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We introduce weighted versions of the classical Čech and Vietoris–Rips com-
plexes. We show that a version of the Vietoris–Rips lemma holds for these
weighted complexes and that they enjoy appropriate stability properties. We also
give some preliminary applications of these weighted complexes.

1. Introduction

Topological data analysis (TDA) provides a means for the power of algebraic
topology to be used to better understand the shape of a data set. In the traditional
approach to TDA, isometric balls of a fixed radius r > 0 are centered at each data
point in some ambient Euclidean space. One then constructs the nerve of the union
of these balls and computes the simplicial homology of this nerve. Computationally,
this approach is infeasible for large data sets or high-dimensional data, so instead one
computes the so-called Vietoris–Rips complex, which is the flag complex over the
graph obtained by placing an edge between any pair of vertices that are at distance
no more than 2r from each other. The key idea of TDA is to allow the radius of these
balls to vary and to compute simplicial homology for each value of this radius to
create a topological profile of the space. This profile is encoded in either a barcode
or a persistence diagram. Topological features such as holes or voids that exist for a
relatively large interval of radii are said to persist and are believed to be more impor-
tant than more transient features that exist for very short intervals of radii. (There
are, however, important exceptions to this rule of thumb; see [Bendich et al. 2016].)

In the traditional model, the radius of each ball is the same and can be modeled
by the linear function of time r(t) = r t . In this paper, we consider a model of
computing persistent homology in which the radius of each ball is allowed to be a
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different monotonic function rx(t) at each point x . In this way we can emphasize
certain data points by assigning or weighting them with larger and/or more quickly
growing balls and de-emphasize others by weighting them with smaller and/or
more slowly growing balls. This is appropriate in the case of a noisy data set, for
instance, as an alternative to throwing away data that fails to meet some threshold
of significance. Various other methods of enhancing persistence with weights have
been considered; see, e.g., [Buchet et al. 2016; Edelsbrunner and Morozov 2013;
Petri et al. 2013; Ren et al. 2017; 2018].

The weighted model we propose fits into the framework of generalized persis-
tence in the sense of [Bubenik et al. 2015]. We show that it enjoys many of the
properties familiar from the techniques of traditional persistent homology. We prove
a weighted Vietoris–Rips lemma (Theorem 3.2) that relates our weighted Čech and
Rips complexes in the same way that they are related in the case of isometric balls.
We also show that the persistent homology computed over weighted complexes is
stable with respect to small perturbations of the rates of growth and/or the points in
the data set (Theorem 4.1). Moreover, packages for computing persistent homology
such as Javaplex [Adams et al. 2014] and Perseus [Mischaikow and Nanda 2013]
are capable of handling our weighted persistence with the same complexity as
unweighted persistence by merely adjusting inputs to the package functions.

As a proof of concept, we apply our methods to the Modified National Institute
of Standards and Technology (MNIST) data set of handwritten digits translated into
pixel information. Our method proves more effective than isometric persistence
in finding the number 8 from among these handwritten digits. (We chose 8 for its
unique 1-dimensional homology among these digits.) We found our methods to
be 95.8% accurate as opposed to isometric persistence’s 92.07% accuracy. This
experiment was chosen to demonstrate the performance of weighted persistence
over usual persistence, but it should be noted that neither method approaches the
accuracy of state-of-the art computer vision and we make no claim that we are
improving on known methods.

In Section 2, we provide the background definitions that are needed for what
follows and describe our weighted persistence model. In Section 3 we prove the
weighted Vietoris–Rips lemma and indicate how persistent homology packages can
be used to compute weighted persistence. In Section 4 we establish our stability
results. Our experiments on MNIST data appear in Section 5. We end with some
remarks and questions for further study.

2. Preliminaries

We begin by defining some terminology and setting our notation. We will assume
some familiarity with simplicial homology and the basic ideas of topological data
analysis. For details, we refer to [Edelsbrunner and Harer 2010; Rotman 1988].
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In algebraic topology, simplicial homology is a tool that assigns to any simplicial
complex K a collection of Z-modules H0(K ), H1(K ), . . . , called homology groups,
in such a way that the rank of Hn(K ) describes the number of “n-dimensional
holes” in K. For our purposes, we replace the standard definition in terms of
Z-modules with vector spaces (usually over the field with two elements, for ease of
computation). We therefore refer to homology vector spaces instead of homology
groups. We do not attempt to define Hn(K ) here, but instead refer to any text in
algebraic topology, such as [Rotman 1988].

Let U be a collection of sets. We define the nerve N (U) to be the abstract simpli-
cial complex with vertex set U with the property that the subset {U0,U1, . . . ,Un}

of U spans an n-simplex in N whenever
⋂n

i=0 Ui 6=∅.
Let (X, d) be a metric space. We define Br (x) = {y ∈ X | d(x, y) < r} and

Br (x)= {y ∈ X | d(x, y)≤ r} to be the open and closed balls of radius r about x ,
respectively. (Note that we’re abusing notation since in a general metric space
Br (x) is not necessarily the closure of the open ball, usually denoted by Br (x)).
We most often consider examples where X is a subset of Rd and d(x, y)= ‖x− y‖
is the Euclidean distance between x and y. For a real number r ≥ 0, we define the
Čech complex of X at scale r by Čech(r)=N {Br (x) | x ∈ X}.

We generalize this construction by allowing the radius of the ball around each
element x to depend on x . Let r : X → [0,∞) be any function. We define the
weighted r-Čech complex Čech(r) of X by Čech(r)=N {B r(x)(x)}.

In practice, it is difficult to determine whether an intersection of balls is nonempty.
A much simpler construction to use is the Vietoris–Rips complex. For a given
parameter r ≥ 0 the Vietoris–Rips complex is the flag complex of the 1-skeleton
of the Čech complex; i.e., a collection of n + 1 balls forms an n-simplex in the
Vietoris–Rips complex if and only if the balls are pairwise intersecting. For the
Vietoris–Rips complex we identify each ball with its center, so that the Vietoris–Rips
complex at scale r is VR(r)={σ ⊂ X | diam(σ )≤ 2r}. Similarly, if r : X→[0,∞),
the weighted r-Vietoris–Rips complex is

VR(r)= {σ ⊂ X | d(x, y)≤ r(x)+ r(y) for all x, y ∈ σ with x 6= y}.

Fix r : X → [0,∞) and consider the simplicial complex Čech(r) (or VR(r)).
Using simplicial homology with field coefficients, one can associate homology
vector spaces H∗(Čech(r)) to these simplicial complexes. Whenever t0 ≤ t1 there is
a natural inclusion map of simplicial complexes given by ι : Čech(t0r)→ Čech(t1r)
(or the corresponding inclusion of the Vietoris–Rips complexes). By functoriality,
there is an induced linear map on homology ι∗ : H∗ Čech(t0r))→ H∗ Čech(t1r).

Let X ⊂ Rd be finite. Although we defined the weighted complexes above for
any function r : X→ [0,∞), we want to study the persistence properties of these
weighted complexes. For example, in the case of the weighted Čech complex, we
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want to study the evolution of homology as the radii of the balls grow to infinity. One
straightforward way to do this would be to simply scale our weighted complexes
linearly in the same way that one usually scales the isometric balls in persistent
homology. We prefer a more flexible approach, which we describe in terms of
radius functions.

Let C1
+
= C1
+
([0,∞)) denote the collection of differentiable bijective functions

φ : [0,∞)→ [0,∞) with positive first derivative. By a radius function on X we
mean a function r : X→ C1

+
. We denote the image function r(x) by rx .

For t ≥ 0, we define the Čech and Vietoris–Rips complexes at scale t by

Čechr(t)=N {B rx (t)(x)}

and

VRr(t)= {σ ⊂ X | d(x, y)≤ rx(t)+ ry(t) for all x, y ∈ σ with x 6= y},

respectively. We define the entry function,

fX,r(y)=min
x∈X
{r−1

x (d(y, x))}. (1)

This function captures the scale t at which the point y ∈ Rd is first captured by
some ball B rx (t)(x); we have fX,r(y) = t if and only if y ∈ B rx (t)(x) for some x
in X and y 6∈

⋃
x∈X Brx (t)(x). Thus we have the following proposition.

Proposition 2.1. Let X be a finite subset of some Euclidean space Rd. Suppose that
r and fX,r are defined as above. Then,

f −1
X,r([0, t])=

⋃
x∈X

B(x, rx(t)).

It follows from the nerve lemma, see for example [Hatcher 2002, Corollary 4G.3],
that Čechr(t) is homotopy equivalent to f −1

X,r([0, t]).

3. A weighted Vietoris–Rips lemma

The Vietoris–Rips complex is much easier to compute than the Čech complex in
high dimensions. To determine whether n+ 1 balls form an n-simplex in the Čech
complex, we must check whether the balls intersect, a computationally complex
problem. To determine whether n+ 1 balls Bri (xi ) form a simplex in the Vietoris–
Rips complex is computationally easy; only

(n+1
2

)
conditions d(xi , x j ) ≤ ri + rj

need be checked. Furthermore, if there are m points in X , it may be necessary
to check all 2m subcollections of balls to determine the Čech complex, whereas
determining the Rips complex will only require checking

(m
2

)
pairs of points.

Our weighted Čech and Vietoris–Rips complexes are similar in spirit to weighted
alpha complexes [Edelsbrunner and Harer 2010, III.4]. Both constructions seek to
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permit “balls” with different sizes. Our constructions are simpler from a conceptual
standpoint since the alpha complexes are built as subcomplexes of the Delaunay
complex, which comes from the Voronoi diagram. Moreover, our complexes
are computationally simple; indeed our method of finding weighted Vietoris–Rips
complexes requires only marginally more computation than the unweighted Vietoris–
Rips complex.

In particular, Javaplex and Perseus can compute regular (unweighted) persistent
homology given input of a distance matrix M with Mi, j = d(xi , x j ). Inputting
Mi, j = d(xi , x j )/(ri+rj ) allows these packages to compute the persistent homology
with rxi (t)= ri t in the same time.

In computational problems it is common to use the Vietoris–Rips complex instead
of the Čech complex to simplify the calculational overhead. The following theorem
justifies this decision by saying that the Vietoris–Rips complex is “close” to the
weighted Čech complex.

The classical Vietoris–Rips lemma can be stated as follows:

Theorem 3.1 [de Silva and Ghrist 2007]. Let X be a set of points in Rd and let
t > 0. Then

VR(t ′)⊆ Čech(t)⊆ VR(t)

whenever 0< t ′ ≤ t (
√

2d/(d + 1))−1.

The main result of this section is an extension of this result to the weighted case.

Theorem 3.2 (weighted Vietoris–Rips lemma). Let X be a set of points in Rd. Let
r : X→ (0,∞) be the corresponding weight function and let t > 0. Then

VR(t ′r)⊆ Čech(t r)⊆ VR(t r)

whenever 0< t ′ ≤ t (
√

2d/(d + 1))−1.

Proof. The second containment Čech(t r)⊆ VR(t r) follows from the fact that the
weighted Vietoris–Rips complex is the flag complex of the weighted Čech complex.

To show that VR(t ′r) ⊂ Čech(t r), we suppose there is some finite collection
σ = {xk}

`
k=0 ⊆Rd with ` > 0 that is a simplex in VR(t ′r) and show that this is also

a simplex in Čech(t r). We have ‖xi − x j‖2 ≤ t ′(r(xi )+ r(x j )) whenever i 6= j .
Define a function f : Rd

→ R by

f (y)= max
0≤ j≤`

{
‖x j − y‖2

r(x j )

}
.

Clearly, f is continuous and f (y)→∞ as ‖y‖2→∞. Thus f attains a minimum
(say at y0) on some compact set containing Conv({xk}

`
k=0). (Here Conv(S) is the

convex hull of the set S ⊆Rd.) We must have ‖xi − y0‖2/r(xi )= f (y0) for at least
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one of the vertices xi . By reordering the vertices, we may assume that

f (y0)=
1

r(x j )
‖x j − y0‖2 if 0≤ j ≤ n,

f (y0) >
1

r(x j )
‖x j − y0‖2 if n < j ≤ `.

Let

g(y)= max
0≤ j≤n

{
1

r(x j )
‖x j − y‖2

}
,

h(y)= max
n< j≤`

{
1

r(x j )
‖x j − y‖2

}
.

Now we wish to show that y0 ∈ Conv({x j }
n
j=0). To this end we apply the

separation theorem [Matoušek 2002] to obtain: either y0 ∈ Conv({x j }
n
j=0) or there

is a v ∈ Rd and a C < 0 such that v x j ≥ 0 for all 0≤ j ≤ n and v y0 < C . Thus if
y0 6∈ Conv({x j }

n
j=0) there is a v ∈ Rd such that v(x j − y0) > 0 for 0 ≤ j ≤ n. We

suppose that there is such a v and derive a contraction.
Since

‖x j − (y0+ λv)‖
2
2 = ‖x j − y0‖

2
2− 2λv(x j − y0)+ λ

2
‖v‖22

for each 0≤ j ≤ n, it follows that g(y0+ λv) < f (y0) for all 0< λ < λ1, where

λ1 = min
0≤ j≤n

{
2v(x j − y0)

‖v‖22

}
.

Since h(y) is continuous and h(y0)< f (y0), there exists a λ2 such that h(y0+λv)<

f (y0) for 0< λ < λ2. Thus, there exists a λ > 0 such that

f (y0+ λv)=max{g(y0+ λv), h(y0+ λv)}< f (y0),

contradicting the minimality of y0.
By Carathéodory’s theorem [Matoušek 2002] and reordering of vertices if neces-

sary, y0 is a convex combination of some subcollection of vertices {x j }
m
j=0, where

m ≤min{d, n}. It is not possible that m = 0. If so, then y0 = x0 and

f (y0)=
1

r(x0)
‖x0− y0‖2 = 0

and f is identically zero. Since σ has dimension at least 1, it contains a vertex
x1 6= x0. It follows that

f (y0)= f (x0) >
1

r(x1)
‖x1− x0‖2 > 0,

which is a contradiction.
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Let x̂ j = x j − y0 for all 0≤ j ≤ m. Note that

‖x̂ j‖
2
2 = r(x j )

2 f (y0)
2. (2)

Since y0 ∈ Conv({x j }
m
j=0), we know y0 =

∑m
j=0 aj x j for some set of nonnegative

real numbers a0, . . . , am that sum to 1. Thus
∑m

j=0 aj x̂ j = 0. By relabeling, we
may assume that a0r(x0) ≥ aj r(x j ) when j > 0. Necessarily a0 > 0 (otherwise
aj = 0 for all 0≤ j ≤ m, a contradiction). Then,

x̂0 =−

m∑
j=0

aj

a0
x̂ j

and so

r(x0)
2 f (y0)

2
= ‖x̂0‖

2
2 =−

m∑
j=0

ai

a0
x̂0 x̂ j .

Among the indices 1, 2, . . . ,m, there is some j0 such that

1
d

r(x0)
2 f (y0)

2
≤

1
m

r(x0)
2 f (y0)

2
≤−

a j0

a0
x̂0 x̂ j0 . (3)

We must have a j0 > 0. (Otherwise, f (y0) = 0, which, as shown earlier, is a
contradiction.) By reordering, we may assume j0 = 1. Putting (1) and (2) together,
we find

f (y0)
2
(

r(x0)
2
+

2a0r(x0)
2

a1d
+ r(x1)

2
)

= f (y0)
2r(x0)

2
+

2a0 f (y0)
2r(x0)

2

a1d
+ f (y0)

2r(x1)
2

≤ ‖x̂0‖
2
2− 2x̂0 x̂1+‖x̂1‖

2
2

= ‖x̂0− x̂1‖
2
2

= ‖x0− x1‖
2
2

≤ (t ′(r(x0)+ r(x1)))
2.

We will now show that

f (y0)
2

t ′
≤

(r(x0)
2
+ r(x1)

2)2

r(x0)2+ 2a0r(x0)2/(a1d)+ r(x1)2
≤

2d
d + 1

.

It suffices to show, after cross-multiplying the right-hand inequality, that(
d − 1+ 4

a0

a1

)
r(x0)

2
− 2(d + 1)r(x0)r(x1)+ (d − 1)r(x1)

2
≥ 0.

Since
a0

a1
≥

r(x1)

r(x0)
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we get(
d − 1+ 4

a0

a1

)
r(x0)

2
− 2(d + 1)r(x0)r(x1)+ (d − 1)r(x1)

2

≥

(
d − 1+ 4

r(x1)

r(x0)

)
r(x0)

2
− 2(d + 1)r(x0)r(x1)+ (d − 1)r(x1)

2

= (d − 1)(r(x0)− r(x1))
2
≥ 0,

as desired. Our assumption that t ′ ≤ t (
√

2d/(d + 1))−1 implies f (y0)≤ t and thus

y0 ∈
⋂̀
i=0

B t r(xi )(xi ).

Therefore σ ∈ Čech(t r) and we are done. �

4. Stability

In this section we discuss the stability of our weighted persistence. Let X and
Y be finite subsets of Rd with corresponding radii functionals r : X → C1

+
and

s : Y → C1
+

. Informally, we show that if (X, r) and (Y, s) are “close”, i.e., are small
perturbations of each other, then the corresponding entry functions fX,r and fY,s,
see (1), are also “close” and hence the associated persistence diagrams must also be
“close”. We’ll now make the definitions of these various types of closeness precise.

Let η ⊆ X × Y be a relation such that for every x ∈ X there is a y ∈ Y with
(x, y) ∈ η and for every y ∈ Y there is an x ∈ X with (x, y) ∈ η. We measure the
closeness of X and Y with respect to η by

‖η‖ := max
(x,y)∈η

d(x, y).

If L is any compact set and h : L→ R is continuous let

‖h‖L :=max
x∈L
|h(x)|.

Let K be a compact subset of Rd that contains X ∪ Y. The closeness of r and s is
measured by

D(r, s)η,K := max
(x,y)∈η

‖r−1
x − s−1

y ‖[0,diam(K )].

The closeness of fX,r and fY,s is measured by ‖ fX,r − fY,s‖K . We also define
S(r)K :=maxx∈X ‖(r−1

x )′‖[0,diam(K )].
As is common, we measure the closeness of persistence diagrams by the bottle-

neck distance. We’ll give the definition of this metric in the remarks leading up to
Theorem 4.5.
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Theorem 4.1. In the above notation we have the following bound on entry functions
(see (1)):

‖ fX,r − fY,s‖K ≤ D(r, s)η,K +‖η‖max(S(r)K , S(s)K )

Proof. There is some point z in the compact set K and some points x ∈ X and
y ∈ Y so that

‖ fX,r − fY,s‖K = | fX,r(z)− fY,s(z)| = |r−1
x (d(z, x))− s−1

y (d(z, y))|.

We first suppose r−1
x (d(z, x)) ≥ s−1

y (d(z, y)). Let x ′ ∈ X such that (x ′, y) ∈ η.
Since fX,r is a minimum, r−1

x ′ (d(z, x ′))≥ r−1
x (d(z, x)) and we have

‖ fX,r − fY,s‖K

≤ |r−1
x ′ (d(z, x ′))− s−1

y (d(z, y))|

≤ |r−1
x ′ (d(z, x ′))− s−1

y (d(z, x ′))| + |s−1
y (d(z, x ′))− s−1

y (d(z, y))|. (4)

Since d(z, x ′) ∈ [0, diam(K )],

|r−1
x ′ (d(z, x ′))− s−1

y (d(z, x ′))| ≤ D(r, s)η,K .

Since |d(z, x ′)− d(z, y)| ≤ d(x ′, y) ≤ ‖η‖ we apply the mean value theorem to
obtain the bound

|s−1
y (d(z, x ′))− s−1

y (d(z, y))| ≤ ‖η‖‖(s−1
y )′‖[0,diam(K )] ≤ ‖η‖max(S(r)K , S(s)K ).

Together, these last two bounds give the bound of the theorem. A similar argument
gives the same bound if r−1

x (d(z, x))≤ s−1
y (d(z, y)). �

If one has free choice of the perturbed set (Y, s) it is clear that ‖ fX,r − fY,s‖K

can be made arbitrarily large. This could be done, say by adding a point to Y that
is arbitrarily far from any point in X or by making one sy arbitrarily larger than
any rx . The upper bound of Theorem 4.1 is also a bound on how extreme such
perturbations may be.

We have the following immediate corollary of Theorem 4.1.

Corollary 4.2. If the radii functions are all linear, i.e., if there are positive constants
rx and sy for all x ∈ X and y ∈ Y such that rx(t)= rx t and sy(t)= sy t , then

‖ fX,r − fY,s‖K ≤ diam(K ) max
(x,y)∈η

∣∣∣∣ 1
rx
−

1
sy

∣∣∣∣+‖η‖max
(

max
x∈X

1
rx
,max

y∈Y

1
sy

)
.

For our next two corollaries, let X and Y have the same cardinality and let
m : X→ Y be a bijection. We now consider each point x ∈ X as being perturbed
to a point m(x) ∈ Y and hence set η = {(x,m(x)) : x ∈ X}. We have the following
point-stability result in which the points are perturbed but the weight functions stay
the same.
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Corollary 4.3 (point-stability). If only the locations of the points are perturbed and
the radius functions stay the same, i.e., sm(x)(t)= rx(t) for all x ∈ X , then

‖ fX,r − fY,s‖K ≤max
x∈X

d(x,m(x))‖(r−1
x )′‖[0,diam(k)].

Proof. We follow the proof of Theorem 4.1. Take x ′ ∈ X such that m(x ′)= y. Then
Sy = rx ′ and the first term in the upper bound in inequality (4) is 0. Since the second
term in that upper bound is bounded above by d(x ′,m(x ′))‖(r−1

x ′ )
′
‖[0,diam(K )], the

bound of the corollary holds. �

The next corollary is a weight-function stability result concerning a case in
which the points stay the same (Y = X and m(x)= x) but the weight functions are
perturbed.

Corollary 4.4 (weight-function stability). If only the radii functions are perturbed
and the points stay the same, then

‖ fX,r − fX,s‖K ≤max
x∈X
‖r−1

x − s−1
x ‖[0,diam(K )].

Proof. Again following the proof of Theorem 4.1 we take x ′ =m(x ′)= y. Now the
second term in the upper bound of (4) is 0 and the first term is |r−1

y − s−1
y |, where

t = d(z, y). The corollary follows. �

We now show the stability of the persistence diagrams of fX,r under perturbations
of X and r . Let f : K → [0,∞) be a real-valued function on a compact set
K ⊆Rd. The persistence diagram of f , dgm( f ), is a multiset of points in [0,+∞]2

recording the appearance and disappearance of homological features in f −1([0, t])
as t increases. Each point (b, d) in the diagram tracks a single homological feature,
recording the scale t = b at which the feature first appears and the scale t = d
at which it disappears [Edelsbrunner and Harer 2010]. It should also be noted
that if one considers the birth-death pair as an interval, we obtain the barcode
as seen in [Zomorodian and Carlsson 2005] (see Figures 2 and 3). Given two
functions f, g : K→[0,∞], let P=dgm( f ) and Q=dgm(g) be the corresponding
persistence diagrams (where as usual we include all points along the diagonal in P
and Q). We let N denote the set of all bijections from P to Q. We recall that the
bottleneck distance between the diagrams [Edelsbrunner and Harer 2010] is given by

dB(dgm( f ), dgm(g))= inf
γ∈N

sup
x∈P
‖x − γ (x)‖∞.

Theorem 4.5 [Cohen-Steiner et al. 2007, Theorem 6.9]. Suppose X is a triangula-
ble space and that f : X → R and g : X → R are tame, continuous functions. If
| f − g| is bounded, then for each n

dB(dgmn( f ), dgmn(g))≤ ‖ f − g‖∞,
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where dB denotes the bottleneck distance and dgmn( f ) denotes the n-th persistence
diagram of the filtration of f .

We refer to [Edelsbrunner and Harer 2010] for the technical definitions of tame
and triangulable. Note that as our spaces are nerves of balls around finite collections
of points, they are finite simplicial complexes. Hence they are triangulable and only
admit tame functions. Thus for our setting we get the following corollary.

Corollary 4.6. Let X and Y be finite subsets of Rd and let r : X → C1
+

and
s : Y → C1

+
. Suppose that η ⊆ X × Y is a relation as above and K is a compact

subset of Rd containing X and Y. Then for each n,

dB(dgmn( fX,r), dgmn( fY,s))≤ D(r, s)η,K +‖η‖max(S(r)K , S(s)K ).

5. MNIST 8’s recognition

In this section, we give an application of weighted persistence to a simple computer
vision problem. We apply our methods to the Modified National Institute of
Standards and Technology (MNIST) data set of handwritten digits. We should em-
phasize that this application is simply a proof of concept; our methods to detect the
handwritten number 8 fall well short of state-of-the-art methods [Cires,an et al. 2012].

The MNIST data set consists of handwritten digits (0 through 9) translated
into pixel information. Each data point contains a label and 784 other values
ranging from 0 to 255 that correspond to a 28 by 28 grid of pixels. The values 0
through 255 correspond to the intensity of the pixels in gray-scale with 0 meaning
completely black and 255 meaning completely white. Considering the digits from
0 through 9, unweighted persistence would easily be able to classify these numbers
as having zero, one, or two holes, provided they are written precisely; however, real
handwritten digits present a challenge. Consider an 8 as in Figure 1. Unweighted
persistence would pick up on two holes, but one of those holes might be slightly
too small and ultimately considered insignificant; see Figure 3. Our methods are
able to pick up on both holes and would count them as significant; see Figure 2.
We chose to work with the digit 8 due to its unique homology.

Figure 1. An 8 converted to a 28 by 28 grid of pixels.
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0 0.5 1 1.5 2 2.5 3

Figure 2. Weighted persistence on the image from Figure 1
produces a barcode that clearly has two long bars in dimension 1.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 3. Unweighted persistence on the image from Figure 1
produces a barcode that has one long bar (in 1-homology). The
second-longest bar is hard to distinguish (in length) from the rest.

To begin, we convert each 28 by 28 to a set of points in the plane. We treat the
location of a value in the matrix as a location in the plane. That is, the value in the
i-th row, j-th column corresponds to the point (i, j). The weight on each point is
exactly its corresponding pixel intensity. Using this set of points and corresponding
weights we calculate persistent homology via weighted Rips complexes. We test
this method’s performance against the unweighted case where all nonzero pixel
values have the uniform weight of 1; again we calculate persistence in this case via
Rips complexes.

We compare weighted persistence to unweighted persistence by measuring the
accuracy of classifying 8’s. Notice in the barcodes that the deciding factor in
determining an 8 is the ability to distinguish the length of the second longest
bar from the length of the third longest and smaller bars. For this reason, we
consider the ratio of the third longest bar to the second longest bar. We will say
(arbitrarily) that a barcode represents an 8 if this ratio is less than 1

2 . For each of
the 42,000 handwritten digits in the MNIST data set, we compute both weighted
and unweighted persistence and collect the predictions. We obtain the confusion
matrices as in Table 1.

Notice that the weighted persistence has an accuracy rate of 95.8% whereas
unweighted persistence had an accuracy of 92.07%. A full summary can be seen
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weighted persistence unweighted persistence

predicted not 8 predicted 8 predicted not 8 predicted 8

not 8 36487 1450 35869 2068
is 8 633 3430 1261 2802

Table 1. The confusion matrices show that weighted persistence
outperforms its unweighted counterpart.

weighted persistence unweighted persistence

accuracy 0.9504 0.9207
sensitivity 0.9618 0.9455
specificity 0.8442 0.6896

pos. predicted value 0.9829 0.9660
neg. predicted value 0.7029 0.5754

prevalence 0.9033 0.9033
balanced accuracy 0.9030 0.8176

Table 2. Weighted and unweighted persistence compared.

in Table 2. We view this result as promising for potential future applications of
weighted persistence.

6. Concluding remarks and open questions

The method of weighted persistence satisfies the appropriate Vietoris–Rips lemma,
is stable under small perturbations of the points, or the weights, or both, and can
be successfully applied to data such as the MNIST data set to improve upon usual
persistence. Furthermore, it is just as easy to calculate weighted persistence for
balls growing at linear rates as it is to calculate regular persistence. We conclude
the paper with some further observations and questions.

One can imagine weighted persistence as interpolating between two extreme
approaches to a data set that is partitioned into data D and noise N. More precisely,
we consider a noisy data set X . Various methods exist to filter X into data D and
noise N. Traditional persistence can be applied to D ∪ N in two ways. We can
either assign the same radius to every point of D∪ N or we can throw the points of
N out entirely and compute persistence on D alone. Using weighted persistence,
we can assign the radius 0 to each point of N and compute weighted persistence
of D ∪ N. It is easy to see that this will differ from persistence of D itself only in
dimension 0. By gradually increasing the N -radii from 0 to 1, our stability results
can be interpreted as producing a continuum of barcodes/persistence diagrams that
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interpolate between the usual persistence applied to D and the usual persistence
applied to D ∪ N (in dimensions above 0); see [Lawson 2016].

As mentioned in the Introduction, weighted persistence fits into the framework
of generalized persistence in the sense of [Bubenik et al. 2015]. This direction was
explored in detail in [Martin 2016].

Finally, it would be interesting to apply weighted persistence to the MNIST data
set to determine its effectiveness in distinguishing the 1-homology of the other nine
digits. One complication is that the number 4 presents an interesting challenge
since it is appropriate to write it both as a simply connected space and as a space
with nontrivial H1. Distinguishing 1-homology creates three clusters of digits from
which we could use other machine-learning techniques to create an ensemble and
make accurate predictions.
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