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We give a new proof of Euler’s formula for the values of the Riemann zeta
function at the positive even integers. The proof involves estimating a certain
integral of elementary functions two different ways and using a recurrence relation
for the Bernoulli polynomials evaluated at 1

2 .

1. Introduction

Let ζ(s) denote the Riemann zeta function and let η(s)= (1− 21−s)ζ(s). Then the
series representations

ζ(s)=
∞∑

n=1

1
ns and η(s)=

∞∑
n=1

(−1)n−1

ns

converge absolutely in the half-plane Re(s) > 1. For n ∈N, we define the Bernoulli
polynomials Bn(x) via the generating function

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
,

and (as usual) we call Bn := Bn(0) the n-th Bernoulli number. It follows that

B2 =
1
6 , B4 =−

1
30 , B6 =

1
42 , . . . , B12 =−

691
2730 , (1-1)

and that
B2n+1 = 0 for n ∈ N. (1-2)

These and other standard properties of the Bernoulli numbers and Bernoulli polyno-
mials can be found in [Montgomery and Vaughan 2007, Appendix B]. In this note
we give an apparently new proof of Euler’s well-known result which states that

ζ(2k)=
∞∑

n=1

1
n2k = (−1)k+1 (2π)

2k B2k

2(2k)!
for k ∈ N. (1-3)
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From (1-1) and (1-3), we see (as Euler did) that

ζ(2)= 1
6 π

2, ζ(4)= 1
90 π

4, ζ(6)= 1
945 π

6, . . . , ζ(12)= 691
638512875 π

12.

In 1734, before realizing the connection to the Bernoulli numbers, Euler derived
the values of ζ(2k) for k = 1, 2, . . . , 6. A few years later, in 1740, Euler discovered
the formula in (1-3) relating ζ(2k) to B2k for k ∈N. Some historical remarks about
Euler’s work on the Riemann zeta function and on other infinite series can be found
in [Weil 1984, Chapter 3], see also [Ayoub 1974; Kline 1983; Varadarajan 2007],
while references to numerous proofs of Euler’s formula in (1-3) can be found in
[de Amo et al. 2011].

Instead of evaluating ζ(2k) directly, our proof naturally evaluates the function
η(s) at the positive even integers. Since

Bn
( 1

2

)
=−(1− 21−n)Bn for n ≥ 0, (1-4)

we note that Euler’s result in (1-3) is equivalent to the formula

η(2k)=
∞∑

n=1

(−1)n−1

n2k = (−1)k
(2π)2k B2k

( 1
2

)
2(2k)!

for k ∈ N. (1-5)

We derive (1-5) in Section 3. Note that (1-1), (1-4), and (1-5) imply

η(2)= 1
12 π

2, η(4)= 7
720 π

4, η(6)= 31
30240 π

6, . . . , η(12)= 1414477
1307674368000 π

12.

Since our proof of (1-5) is more straightforward in the special case k= 1, we discuss
this situation separately at the end of this article.

There is a striking resemblance between Euler’s formula (1-3), relating the values
of ζ(2k) to B2k , and the formula (1-5), relating the values of η(2k) to B2k

( 1
2

)
. We

have chosen to write the expression in (1-5) in this manner for more than simply
aesthetic reasons; indeed our proof of (1-5) relies naturally on a recursive formula
for the sequence

{
B2k
( 1

2

)}∞
k=0.

2. A recursive formula for B2k
(1

2
)

The Bernoulli polynomials satisfy the inversion formula

xn
=

1
n+ 1

n∑
`=0

(n+1
`

)
B`(x)

for every integer n ≥ 0. Setting x = 1
2 and then observing that (1-2) and (1-4) imply

Bn
( 1

2

)
= 0 if n is odd, we derive the recursive formula

1
22k =

1
2k+ 1

k∑
j=0

(2k+1
2 j

)
B2 j

(1
2

)
for k ∈ N. (2-1)
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3. Proof of (1-5)

We prove (1-5) by evaluating the integral

I2k =

∫ 1

0

x(log x)2k

(x2+ 1)2
dx for k ∈ N

in two different ways. On one hand, we show that

I2k =
(2k)!
22k+1η(2k) (3-1)

by expressing the integrand as a series and then integrating term-by-term. The
formula (3-1) actually holds for k = 0 as well, since I0 =

1
4 and it can be shown

that η(0)= 1
2 . On the other hand, using the residue theorem in a relatively standard

way, we derive the recursive formula

1
22k =

1
2k+ 1

k∑
j=0

(2k+1
2 j

)
(−1) j 4I2 j

π2 j . (3-2)

Comparing this expression to the recurrence relation for B2k
( 1

2

)
from the previous

section, we can derive our desired expression for η(2k) from (3-1) and (3-2).

Proof of (1-5). Evidently, from (2-1) and (3-2), the sequences{
B2 j

( 1
2

)}∞
j=0 and

{
(−1) j 4I2 j

π2 j

}∞
j=0

satisfy the same recursion relation. Moreover, since

4I0 = 4
∫ 1

0

x
(x2+ 1)2

dx = 1= B0
( 1

2

)
,

the initial terms in these sequences agree and therefore these sequences are equal.
Hence, from (3-1), we see that

B2k
( 1

2

)
= (−1)k

4I2k

π2k = (−1)k
2(2k)!
(2π)2k η(2k) for every k ∈ N. �

It remains to establish (3-1) and (3-2).

3.1. Relating I2k to η(2k). Integrating by parts 2k times, we derive that∫ 1

0
x2n−1(log x)2k dx =

(2k)!
(2n)2k+1 (3-3)

for positive integers k and n. Alternatively, we can prove this estimate by using
that the gamma function,

0(z)=
∫
∞

0
x z−1e−x dx for Re(z) > 0,
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satisfies the relation 0(n + 1) = n! for n ∈ N. To see this, note that the variable
change x 7→ e−t/(2n) implies∫ 1

0
x2n(log x)2k dx

x
=

1
(2n)2k+1

∫
∞

0
e−t t2k dt =

0(2k+ 1)
(2n)2k+1 =

(2k)!
(2n)2k+1 .

We now express the integrand of I2k as a series, interchange the sum and the integral,
and then use (3-3) to integrate term-by-term. Since

x
(x2+ 1)2

=−
1
2

d
dx

{
1

1+ x2

}
=−

1
2

d
dx

{ ∞∑
n=0

(−1)nx2n
}
=

∞∑
n=1

n(−1)n−1x2n−1 (3-4)

for |x |< 1, we have

I2k =

∫ 1

0

x(log x)2k

(x2+ 1)2
dx =

∫ 1

0

∞∑
n=1

n(−1)n−1x2n−1(log x)2k dx

=

∞∑
n=1

n(−1)n−1
∫ 1

0
x2n−1(log x)2k dx

=

∞∑
n=1

n(−1)n−1 (2k)!
(2n)2k+1 =

(2k)!
22k+1η(2k)

for every k ∈ N. This proves (3-1). Note that the interchange of summation and
integration is justified using Fubini’s theorem since, for every k ∈N, (3-3) implies

∞∑
n=1

∫ 1

0
|n(−1)n−1x2n−1 log2k x | dx =

∞∑
n=1

n
∫ 1

0
x2n−1(log x)2k dx

=
(2k)!
22k+1

∞∑
n=1

1
n2k <∞.

3.2. A recursive formula for I2k. Making the variable change x 7→ 1/x , it follows
that ∫ 1

0

x(log x)2k

(x2+ 1)2
dx =

∫
∞

1

x(log x)2k

(x2+ 1)2
dx,

∫ 1

0

x(log x)2k+1

(x2+ 1)2
dx =−

∫
∞

1

x(log x)2k+1

(x2+ 1)2
dx

for integers k ≥ 0. Therefore

I2k =
1
2

∫
∞

0

x(log x)2k

(x2+ 1)2
dx and

∫
∞

0

x(log x)2k+1

(x2+ 1)2
dx = 0. (3-5)
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Figure 1

Now we introduce the complex-valued function

f (z)=
z(log z)2k+1

(1+ z2)2
,

where log z denotes the branch of the logarithm in C with |z|>0 and−π2 <arg z< 3π
2 .

Note that the power of log z in the numerator of f (z) is one power higher than
the power of log x appearing in the integrand of I2k . We integrate f (z) around the
positively oriented simple closed contour (shown in Figure 1) composed of the
line segment [ε, R] along the real-axis, the semicircle 0R centered at 0 of radius R
starting at z = R passing through z = i R and ending at z =−R, the line segment
[−R,−ε] along the real-axis, and finally the semicircle 0ε centered at 0 of radius ε
starting at z =−ε passing through z = iε and ending at z = ε. Here ε and R denote
real numbers satisfying 0< ε < 1< R <∞. The only singularity of f (z) inside
this contour is a double pole at z = i . Therefore the residue theorem implies

2π i Res
z=i

f (z)=
∫ R

ε

x(log x)2k+1

(1+ x2)2
dx +

∫
0R

f (z) dz

+

∫
−ε

−R

x(log(−x)+ iπ)2k+1

(1+ x2)2
dx +

∫
0ε

f (z) dz, (3-6)

where the logarithms in the first and third integrals on the right-hand side denote
the natural logarithm. Estimating trivially, we have∣∣∣∣∫

0ε

f (z) dz
∣∣∣∣≤ length(0ε) ·max

z∈0ε
| f (z)| ≤ (πε)

(
ε(log(−ε)+π)2k+1

(1− ε2)2

)
→ 0

as ε→ 0+ and∣∣∣∣∫
0R

f (z) dz
∣∣∣∣≤ length(0R ) ·max

z∈0R

| f (z)| ≤ (πR)
(

R(log R+π)2k+1

(1− R2)2

)
→ 0

as R→+∞. It follows that

2π i Res
z=i

f (z)=
∫
∞

0

x(log x)2k+1

(1+ x2)2
dx +

∫ 0

−∞

x(log(−x)+ iπ)2k+1

(1+ x2)2
dx .
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By the second expression in (3-5), the first integral on the right-hand side equals 0.
Sending x 7→ −x , the second integral on the right-hand side equals

−

∫
∞

0

x(log x + iπ)2k+1

(1+ x2)2
dx =−

2k+1∑
`=0

(2k+1
`

)
(iπ)2k−`+1

∫
∞

0

x(log x)`

(1+ x2)2
dx .

Again by (3-5), the terms in the sum with ` odd vanish. Hence, for even `, letting
`= 2 j and using the first expression in (3-5), we have

2π i Res
z=i

f (z)=−(iπ)2k+1
k∑

j=0

(2k+1
2 j

)
(−1) j 2I2 j

π2 j . (3-7)

On the other hand, a straightforward calculation shows that

Res
z=i

f (z)= lim
z→i

d
dz

{
z(log z)2k+1

(z+ i)2

}
=−

(2k+ 1)(iπ)2k

22k+2 .

Inserting this into (3-7) and dividing by −(2k+ 1)(iπ)2k+1/2, we conclude that

1
22k =

1
2k+ 1

k∑
j=0

(2k+1
2 j

)
(−1) j 4I2 j

π2 j ,

as claimed.

3.3. Remarks on the case k =1. Historically, the Basel problem asked for a closed-
form evaluation of the sum

ζ(2)=
∞∑

n=1

1
n2 .

As mentioned in the Introduction, this problem was solved by Euler in 1734.
Therefore, there is perhaps special interest in a direct proof of the equivalent
problem of showing that

η(2)=
∞∑

n=1

(−1)n−1

n2 =
π2

12
.

In this special case, our proof above can be simplified since there is no need to
appeal to properties of the Bernoulli polynomials, the gamma function, or recursion
relations. We sketch the details of this calculation for the interested reader.

In this case, we evaluate the integral

I2 =

∫ 1

0

x(log x)2

(x2+ 1)2
dx

in two different ways. Integrating by parts twice, it can be shown that∫ 1

0
x2n−1(log x)2 dx =

1
4n3 for n ∈ N. (3-8)
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Therefore, using the series expansion in (3-4), it follows that

I2 =

∫ 1

0

x(log x)2

(x2+ 1)2
dx =

∫ 1

0

∞∑
n=1

n(−1)n−1x2n−1(log x)2 dx

=

∞∑
n=1

n(−1)n−1
∫ 1

0
x2n−1(log x)2 dx

=
1
4

∞∑
n=1

(−1)n−1

n2 =
η(2)

4
.

As in Section 3.1, the interchange of summation and integration can be justified
using Fubini’s theorem. On the other hand, making the variable change x 7→ 1/x ,
it follows that

I2 =

∫ 1

0

x(log x)2

(x2+ 1)2
dx =

∫
∞

1

x(log x)2

(x2+ 1)2
dx .

Therefore

I2 =
1
2

∫
∞

0

x(log x)2

(x2+ 1)2
dx . (3-9)

In order to evaluate this integral, we apply the residue theorem in a manner similar
to that in the previous section. We integrate the complex-valued function

f (z)=
z(log z)3

(1+ z2)2

around the positively oriented simple closed contour shown in Figure 1. As before,
log z denotes the branch of the logarithm in C with |z|> 0 and −π2 < arg z < 3π

2 ,
while ε and R denote real numbers satisfying 0<ε < 1< R<∞. Then the residue
theorem implies

2π i Res
z=i

f (z)=
∫ R

ε

x(log x)3

(1+ x2)2
dx +

∫
0R

f (z) dz

+

∫
−ε

−R

x(log(−x)+ iπ)3

(1+ x2)2
dx +

∫
0ε

f (z) dz,

where the logarithms in the first and third integrals on the right-hand side denote
the natural logarithm. As was shown in the previous section, the second and fourth
integrals on the right-hand side tend to 0 as R→+∞ and ε→ 0+, respectively.
Since the only singularity of f (z) inside this contour is a double pole at z = i
with

Res
z=i

f (z)= lim
z→i

d
dz

{
z(log z)3

(z+ i)2

}
=

3π2

16
,
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it follows that

3π3i
8
=

∫
∞

0

x(log x)3

(1+ x2)2
dx +

∫ 0

−∞

x(log(−x)+ iπ)3

(1+ x2)2
dx

=

∫
∞

0

x(log x)3

(1+ x2)2
dx −

∫
∞

0

x(log x + iπ)3

(1+ x2)2
dx .

Here we have made the variable change x 7→ −x in the second integral. Expanding
the factor (log x + iπ)3, taking imaginary parts of both sides of the equation, and
then using (3-9), we deduce that

3π3

8
= π3

∫
∞

0

x
(1+ x2)2

dx − 3π
∫
∞

0

x(log x)2

(1+ x2)2
dx = π

3

2
− 6π I2.

This implies I2 = π
2/48. Combining this with our previous observation that

I2 = η(2)/4, we conclude that η(2)= π2/12.
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