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A simple graph G is a pairwise compatibility graph (PCG) if there exists an
edge-weighted tree T with positive weights and nonnegative numbers dmin and
dmax such that the leaves of T are exactly the vertices of G, and uv is an edge
in G if and only if the sum of weights of edges on the unique path between u
and v in T is at least dmin and at most dmax. We show that a wheel on n vertices is
a PCG if and only if n ≤ 8, settling an open problem proposed by Calamoneri
and Sinaimeri (SIAM Review 58:3 (2016), 445–460). Our approach is based on
unavoidable binary classifications of the edges in the complement of wheels that
are PCGs. (Note: during the review process of our work, we learned that the
same result has been obtained independently with an alternative proof.)

1. Introduction

Edge-weighted rooted trees are common graph models used in phylogenetics, a
branch of biology that studies the evolutionary history and relationships of sets of
taxa, i.e., organisms sharing similar characteristics (e.g., species, populations). In
such a phylogenetic tree, a leaf represents a taxon, an internal vertex represents a
possible common ancestor of its descendant leaves, and the weight of an edge may
be interpreted as the length of the evolutionary history separating the species or
populations represented by its two incident vertices. One of the first illustrations of
a phylogenetic tree appeared in Charles Darwin’s groundbreaking work [1859].

In computational biology, the problem of reconstructing an optimal phylogenetic
tree from a given set of taxa is complex [Calamoneri and Sinaimeri 2016], and so re-
searchers have focused on constrained instances of this problem. For example, since
very large and very small distances between pairs of taxa in the evolutionary history
may have a negative impact on the performance of reconstruction algorithms, bound-
ing these distances is a natural constraint [Kearney et al. 2003]. In graph-theoretical
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terms, let G be a graph where each vertex represents a taxon and uv be an edge in G
if the evolutionary distance between vertices u and v is within an acceptable range.
One is interested in finding an edge-weighted tree T with positive weights and
nonnegative numbers dmin and dmax such that the set of leaves of T is exactly the set
of vertices of G, and uv is an edge in G if and only if the sum of weights of edges
on the unique path between u and v in T is at least dmin and at most dmax. If such
T, dmin and dmax exist, then we say that G is a pairwise compatibility graph (PCG)
with witness tree T bounded by dmin and dmax, or simply G = PCG(T, dmin, dmax).
For any two vertices u and v in G (not necessarily adjacent), d(u, v) will denote
the sum of weights of the edges on the unique path in T between the leaves u and
v (for simplicity, we omitted the subscript in dT (u, v) which is traditionally used
to denote the weighted distance between any pair of vertices u and v in T ).

The literature suggests that the PCG recognition problem is difficult, and it has
been conjectured to be NP-hard [Durocher et al. 2015]. Since no complete charac-
terization of PCGs is currently known, a large portion of the existing research has
focused on determining whether particular graphs are PCGs or not. The following
are some examples of the known classes of PCGs: graphs with at most seven vertices
[Calamoneri et al. 2013a; Phillips 2002]; bipartite graphs with at most eight vertices
[Mehnaz and Rahman 2013]; cycles, single-chord cycles, cacti, tree power graphs,
Steiner and phylogenetic k-power graphs [Mehnaz and Rahman 2013; Yanhaona
et al. 2009]; trees, ladders, triangle-free outerplanar 3-graphs [Salma et al. 2013];
Dilworth 2 graphs [Calamoneri and Petreschi 2014]; split matrogenic graphs and
certain superclasses [Calamoneri et al. 2013b]. Some particular graphs that are not
PCGs have also been identified: a nonbipartite circular arc graph on 8 vertices, a
bipartite graph on 15 vertices, and a planar graph on 20 vertices [Yanhaona et al.
2009; 2010]. Recently, two results involving the complement Gc of a graph G
provided additional tools in the study of PCGs [Hossain et al. 2017]: if Gc is acyclic
then G is a PCG; if Gc contains two vertex-disjoint chordless cycles without an
edge simultaneously incident to both cycles, then G is not a PCG. One instance
relevant to our work is the class of k-leaf power graphs which are PCGs, where
dmin = 0 and dmax = k. It is well known that these graphs are strongly chordal, i.e.,
chordal and sun-free [Farber 1983]; however, the converse is not true [Bibelnieks
and Dearing 1993]. In fact, no complete characterization of k-leaf power graphs is
known except when k ≤ 4 [Brandstädt and Le 2006; Brandstädt et al. 2008; Dom
et al. 2004; 2005; Rautenbach 2006].

From the references above and from our recent experience, we have learned
that many of the existing results concerning the PCG recognition problem required
determination and clever, nontrivial approaches to generate witness trees or to
show that none exist. Nevertheless, the efforts behind these approaches may not be
readily apparent since they often describe witness trees without providing a clear
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discussion of what drives their particular structures. Perhaps for these reasons there
are still many open problems in the area, as mentioned in the comprehensive survey
[Calamoneri and Sinaimeri 2016], including the following:

Open Problem 1. Find other graph classes that do not belong to the PCG class.

Open Problem 2. It is not known whether or not wheels on at least eight nodes
are PCGs.

We add one more class for Open Problem 1 while settling Open Problem 2 in
our main result:

Theorem 1.1. Wheels on n vertices are PCGs if and only if n ≤ 8.

We will be using the following notation throughout this work. The wheel Wn

with order n ≥ 4 has vertices w1, w2, . . . , wn , edges wiwn for i = 1, 2, . . . , n− 1,
edges wiwi+1 for i = 1, 2, . . . , n− 2, and edge w1wn−1. The cycle induced by the
vertices w1, w2, . . . , wn−1 is called the rim of the wheel.

Figure 1 shows the wheel W8 and a witness tree T bounded by dmin = 5.5 and
dmax = 7.5, that is, W8 = PCG(T, 5.5, 7.5). This claim can be easily verified using
the information in Table 1, where for each entry (i, j), the corresponding column
header is d(wi , wj ) for T in Figure 1 (pairs in bold correspond to the edges in W8).
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Figure 1. Wheel W8 on the left and a witness tree T on the right
with W8 = PCG(T, 5.5, 7.5).

3 4 5 5.5 6 6.5 7 7.5 8 9

(2,4) (2,6) (2,5) (2,8) (2,3) (1,8) (1,2) (3,8) (1,4) (1,3)
(5,7) (2,7) (3,5) (7,8) (4,5) (4,8) (1,7) (6,8) (1,5) (1,6)

(3,7) (4,6) (6,7) (5,8) (3,4) (3,6)
(4,7) (5,6)

Table 1. For each entry (i, j), the corresponding column header is
d(wi , wj ) for T in Figure 1 (pairs in bold correspond to the edges
in W8).
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Figure 2. Edges in W8 are solid black, light edges in (W8)
c are

dashed and heavy edges in (W8)
c are thick gray.

Generating this witness tree for W8 was far from trivial. A brute-force computation
approach was infeasible due to the large number of trees with eight leaves and
the infinite number of choices for their edge-weights and bounds. We relied on
potential binary classifications of the edges in the complement (W8)

c of W8, more
specifically, which edge uv in (W8)

c could be light, i.e., d(u, v) < dmin, and which
could be heavy, i.e., d(u, v) > dmax. Using general results that do not require the
knowledge of an exact witness tree and bounds, we generated the configuration
of light and heavy edges given on the left-most graph in Figure 2, where edges in
W8 are solid black, light edges in (W8)

c are dashed, and heavy edges in (W8)
c are

thick gray. The center and right-most graphs in this figure are provided for clarity
and show W8 together with only light and with only heavy edges, respectively. The
exact steps to obtain this configuration are omitted, as they are similar to the steps
presented in the proof of Theorem 2.6 in Section 2. From this configuration, we
were able to obtain the witness tree T and bounds in Figure 1 by inspection.

Recall that all graphs with at most seven vertices are PCGs. Theorem 1.1 will
follow, given that we have shown here that W8 is also a PCG and will show in
Section 2 that no Wn for n ≥ 9 is a PCG.

During the review process of our work, we learned that Theorem 1.1 has been
verified independently in the arXiv manuscript [Baiocchi et al. 2017] which was later
presented as the conference extended abstract [Baiocchi et al. 2018]. In [Baiocchi
et al. 2018], the edges of a PCG are colored black, and edges in the complement
are colored red if they are light and white if they are heavy. Several forbidden
tricolored structures are identified. The general approach assumes that Wn for n ≥ 9
is a PCG and these forbidden structures are used in an exhaustive case discussion
to reach a contradiction. Our approach is similar in the sense that it focuses on
certain unavoidable binary configurations of edges and, indeed, one of the forbidden
structures identified in [Baiocchi et al. 2018] (namely f-c(2K2)a, coincides with
the configuration H5 described in our Lemma 2.4). Nevertheless, we believe our
proof streamlines the case discussion by generating a sequence of unavoidable light
edges until the forbidden configuration H5 is achieved.
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Figure 3. Configuration H1 (left), where xy is an edge in Gc

and d(u, v)≥d(v, x), implies H2 (right), as shown in Lemma 2.2.

2. Wheels with more than eight vertices are not PCGs

Key to our discussion is the following useful result that allows for distance compar-
isons between certain pairs of leaves in general edge-weighted trees.

Result 2.1 [Yanhaona et al. 2010]. Let T be an edge-weighted tree and let u, v, x
be three leaves in T such that d(u, v) = max{d(u, v), d(v, x), d(x, u)}. If y is a
leaf other than u, v, x , then d(x, y)≤ d(u, y) or d(x, y)≤ d(v, y). �

We will apply Result 2.1 to the witness trees of certain PCGs in Lemmas 2.2,
2.3 and 2.4. These lemmas will be vital tools used to show that Wn is not a PCG
when n ≥ 9 in Theorem 2.6. We first extend the definitions of light and heavy edges
mentioned in Section 1 to general PCGs; that is, given G = PCG(T, dmin, dmax), we
say that an edge uv in Gc is light if d(u, v) < dmin and is heavy if d(u, v) > dmax.
Any future figures will continue using the conventions given in Figure 2: edges in G
are solid black, light edges in Gc are dashed, and heavy edges in Gc are thick gray.

Lemma 2.2. Let G = PCG(T, dmin, dmax). If G and Gc contain the edges in the
configuration H1 in Figure 3 (left), where xy is an edge in Gc and d(u, v)≥ d(v, x),
then xy must be light as indicated in the configuration H2 in Figure 3 (right).

Proof. Since d(u, v) ≥ d(v, x) and xu is light, we have d(u, v) = max{d(u, v),

d(v, x), d(x, u)}. By Result 2.1, d(x, y) ≤ d(u, y) or d(x, y) ≤ d(v, y). But
d(u, y) ≤ dmax and d(v, y) ≤ dmax because uy and vy are edges in G, therefore
d(x, y)≤ dmax. This latter inequality combined with the fact that xy is an edge in
Gc implies d(x, y) < dmin and therefore xy is light. �

Lemma 2.3. Let G = PCG(T, dmin, dmax). If G and Gc contain the edges in the
configuration H3 in Figure 4 (left), where uv is an edge in Gc, then uv must be light
as indicated in the configuration H4 in Figure 4 (right).

Proof. Suppose by contradiction that uv is heavy. Since xu and vx are edges in G,
we must have d(x, u) ≤ dmax and d(v, x) ≤ dmax; hence d(u, v) = max{d(u, v),

d(v, x), d(x, u)} and by Result 2.1, d(x, y)≤ d(u, y) or d(x, y)≤ d(v, y). But uy
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Figure 4. Configuration H3 (left), where uv is an edge in Gc,
implies H4 (right), as shown in Lemma 2.2.

and vy are light, that is, d(u, y) < dmin and d(v, y) < dmin, which would imply
d(x, y) < dmin, contradicting the fact that d(x, y)≥ dmin as xy is an edge in G. �

For later discussions, it is important to note the differences between the vertex
labels in Figures 3 and 4 (e.g., v and x are the only vertices of degree 3 in each
respective figure). These labels were chosen so that Result 2.1 could be readily
applied in the proofs of Lemmas 2.2 and 2.3, respectively.

Lemma 2.4. Let G = PCG(T, dmin, dmax). G and Gc cannot contain the configu-
ration H5 of Figure 5.

Proof. Suppose by contradiction that G and Gc contain the configuration H5. Since
xu and vx are light, we must have d(x, u) < dmin and d(v, x) < dmin. But uv is an
edge in G, so we have d(u, v)≥dmin. Hence d(u,v)=max{d(u,v),d(v, x),d(x,u)}

and by Result 2.1, d(x, y)≤ d(u, y) or d(x, y)≤ d(v, y). But uy and vy are light,
that is, d(u, y) < dmin and d(v, y) < dmin, which would imply d(x, y) < dmin,
contradicting the fact that d(x, y)≥ dmin as xy is an edge in G. �

In the proof of Theorem 2.6, we will assume by contradiction that Wn is a PCG
for some n ≥ 9 and apply Lemmas 2.2 and 2.3 repeatedly until a contradiction to
Lemma 2.4 is reached. To be able to set this argument in motion, we need to verify
the existence of a particular light edge. For each p = 2, 3, . . . , n− 3, we define a
p-light edge in (Wn)

c to be a light edge with ends connected by a path on the rim of
Wn with exactly p edges (note that a p-light edge is also an (n−p−1)-light edge).

Lemma 2.5. If n ≥ 5 and Wn = PCG(T, dmin, dmax), then there exists a p-light
edge for each p = 2, 3, . . . , n− 3.

u x

v y

Figure 5. Forbidden configuration H5 in Lemma 2.4.
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Proof. Let Wn = PCG(T, dmin, dmax) with n ≥ 5. Since p-light edges are (n−p−1)-
light edges, it is enough to verify the lemma for p= 2, 3, . . . , b(n−1)/2c. We will
proceed by induction on p.

The rim of Wn is a chordless cycle; hence Wn is not chordal and consequently
not strongly chordal. Recall from Section 1 that k-leaf power graphs are strongly
chordal so Wn is not a k-leaf power graph; that is, dmin > 0 and there exists at least
one light edge (if there are no light edges, then uv would be an edge in G if and
only if 0≤ d(u, v)≤ dmax, and hence Wn would be a k-leaf power graph). Choose
a light edge with ends that minimize the distance on the rim of Wn (i.e., the number
of edges on the shortest path between these ends using only edges on the rim) over
all light edges, and let m be this smallest distance. We may assume without loss of
generality that w1wm+1 is this selected light edge and d(wm+1, wn) ≥ d(w1, wn)

(if not, rotate and/or reverse the labels on the rim). Clearly, 2≤ m ≤ b(n− 1)/2c.
If m > 2, since w1wm is an edge in (Wn)

c and d(wm+1, wn) ≥ d(w1, wn), then
applying Lemma 2.2 with u = wm+1, v = wn , x = w1, y = wm would imply
xy = w1wm is light with ends connected by a path on the rim with m − 1 edges,
which contradicts the minimality of m. Hence m = 2; that is, w1w3 is light with
ends connected by the path w1w2w3 on the rim. Thus, there is a 2-light edge in Wn ,
and the basis of the induction has been established.

Assume for 2 ≤ p < b(n − 1)/2c that there exists a p-light edge and we will
show that there exists a (p+1)-light edge, concluding our inductive argument.
Rotate and/or reverse the labels on the rim so that w1wp+1 is this p-light edge and
d(wp+1, wn) ≥ d(w1, wn). Note that since n ≥ 5 and p < b(n − 1)/2c, we have
p+2< b(n−1)/2c+2≤n−1 so w1wp+2 is an edge in (Wn)

c. Applying Lemma 2.2
with u = wp+1, v = wn , x = w1, y = wp+2 we conclude that xy = w1wp+2 is a
(p+1)-light edge, and so our induction is complete. �

We can confirm that this lemma holds in the instance of W8 presented in
Figure 2; for example, w1w3 is a 2- and 5-light edge, and w1w4 is a 3- and 4-light
edge.

Applications of Lemma 2.2 similar to the two discussed in the proof of Lemma 2.5
will occur multiple times in the proof of Theorem 2.6, and so we will use the
abbreviated notation (i, j, k) 2.2

−→( j, k) to indicate that wjwk is an edge in (Wn)
c,

d(wi , wn)≥ d(wj , wn), and setting u = wi , v = wn , x = wj , y = wk we have the
configuration H1 in Figure 3 (left); therefore applying Lemma 2.2 implies xy =
wjwk is light. With this notation, the two applications of Lemma 2.2 in the proof
of Lemma 2.5 would simply read (m+1,1,m) 2.2

−→(1,m) and (p+1,1, p+2) 2.2
−→

(1, p+2), respectively. In the same spirit, we also define the abbreviated notation
(i, j, k) 2.3

−→(i, j) to indicate that wiwj is an edge in (Wn)
c and setting u = wi ,

v =wj , x =wn , y =wk we have the configuration H3 in Figure 4 (left); therefore
applying Lemma 2.3 implies uv = wiwj is light.
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Theorem 2.6. If n ≥ 9, then Wn is not a PCG.

Proof. Let n ≥ 9 and suppose by contradiction that Wn = PCG(T, dmin, dmax). From
Lemma 2.5, there exists a 4-light edge. We may assume without loss of generality
that w2w6 is a 4-light edge and that d(w6, wn) ≥ d(w2, wn) (if not, rotate and/or
reverse the labels on the rim). The proof proceeds by adding light edges forced by
Lemmas 2.2 and 2.3 until we reach the configuration H5 featured in Figure 5, which
would contradict Lemma 2.4. We begin by observing that (6, 2, 5) 2.2

−→(2, 5) and
(6, 2, 7) 2.2

−→(2, 7). The three current light edges are shown in the configuration G1

of Figure 6. We split the discussion into two cases:

Case 1: Suppose d(w5, wn) ≥ d(w2, wn). Hence (5, 2, 4) 2.2
−→(2, 4), with current

light edges shown in the configuration G2 of Figure 6. In addition, (4, 7, 2) 2.3
−→(4, 7)

and (5, 7, 2) 2.3
−→(5, 7), with current light edges shown in the configuration G3 of

Figure 6. Let us first examine the subcase where d(w7, wn) < d(w2, wn). Since
n ≥ 9, we have that w1w7 is an edge in (Wn)

c and is in fact a light edge, since
(2, 7, 1) 2.2

−→(7, 1). We then have (1, 4, 7) 2.3
−→(1, 4) and (1, 5, 7) 2.3

−→(1, 5). The
current light edges are shown in the configuration G4 of Figure 6 and therefore we
reached the configuration H5 with u=w1, v=w2, x=w4, y=w5 (boxed vertices),
a contradiction. We now focus on the remaining subcase where d(w7, wn) ≥

d(w2, wn) and reset our current light edges to those shown in configuration G3 of
Figure 6. First observe that (7, 2, 8) 2.2

−→(2, 8). We then have (4, 8, 2) 2.3
−→(4, 8)

and (5, 8, 2) 2.3
−→(5, 8). The current light edges are shown in the configuration G5

of Figure 6 and therefore we reached the configuration H5 with u = w4, v = w5,
x = w7, y = w8 (boxed vertices), a contradiction.

Case 2: Suppose d(w5,wn)< d(w2,wn) and reset our current light edges to those
shown in configuration G1 of Figure 6. Hence (2, 5, 1) 2.2

−→(5, 1) and (2, 5, 3) 2.2
−→

(5, 3) with current light edges shown in the configuration G6 of Figure 6. Let us
first examine the subcase where d(w5, wn) ≥ d(w1, wn), thus (5, 1, 6) 2.2

−→(1, 6).
The current light edges are shown in the configuration G7 of Figure 6 and there-
fore we reached the configuration H5 with u = w1, v = w2, x = w5, y = w6

(boxed vertices), a contradiction. We now focus on the remaining subcase where
d(w5, wn) < d(w1, wn) and reset our current light edges to those shown in con-
figuration G6 of Figure 6. First observe that (1, 5, n − 1) 2.2

−→(5, n − 1). We
then have (2, n − 1, 5) 2.3

−→(2, n − 1) and (3, n − 1, 5) 2.3
−→(3, n − 1). Now we

have (6, n − 1, 2) 2.3
−→(6, n − 1) (note that w6wn−1 is an edge in (Wn)

c since
n ≥ 9) and can finally conclude that (3, 6, n − 1) 2.3

−→(3, 6). The current light
edges are shown in the configuration G8 of Figure 6 and therefore we reached
the configuration H5 with u = w2, v = w3, x = w5, y = w6 (boxed vertices), a
contradiction.

Since contradictions were reached in all possible cases, the theorem holds. �
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Figure 6. Configurations from the proof of Theorem 2.6.

A series of steps based on Lemmas 2.2, 2.3, and 2.4, similar to the ones de-
scribed in the proof of Theorem 2.6, could be applied to W8 to construct complete
configurations of light and heavy edges that do not contain H5 of Figure 5. After
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Figure 7. Invalid configuration for W8 and (W8)
c in Lemma 2.7.

exhaustive case discussions (omitted for the sake of brevity), we found only two
of these configurations, namely the configurations in Figures 2 and 7. The former
allowed us to prove that W8 is a PCG as shown in Section 1. Interestingly, the latter
is not a valid configuration for W8 and (W8)

c as verified in Lemma 2.7.

Lemma 2.7. If W8 = PCG(T, dmin, dmax), then its corresponding light and heavy
edges cannot be described by the configuration in Figure 7 (up to rotating and/or
reversing the vertex labels on the rim).

Proof. Suppose the lemma does not hold. We examine three cases:

Case 1: d(w1, w2) = max{d(w1, w2), d(w2, w8), d(w8, w1)}. Apply Result 2.1
with u = w1, v = w2, x = w8, y = w5 to conclude d(w8, w5) ≤ d(w1, w5)

or d(w5, w8) ≤ d(w2, w5). But w1w5 and w2w5 are light which would imply
d(w8, w5) < dmin, contradicting the fact that w8w5 is an edge in W8.

Case 2: d(w2, w8) = max{d(w1, w2), d(w2, w8), d(w8, w1)}. Apply Result 2.1
with u = w2, v = w8, x = w1, y = w4 to conclude d(w1, w4) ≤ d(w2, w4) or
d(w1, w4) ≤ d(w8, w4). If d(w1, w4) ≤ d(w2, w4), then d(w1, w4) < dmin since
w2w4 is light; if d(w1, w4)≤ d(w8, w4), then d(w1, w4)≤ dmax since w8w4 is an
edge in W8; both options contradict the fact that w1w4 is heavy.

Case 3: d(w8, w1)=max{d(w1, w2), d(w2, w8), d(w8, w1)}. Given the symmetry
of the configuration in Figure 7, this case can be verified as in Case 2 if we rotate
the vertex labels around the rim one unit counterclockwise and then reverse their
order clockwise.

Since contradictions were reached in all possible cases, the lemma holds. �

3. Closing remarks

We proved that W8 is a PCG, but Wn for n ≥ 9 are not PCGs, settling an open
problem proposed in [Calamoneri and Sinaimeri 2016]. The difficulty in showing
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W8 is a PCG stemmed from the many degrees of freedom one has in constructing
potential witness trees — as both the tree’s structure and its edge weights must be
specified, the collection of candidate witness trees is both very large and highly
varied. A natural direction for future work would be to ask whether some subfamilies
of trees could be conclusively ruled out as witness trees. Our results followed from
a series of lemmas concerning light and heavy edges. While considerably distanced
from the properties of any underlying witness tree, this layer of abstraction is
nonetheless extremely useful. We have presented here a collection of general tools
concerning configurations of heavy and/or light edges, but this set is by no means
exhaustive — indeed, Lemma 2.7 hints at other families of forbidden subgraphs.
We hope to see expanded results, both in terms of composition and complexity of
such configurations, in the months and years to come.
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