$
$\left\{\begin{array}{l}0 \cdot \\ 0 \cdot 0\end{array}\right\},\left\{\begin{array}{l}\text { co } \\ 0\end{array}\right\}$	4 5 6 7 8	$\begin{gathered} 1+10 q+11 q^{2}+q^{3} \\ 1+20 q+57 q^{2}+26 q^{3}+q^{4} \\ 1+35 q+204 q^{2}+252 q^{3}+57 q^{4}+q^{5} \\ 1+56 q+581 q^{2}+1500 q^{3}+969 q^{4}+120 q^{5}+q^{6} \\ 1+84 q+1414 q^{2}+6588 q^{3}+9117 q^{4}+3426 q^{5}+247 q^{6}+q^{7} \end{gathered}$
	4 5 6 7 8	$\begin{gathered} 1+10 q+11 q^{2}+q^{3} \\ 1+20 q+56 q^{2}+26 q^{3}+q^{4} \\ 1+35 q+196 q^{2}+241 q^{3}+57 q^{4}+q^{5} \\ 1+56 q+546 q^{2}+1361 q^{3}+897 q^{4}+120 q^{5}+q^{6} \\ 1+84 q+1302 q^{2}+5675 q^{3}+7739 q^{4}+3060 q^{5}+247 q^{6}+q^{7} \end{gathered}$

Table 1. The polynomials $F_{n}^{\mathrm{des}}(\Pi ; q)$ for certain sets of patterns Π.
Instead of generalizing the patterns being avoided, one may generalize permutations themselves. One way to do this is to consider the colored permutations

$$
G_{r, n}:=\left\{(\varepsilon, \sigma) \mid \varepsilon \in \mathbb{Z}_{r}, \sigma \in \mathfrak{S}_{n}\right\} .
$$

In this case, we say that $(\varepsilon, \sigma) \in G_{r, n}$ contains $(\zeta, \pi) \in G_{s, m}$ if there are elements $1 \leq i_{1}<i_{2}<\cdots<i_{s} \leq n$ such that $\operatorname{std}\left(\sigma_{i_{1}} \cdots \sigma_{i_{s}}\right)=\pi$ and $\varepsilon_{i_{j}}=\zeta_{j}$ for all j. If no such choice of i_{j} exist, then we say (ε, σ) avoids (ζ, π). For a set of colored permutations Π, let

$$
\operatorname{Av}_{r, n}(\Pi)=\left\{(\varepsilon, \sigma) \in G_{r, n} \mid(\varepsilon, \sigma) \text { avoids all }(\zeta, \pi) \in \Pi\right\}
$$

Question 4.3. What can be said about the polynomials

$$
F_{r, n}^{\mathrm{st}}(\Pi ; q)=\sum_{(\varepsilon, \sigma) \in \mathrm{Av}_{r, n}(\Pi)} q^{\mathrm{st}(\varepsilon, \sigma)} ?
$$

We close by noting that $G_{r, n}$ is the set of elements in the wreath product $\mathbb{Z}_{r} 2 \mathfrak{S}_{n}$, a fact which may be useful when addressing the above questions.

Acknowledgements

The authors would like to thank the anonymous referee for thoughtful comments which significantly improved this work.

References

[Baxter 2014] A. M. Baxter, "Refining enumeration schemes to count according to permutation statistics", Electron. J. Combin. 21:2 (2014), art. id. 2.50. MR Zbl
[Bóna 2002] M. Bóna, "Symmetry and unimodality in t-stack sortable permutations", J. Combin. Theory Ser. A 98:1 (2002), 201-209. MR Zbl
[Brändén and Claesson 2011] P. Brändén and A. Claesson, "Mesh patterns and the expansion of permutation statistics as sums of permutation patterns", Electron. J. Combin. 18:2 (2011), art. id. 5. MR Zbl
[Burstein and Lankham 2005/07] A. Burstein and I. Lankham, "Combinatorics of patience sorting piles", Sém. Lothar. Combin. 54A (2005/07), art. id. B54Ab. MR Zbl
[Cameron and Killpatrick 2015] N. T. Cameron and K. Killpatrick, "Inversion polynomials for permutations avoiding consecutive patterns", Adv. in Appl. Math. 67 (2015), 20-35. MR Zbl
[Chen et al. 2002/03] W. Y. C. Chen, Y.-P. Deng, and L. L. M. Yang, "Motzkin paths and reduced decompositions for permutations with forbidden patterns", Electron. J. Combin. 9:2 (2002/03), art. id. 15. MR Zbl
[Dokos et al. 2012] T. Dokos, T. Dwyer, B. P. Johnson, B. E. Sagan, and K. Selsor, "Permutation patterns and statistics", Discrete Math. 312:18 (2012), 2760-2775. MR Zbl
[Knuth 1969] D. E. Knuth, The art of computer programming, I: Fundamental algorithms, AddisonWesley, Reading, 1969. MR Zbl
[MacMahon 1960] P. A. MacMahon, Combinatory analysis, Chelsea, New York, 1960. MR Zbl
[Reifegerste 2003] A. Reifegerste, "On the diagram of 132-avoiding permutations", European J. Combin. 24:6 (2003), 759-776. MR Zbl
[Stanley 1997] R. P. Stanley, Enumerative combinatorics, I, Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, 1997. MR Zbl
[Stanley 2015] R. P. Stanley, Catalan numbers, Cambridge University Press, 2015. MR Zbl
[Tenner 2013] B. E. Tenner, "Mesh patterns with superfluous mesh", Adv. in Appl. Math. 51:5 (2013), 606-618. MR Zbl
[Úlfarsson 2011/12] H. Úlfarsson, "Describing West-3-stack-sortable permutations with permutation patterns", Sém. Lothar. Combin. 67 (2011/12), art. id. B67d. MR Zbl
[West 1990] J. West, Permutations with forbidden subsequences and stack-sortable permutations, Ph.D. thesis, Massachusetts Institute of Technology, 1990, https://search.proquest.com/docview/ 303904866. MR

Received: 2017-06-23
bielawac@msu.edu
davisr@math.msu.edu
greesond@msu.edu
qinhan_zhou@qq.com

Revised: 2018-03-25 Accepted: 2018-10-28
Department of Mathematics, Michigan State University, East Lansing, MI, United States

Department of Mathematics, Michigan State University, East Lansing, MI, United States

Department of Mathematics, Michigan State University, East Lansing, MI, United States

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, Shaanxi, China

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS

Colin Adams	Williams College, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Frank Morgan	Williams College, USA
Pietro Cerone	La Trobe University, Australia	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Scott Chapman	Sam Houston State University, USA	Zuhair Nashed	University of Central Florida, USA
Joshua N. Cooper	University of South Carolina, USA	Ken Ono	Emory University, USA
Jem N. Corcoran	University of Colorado, USA	Yuval Peres	Microsoft Research, USA
Toka Diagana	Howard University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Michael Dorff	Brigham Young University, USA	Jonathon Peterson	Purdue University, USA
Sever S. Dragomir	Victoria University, Australia	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	John C. Wierman	Johns Hopkins University, USA
Suzanne Lenhart	University of Tennessee, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION

Silvio Levy, Scientific Editor

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

involve 2019 vol. 12 no. 4

Euler's formula for the zeta function at the positive even integers 541
Samyukta Krishnamurthy and Micah B. Milinovich
Descents and des-Wilf equivalence of permutations avoiding certain 549nonclassical patternsCaden Bielawa, Robert Davis, Daniel Greeson andQinhan Zhou
The classification of involutions and symmetric spaces of modular groups 565
Marc Besson and Jennifer Schaefer
When is $a^{n}+1$ the sum of two squares? 585
Greg Dresden, Kylie Hess, Saimon Islam, Jeremy Rouse, Aaron Schmitt, Emily Stamm, Terrin Warren and Pan Yue
Irreducible character restrictions to maximal subgroups of low-rank 607
classical groups of types B and CKempton Albee, Mike Barnes, Aaron Parker, Eric Roonand A. A. Schaeffer Fry
Prime labelings of infinite graphs 633
Matthew Kenigsberg and Oscar Levin
Positional strategies in games of best choice647
Aaron Fowlkes and Brant Jones
Graphs with at most two trees in a forest-building process 659Steve Butler, Misa Hamanaka and Marie Hardt
Log-concavity of Hölder means and an application to geometric inequalities 671
Aurel I. Stan and Sergio D. Zapeta-TzulApplying prospect theory to multiattribute problems with independence687assumptionsJack Stanley and Frank P. A. Coolen
On weight-one solvable configurations of the Lights Out puzzle 713

[^0]: MSC2010: 05A05.
 Keywords: mesh patterns, pattern avoidance, permutation statistics.
 Zhou was supported in part by the Michigan State University Discovering America exchange program.

