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In 2008, Kauffman and Lomonaco introduced the concepts of a knot mosaic and
the mosaic number of a knot or link K, the smallest integer n such that K can
be represented on an n-mosaic. In 2018, the authors of this paper introduced
and explored space-efficient knot mosaics and the tile number of K, the smallest
number of nonblank tiles necessary to depict K on a knot mosaic. They determine
bounds for the tile number in terms of the mosaic number. In this paper, we focus
specifically on prime knots with mosaic number 6. We determine a complete list
of these knots, provide a minimal, space-efficient knot mosaic for each of them,
and determine the tile number (or minimal mosaic tile number) of each of them.

1. Introduction

Mosaic knot theory was first introduced in [Lomonaco and Kauffman 2008] and
was later proven to be equivalent to tame knot theory in [Kuriya and Shehab 2014].
The idea of mosaic knot theory is to create a knot or link diagram on an n× n grid
using mosaic tiles selected from the collection of 11 tiles shown below. The knot
or link projection is represented by arcs, line segments, or crossings drawn on each
tile. These tiles are identified, respectively, as T0, T1, T2, . . . , T10. Tile T0 is a blank
tile, and we refer to the rest collectively as nonblank tiles.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

A connection point of a tile is a midpoint of a tile edge that is also the endpoint
of a curve drawn on the tile. A tile is suitably connected if each of its connection
points touches a connection point of an adjacent tile. An n × n knot mosaic, or
n-mosaic, is an n× n matrix whose entries are suitably connected mosaic tiles. As
is customary in the literature of knot mosaic theory, the term “knot mosaic” is used
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trefoil knot Hopf link figure-8 knot

Figure 1. Examples of knot mosaics.

for the mosaic, even when the resulting diagram on the mosaic depicts a link. See
Figure 1 for some examples.

When listing prime knots with crossing number 10 or less, we will use the
Alexander–Briggs notation, matching the table of knots in [Rolfsen 1976]. This
notation names a knot according to its crossing number with a subscript to denote
its order amongst all knots with that crossing number. For example, the 74 knot
is the fourth knot with crossing number 7 in Rolfsen’s table of knots. For knots
with crossing number 11 or higher, we use the Dowker–Thistlethwaite name of the
knot. This also names a knot according to its crossing number, with an “a” or “n”
to distinguish the alternating and nonalternating knots and a subscript that denotes
the lexicographical ordering of the minimal Dowker–Thistlethwaite notation for the
knot. For example 11a7 is the seventh alternating knot with crossing number 11,
and 11n3 is the third nonalternating knot with crossing number 11. For more details
on these and other relevant information on traditional knot theory, we refer the
reader to [Adams 1994].

The mosaic number of a knot or link K is the smallest integer n for which
K can be represented as an n-mosaic. The mosaic number has previously been
determined for every prime knot with crossing number 8 or less. For details, see
[Lee, Ludwig, Paat, and Peiffer 2018]. In particular, it is known that the unknot has
mosaic number 2, the trefoil knot has mosaic number 4, the 41, 51, 52, 61, 62, and 74

knots have mosaic number 5, and all other prime knots with crossing number 8 or
less have mosaic number 6. In this paper, we determine the rest of the prime knots
that have mosaic number 6, which includes prime knots with crossing numbers
from 9 up to 13. This confirms, in the case where the mosaic number is m = 6,
a result of [Howards and Kobin 2018], where they find that the crossing number
is bounded above by (m− 2)2

− 2 if m is odd, and by (m− 2)2
− (m− 3) if m is

even. We also determine that not all knots with crossing number 9 (or higher) have
mosaic number 6.

Another number associated to a knot mosaic is the tile number of a mosaic,
which is the number of nonblank tiles used to create the mosaic. From this we
get an invariant called the tile number t (K ) of a knot or link K, which is the least
number of nonblank tiles needed to construct K on a mosaic of any size. In [Heap
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and Knowles 2018], the authors explored the tile number of a knot or link and
determined strict bounds for the tile number of a prime knot K in terms of the
mosaic number m ≥ 4. Specifically, if m is even, then 5m−8≤ t (K )≤m2

−4. If m
is odd, then 5m−8≤ t (K )≤m2

−8. It follows immediately that the tile number of
the trefoil knot must be 12, and the tile number of the prime knots mentioned above
with mosaic number 5 must be 17. The authors also listed several prime knots with
mosaic number 6 that have the smallest possible tile number t (K )= 22, which we
summarize in Theorem 1. In this paper, we confirm that this list is complete. Knot
mosaics in which the tile number is realized for each of these mosaics are given in
[Heap and Knowles 2018] and also in the table of mosaics in the online supplement
of this paper.

Theorem 1 [Heap and Knowles 2018]. The following knots have the given tile
numbers:

(a) Tile number 4: unknot.

(b) Tile number 12: trefoil knot.

(c) Tile number 17: 41, 51, 52, 61, 62, 74.

(d) Tile number 22: 63, 71, 72, 73, 75, 76, 77, 81, 82, 83, 84, 87, 88, 89, 813, 95, 920.

Finally, in [Heap and Knowles 2018], the authors determine all of the possible
layouts for any prime knot on an n-mosaic for n ≤ 6. In this paper, we complete
that work by determining which prime knots can be created from those layouts.

We also point out that throughout this paper we make significant use of the
software package Knotscape [Thistlethwaite and Hoste 1999] to verify that a given
knot mosaic represents a specific knot. Without this program, we would not have
been able to complete the work.

2. Space-efficient knot mosaics

Two knot mosaic diagrams are of the same knot type (or equivalent) if we can
change one to the other via a sequence of mosaic planar isotopy moves that are
analogous to the planar isotopy moves for standard knot diagrams. An example
of this is shown in Figure 2. A complete list of all of these moves is given and
discussed in [Lomonaco and Kauffman 2008; Kuriya and Shehab 2014]. We will
make significant use of these moves throughout this paper, as we attempt to reduce
the tile number of mosaics in order to construct knot mosaics that use the least
number of nonblank tiles.

A knot mosaic is called minimal if it is a realization of the mosaic number of
the knot depicted on it. That is, if a knot with mosaic number m is depicted on
an m-mosaic, then it is a minimal knot mosaic. A knot mosaic is called reduced

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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Figure 2. Example of mosaic planar isotopy moves.

if there are no unnecessary, reducible crossings in the knot mosaic diagram. See
[Adams 1994] for more on reduced knot diagrams.

We have already defined the tile number of a mosaic and the tile number of a
knot or link. A third type of tile number is the minimal mosaic tile number tM(K )

of a knot or link K, which is the smallest number of nonblank tiles needed to
construct K on a minimal mosaic. That is, it is the smallest possible tile number of
all possible minimal mosaic diagrams for K. Much like the crossing number of a
knot cannot always be realized on a minimal mosaic (such as the 61 knot), the tile
number of a knot cannot always be realized on a minimal mosaic. Note that the tile
number of a knot or link K is certainly less than or equal to the minimal mosaic
tile number of K ; that is, t (K )≤ tM(K ). The fact that the tile number of a knot is
not necessarily equal to the minimal mosaic tile number of the knot is confirmed
later in Theorem 8. However, for prime knots, it is shown in [Heap and Knowles
2018] that tM(K )= t (K ) when tM(K )≤ 27.

A knot n-mosaic is space-efficient if it is reduced and the tile number is as small
as possible on an n-mosaic without changing the knot type of the depicted knot,
meaning that the tile number cannot be decreased through a sequence of mosaic
planar isotopy moves. A knot mosaic is minimally space-efficient if it is minimal
and space-efficient. The first four knot mosaics of the Borromean rings depicted in
Figure 2 are not space-efficient because we can decrease the tile number through the
depicted mosaic planar isotopy moves. In Figure 3, both mosaics are knot mosaic
diagrams of the 51 knot. The first knot mosaic is not space-efficient, but the second
knot mosaic is minimally space-efficient.

In addition to the original 11 tiles T0–T10, we will also make use of nondeter-
ministic tiles, such as those in Figure 4, when there are multiple options for the
tiles that can be placed in specific tile locations of a mosaic. For example, if a tile
location must contain a crossing tile T9 or T10 but we have not yet chosen which,
we will use the nondeterministic crossing tile. Similarly, if we know that a tile
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Figure 3. Space-inefficient and minimally space-efficient knot
mosaics of 51.

Figure 4. Nondeterministic crossing tile and a nondeterministic
tile with four connection points.

location must have four connection points but we do not know if the tile is a double
arc tile (T7 or T8) or a crossing tile (T9 or T10), we will indicate this with a tile that
has four connection points.

In [Heap and Knowles 2018], the authors provide the possible tile numbers (and
the layouts that result in these tile numbers) for all prime knots on a space-efficient
6-mosaic.

Theorem 2 [Heap and Knowles 2018]. If we have a space-efficient 6-mosaic of
a prime knot K for which either every column or every row is occupied, then
the only possible values for the tile number of the mosaic are 22, 24, 27, and 32.
Furthermore, any such mosaic of K is equivalent (up to symmetry) to one of the
following mosaics:

In order to determine all prime knots with mosaic number 6 and their minimal
mosaic tile numbers, we need to determine which prime knots can be depicted on a
knot mosaic with one of the layouts above. To help us with this, we make a few
simple observations. All of these are easy to verify, and any rotation or reflection
of these scenarios is also valid.

Consider the upper, right 3× 3 corner of any space-efficient mosaic of a prime
knot with mosaic number 6 and tile number 22, 27, or 32. (That is, we are
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C C

A B

D

Figure 5. A partially filled block and a filled block, respectively.

considering every option except those with tile number 24.) It must be one of the
two options in Figure 5. All other 3× 3 corners are a rotation of one of these. We
will refer to the first option as a partially filled block and the second option as a
filled block.

Observation 1. In any space-efficient 6-mosaic of a prime knot, the tile in position
C of a partially filled block is either a crossing tile or double arc T7.

This is easy to see, as it must be a tile with four connection points, and the only
space-efficient mosaics that results from using the double arc T8 are composite
knots or links with more than one component. In Figure 6, the first two examples
are valid possibilities, but the third one is not.

Observation 2. In any space-efficient 6-mosaic of a prime knot, there must be at
least two crossing tiles in a filled block.

If there are no crossing tiles in positions A, B, C , and D of the mosaic, then the
mosaic is not space-efficient or it is a link with more than one component. Each
one that is not a link reduces to one of the last two partially filled block options
in Figure 6. If there is only one crossing tile and it is in position A, B, or D,
then the mosaic is not space-efficient. For each option, if we fill the remaining
tile positions with double arc tiles so that the block is suitably connected and we
avoid the obvious inefficiencies we get the options shown in Figure 7. They are
equivalent to each other via a simple mosaic planar isotopy move that rolls the
crossing through each of these positions, and they all reduce to the first partially
filled block in Figure 6. If there is only one crossing tile and it is in position C , then
the mosaic is also not space-efficient and reduces to either of the first two options
in Figure 6.

Figure 6. The first two examples are the only valid possibilities
for a partially filled block.



SPACE-EFFICIENT KNOT MOSAICS FOR PRIME KNOTS WITH MOSAIC NUMBER 6 773

Figure 7. Suitably connected filled blocks with one crossing in
position A, B, or D. None are space-efficient.

Observation 3. In a filled block in any space-efficient 6-mosaic of a prime knot,
there are only two distinct possibilities for two crossing tiles, two distinct possibili-
ties for three crossing tiles, and one possibility for four crossing tiles and they are
shown below:

We will refer to the five filled blocks in Observation 3 together with the first
two partially filled blocks in Figure 6 (and reflections and rotations of them) as
building blocks. The observations provide a way for us to easily build all of the
space-efficient 6-mosaics, as long as the tile number is 22, 27, or 32, but not 24.

Observation 4. In any space-efficient 6-mosaic of a prime knot, there is at most
one of the filled block with four crossing tiles or the filled block with two crossings
in positions A and C .

It is quite simple to verify that if there is more than one filled block with four
crossings or more than one filled block with two crossings in positions A and C ,
the resulting mosaic must be a link with more than one component. If we use the
indicated filled building block with two crossing tiles together with a filled block
with four crossing tiles, the resulting mosaic will also be a link with more than one
component. Several examples of these are pictured in Figure 8 with the second link
component in each mosaic colored differently from the first link component.

Figure 8. These layouts will always be multicomponent links.
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3. All prime knots with mosaic number 6

We are now ready to determine the tile number of every prime knot with mosaic
number 6. Theorem 2 says that the only possible tile numbers are 22, 24, 27, and 32.
In order to determine which knots have these tile numbers, we simply compile a
list of the prime knots that can fit within each of the layouts given in Theorem 2.
Because we already know the tile number of every prime knot with crossing number
7 or less, we can restrict our search to knots with crossing number 8 or more. The
process is simple, and the above observations help us tremendously. If the tile
number is 22, 27, or 32, we use the building blocks. In the case of the mosaics with
tile number 24, we look at all possible placements, up to symmetry, of eight or more
crossing tiles within the mosaics and fill the remaining tile positions with double arc
tiles so as to avoid composite knots and nonreduced knots. Once the mosaics are
completed, we then eliminate any links, any duplicate layouts that are equivalent to
others via obvious mosaic planar isotopy moves, and any mosaics for which the
tile number can easily be reduced by a simple mosaic planar isotopy move. Finally,
we use Knotscape to determine what knots are depicted in the mosaic by choosing
the crossings so that they are alternating, as well as all possible nonalternating
combinations. We provide minimally space-efficient knot mosaics for every prime
knot with mosaic number less than or equal to 6 in the table of knots in the online
supplement.

We have already listed several prime knots with tile number 22 in Theorem 1.
This next theorem asserts that the list is complete.

Theorem 3. The only prime knots K with tile number t (K )= 22 are

(a) 63,

(b) 71, 72, 73, 75, 76, 77,

(c) 81, 82, 83, 84, 87, 88, 89, 813,

(d) 95, and 920.

In order to obtain the minimally space-efficient knot mosaic for 73, we had to
use eight crossings. None of the possible minimally space-efficient knot mosaics
with 22 nonblank tiles and exactly seven crossings produced 73. The fewest number
of nonblank tiles needed to represent 73 with only seven crossings is 24, and one
such mosaic is given in Figure 9, along with a minimally space-efficient mosaic of
73 with eight crossings. In summary, on a minimally space-efficient knot mosaic,
for the tile number (or minimal mosaic tile number) to be realized, it might not be
possible for the crossing number to be realized. This is also the case with 81, 83, 87,
88, and 89, as nine crossing tiles are required to represent these knots on a mosaic
with tile number 22.

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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Figure 9. The 73 knot as a minimally space-efficient knot mosaic
with eight crossing tiles and as a knot mosaic with seven crossing
tiles.

Proof. We simply build the first two tile configurations (both with 22 nonblank
tiles) in Theorem 2 using the 3×3 building blocks, eliminate any that do not satisfy
the observations, choose specific crossing types, and see what we get. Whatever
prime knots with eight or more crossings are missing are the ones we know cannot
have tile number 22.

We begin with the first mosaic layout given in Theorem 2. Up to symmetry, there
are only six possible configurations of this layout with eight crossings, and they
are given in Figure 10. Notice that some of these are links that can be eliminated,
including Figures 10(d) and (f). Furthermore, Figures 10(b) and (c) are equivalent
to each other via a mosaic planar isotopy move that shifts one of the crossing tiles to
a diagonally adjacent tile position. This leaves us with only three possible distinct
configurations of eight crossings from this first layout, Figures 10(a), (b), and (e).

Now we do the same thing with the second mosaic layout given in Theorem 2
with 22 nonblank tiles. Up to symmetry, there are six possible configurations of this
layout with eight crossings, and they are given in Figure 11. Again, Figures 11(d)
and (f) are links, and Figures 11(b) and (c) are equivalent to each other. This
leaves us again with only three possible configurations of eight crossings from
this second layout, and they are Figures 11(a), (b), and (e). Moreover, each one
of these is equivalent to the corresponding mosaics in Figure 10 via a few mosaic
planar isotopy moves that shift the crossings in the lower-left building block into
the lower-right building block of the mosaic.

(c)(b)(a) (d) (f)(e)

Figure 10. Possible placements of eight crossing tiles in the first
layout with tile number 22.
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(a) (b) (c) (e)(d) (f)

Figure 11. Possible placements of eight crossing tiles in the second
layout with tile number 22.

This leaves us with only three distinct possible layouts for a minimally space-
efficient 6 × 6 mosaic with eight crossings and tile number 22. If we choose
crossings for the configuration in Figure 10(a) so that they are alternating, we get
the 813 knot. If we choose crossings for the configuration in Figure 10(b) so that
they are alternating, we get the 84 knot. Finally, if we choose crossings for the
configuration in Figure 10(e) so that they are alternating, we get the 82 knot. If we
examine all possible nonalternating choices for each one, all of the resulting knots
have crossing number 7 or less. (The minimally space-efficient knot mosaic for 73

must have eight crossing tiles and can be obtained by a choice of nonalternating
crossings within any of the three distinct possible layouts in Figure 10.)

Now we go through the same process using nine crossing tiles. Up to symmetry,
there are only four possible configurations of these layouts with nine crossings, and
they are given in Figure 12. The mosaic in Figure 12(c) is equivalent to the mosaic
in Figure 12(b) via a few mosaic planar isotopy moves that shift the crossings in
the lower-left building block into the lower-right building block of the mosaic. This
leaves us with only three possible configurations of nine crossing tiles.

If we choose crossings for the configuration in Figure 12(a) so that they are
alternating, we get the 920 knot. If we examine all possible nonalternating choices
for the crossings, most of the resulting knots have crossing number 7 or less, but we
do get some additions to our list of prime knots with tile number 22 and crossing
number 8. In particular, we get 87, 88, and 89. (We also get 84, which was previously
obtained with only eight crossings.) If we choose crossings for the configuration in
Figure 12(b) so that they are alternating, we get the 95 knot. Again, if we examine

(b)(a) (d)(c)

Figure 12. Possible placements of nine crossings with tile number 22.
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the possible nonalternating choices for the crossings, we get two additional prime
knots with tile number 22 and crossing number 8, and they are 81 and 83. Finally,
if we choose crossings for the configuration in Figure 12(d), we get the exact same
knots as we did for Figure 12(a).

By Observation 4, we cannot place more than nine crossing tiles on any mosaic
with 22 nonblank tiles. We have now found every possible prime knot with tile
number 22 and eight or more crossings, and they are exactly those listed in the
theorem. All other prime knots with crossing number at least 8 must have tile
number larger than 22. �

We now know precisely which prime knots have tile number 22 or less. Our next
goal is to determine which prime knots have tile number 24.

Theorem 4. The only prime knots K with tile number t (K )= 24 are

(a) 85, 86, 810, 811, 812, 814, 816, 817, 818, 819, 820, 821,

(b) 98, 911, 912, 914, 917, 919, 921, 923, 926, 927, 931,

(c) 1041, 1044, 1085, 10100, 10116, 10124, 10125, 10126, 10127, 10141, 10143, 10148,
10155 and 10159.

We will show that 86 must have nine crossing tiles to fit on a mosaic with tile
number 24. None of the possible minimally space-efficient knot mosaics with
exactly eight crossings produce these knots. Similarly, the minimally space-efficient
mosaics for 912, 919, 921, and 926 require 10 crossings.

Proof. We search for all of the prime knots that have tile number 24. In this particular
case, the observations at the beginning of this section do not apply, meaning we
cannot use the building blocks as we did in the proof of Theorem 3. We know from
Theorem 2 that any prime knot with tile number 24 has a space-efficient mosaic,
like the third layout there. We simply look at all possible placements of eight or
more crossings within that layout, choose the type of each crossing, and keep track
of the resulting prime knots.

First, we look at all possible placements, up to symmetry, of eight crossings
within the mosaic and, we fill the remaining tile positions with double arc tiles so
as to avoid composite knots and unnecessary loops. After eliminating any links and
any duplicate layouts that are equivalent to others via simple mosaic planar isotopy
moves, we get 17 possible layouts, which are shown in Figure 13. Not all of these
will result in distinct knots, and in most cases it is not difficult to see that they will
result in the same knot. However, we include all of them here because they differ
by more than just simple symmetries or simple mosaic planar isotopy moves.

Choosing specific crossings so that the knots are alternating, we obtain only 14
distinct knots as shown in the following table:
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q)

Figure 13. Only possible layouts, after elimination, with eight
crossing tiles for a prime knot with tile number 24.

Figure 13 knot Figure 13 knot

(a) 81 (j) 811

(b), (c) 82 (k) 812

(d) 84 (l) 813

(e) 85 (m), (n) 814

(f), (g) 87 (o) 816

(h) 88 (p) 817

(i) 810 (q) 818

Not all of these have tile number 24. We already know 81, 82, 84, 87, 88, and 813

have tile number 22. Each of the others have tile number 24. The nonalternating
knots 819, 820, and 821 are obtained by choosing nonalternating crossings in a few
of these. Those pictured in the table of knots come from the layout in Figure 13(p).
Mosaics for all of these are given in the table of knots in the online supplement. The
only knots with crossing number 8 that we have not yet found are 86 and 815, and now
we know that they cannot be represented with eight crossings and 24 nonblank tiles.

We now turn our attention to mosaics with nine crossings. Just as before, we
look at all possible placements, up to symmetry, of nine crossings, eliminate
any composite knots, unnecessary loops, links and any duplicate layouts that are
equivalent to others via simple mosaic planar isotopy moves. In the end, we get

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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(a) (b) (c) (d)

(e) (f) (g)

Figure 14. Only possible layouts, after elimination, with nine
crossing tiles for a prime knot with tile number 24.

seven possible layouts, which are shown in Figure 14. Choosing specific crossings
for each layout, in order, so that the knots are alternating, we obtain the seven knots
98, 911, 914, 917, 923, 927, and 931, all of which have tile number 24. If we look at all
possible choices for nonalternating crossings, the only knot with tile number 24 that
arises but did not show up with only eight crossing tiles is the 86 knot, whose knot
mosaic in the table of knots comes from the layout in Figure 14(a). All other prime
knots that arise using nonalternating crossings have been exhibited as a minimally
space-efficient mosaic with fewer crossings or fewer nonblank tiles.

Now we do the same for 10 crossings. Again, we observe all possible placements
of 10 crossings on the third mosaic in Theorem 2, and after eliminating any links
and duplicate layouts up to reflection, rotation, or equivalencies via simple mosaic
planar isotopy moves, we end up with five possible layouts, shown in Figure 15.

We begin with Figure 15(a). Choosing specific crossings so that the knot is alter-
nating, we obtain the 10116 knot. If we look at all possible choices for nonalternating
crossings, the only prime knots that we get with tile number 24 are the nonalternating
knots 10124, 10125, 10141, 10143, 10155, and 10159. We do the same with Figure 15(b)
and get the alternating knot 10100. For the nonalternating choices, we get almost
all of the same ones we just obtained, but we do not get any new additions to our
list of knots. For Figure 15(c), with alternating crossings we get 1041, and with
nonalternating crossings we get 919 and 921 as the only new additions to our list.
Neither of these came from considering only nine crossings. Now we observe
the mosaic in Figure 15(d). By alternating the crossings, we obtain 1044, and by
using nonalternating crossings, the only new additions to our list are 912 and 926.
Finally, we end with Figure 15(e). Assigning alternating crossings, we get 1085,
and assigning nonalternating crossings, we get 10126, 10127, and 10148.
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(a) (b) (c) (d) (e)

Figure 15. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with tile number 24.

Finally, we can place 11 or 12 crossing tiles into the layout with 24 nonblank
tiles, but the space-efficient results will always be a link with more than one
component. Therefore, no minimally space-efficient prime knot mosaics arise from
this consideration. We have considered every possible placement of crossing tiles
on the third layout in Theorem 2 and have found every possible prime knot with
tile number 24 and eight or more crossings, and they are exactly those listed in
the theorem. Minimally space-efficient mosaics for all of these knots are given in
the table of knots in the online supplement. All other prime knots with crossing
number at least 8 must have tile number larger than 24. �

We now know precisely which prime knots have tile number less than or equal
to 24, and we are ready to determine which prime knots with mosaic number 6
have tile number 27. We see our first occurrence of knots with crossing number
larger than 10, and we use the Dowker–Thistlethwaite name of the knot.

Theorem 5. The only prime knots K with mosaic number 6, tile number t (K )= 27,
and minimal mosaic tile number tM(K )= 27 are

(a) 815,

(b) 91, 92, 93, 94, 97, 99, 913, 924, 928, 937, 946, 948,

(c) 101, 102, 103, 104, 1012, 1022, 1028, 1034, 1063, 1065, 1066, 1075, 1078, 10140,
10142, 10144,

(d) 11a107, 11a140, and 11a343.

Notice that this theorem is only referring to prime knots with mosaic number 6.
There are certainly prime knots with tile number 27 and mosaic number 7 that are
not included in this theorem. Also, the requirement that the tile number equals the
minimal mosaic tile number is necessary here. As far as we know now (and will
verify below), there are knots with mosaic number 6 and tile number 27 which have
minimal mosaic number 32. Some of these are listed in the next theorem. Finally,
notice that up to this point we have determined the tile number for every prime knot
with crossing number 8 or less.

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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(a) (b) (c) (d) (e) (f) (g)

Figure 16. The seven building blocks resulting from the observa-
tions at the beginning of this section.

Again we claim that the minimally space-efficient mosaics for 93, 94, 913, 937,
946, and 948 must have 10 crossing tiles. The minimally space-efficient mosaics
for 97, 99, and 924 must have 11 crossing tiles. None of the possible minimally
space-efficient knot mosaics with exactly nine crossing tiles produce these knots.
Similarly, the minimally space-efficient mosaics for 101, 103, 1012, 1022, 1034, 1063,
1065, 1078, 10140, 10142, and 10144 require 11 crossing tiles.

Proof. Similar to what we did in the proof of Theorem 3, we search for all of
the prime knots that have mosaic number 6 and tile number 27, which have a
space-efficient mosaic as depicted in the fourth layout of Theorem 2. We simply
build this layout using the 3× 3 building blocks that result from the observations at
the beginning of this section, shown again in Figure 16. We then choose specific
crossing types for each crossing tile and see what knots we get.

For bookkeeping purposes, we note that the knot 815 has tile number 27, and this
is the only knot with crossing number 8 for which we have not previously found
the tile number. A minimally space-efficient mosaic for it is included in the table of
knots in the online supplement. We now know the tile number for every prime knot
with crossing number 8 or less, and from here we restrict our search to mosaics
with nine or more crossing tiles.

Before we get started placing crossing tiles, we make a few more simple obser-
vations that apply to this particular case and help us reduce the number of possible
configurations. Observe that if we place a partially filled building block with no
crossing adjacent to the filled building block with two crossing tiles in Figure 16(c),
the resulting mosaic will always reduce to a mosaic with tile number 22. The same
result holds if the two blocks are not adjacent and one of the adjacent blocks is the
filled building block with three crossings depicted in Figure 16(e). The mosaics in
Figure 17 exhibit these scenarios. The same result also holds if the partially filled
building block with one crossing is combined with two of the filled building blocks
with two crossing tiles shown in Figure 16(c). Depending on the placement of these
two filled blocks, the result will be equivalent to either Figure 17(a) or Figure 17(b)
via a simple mosaic planar isotopy move that shifts the crossing in the partially
filled block to another block.

First, we consider nine crossing tiles with the above observations in mind, together
with the observations at the beginning of this section. Up to symmetry, there are

http://msp.org/involve/2019/12-5/involve-v12-n5-x04-table_of_knots.pdf
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(a) (b)

Figure 17. These two mosaics are not minimally space-efficient.

only nine possible configurations of the building blocks after we eliminate the links,
duplicate layouts that are equivalent to others via simple mosaic planar isotopy
moves, and any mosaics for which the tile number can easily be reduced by a simple
mosaic planar isotopy move. They are shown in Figure 18. Not all of these will
result in distinct knots, and in several cases it is not difficult to see that they will
result in the same knot. However, we include all of them here because they differ
by more than just symmetries or a simple mosaic planar isotopy move.

Choosing specific crossings so that the knots are alternating, we obtain only
seven distinct knots. The only ones with tile number 27 are Figure 18(a), which
gives the 91 knot, Figure 18(b), which gives us 92, and Figures 18(h) and (i),
which give us 928. Each of the remaining layouts give knots with tile number less
than 27. In particular, Figures 18(c) and (d) are 98, Figures 18(e) and (f) are 917,
and Figure 18(g) is 920. None of these configurations give nonalternating knots
with crossing number 9.

Second, we do the same for 10 crossings. Again, we use the building blocks to
build all possible configurations of the crossings, and up to symmetry, there are only

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 18. Only possible layouts, after elimination, with nine
crossing tiles for a prime knot with tile number 27.
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(a) (b) (c) (d) (e) (f)

Figure 19. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with tile number 27.

six possibilities after eliminating any links and duplicate layouts that are equivalent
via simple mosaic planar isotopy moves. These are shown in Figure 19.

Choosing specific crossings so that the knots are alternating, we obtain only
five distinct knots, all of which have tile number 27. In particular, Figure 19(a)
becomes the 102 knot, Figure 19(b) becomes 104, Figures 19(c) and (d) become 1028,
Figure 19(e) becomes 1066, and Figure 19(f) becomes 1075. Choosing nonalternating
crossings, we also get some knots with crossing number 9, but we do not obtain any
nonalternating knots with crossing number 10. We can get 93 from Figure 19(a), 94

from Figure 19(b), 913 from Figure 19(c), and 937, 946, and 948 from Figure 19(f).
All other knots that are obtained by considering nonalternating crossings can be
drawn with fewer crossings or a lower tile number.

Third, we consider the case where the mosaic has 11 crossing tiles. In this
instance, we end up with the five possible layouts shown in Figure 20, and again,
not all of these are distinct. Choosing alternating crossing in each layout results in
three distinct knots with crossing number 11. Figures 20(a) and (b) become 11a107,
Figures 20(c) and (d) become 11a140, and Figure 20(e) becomes 11a343. (Note
that, for knots with crossing number greater than 10, we are using the Dowker–
Thistlethwaite name of the knot.) Choosing nonalternating crossings in each of the
layouts results in several knots with crossing number 9 or 10. In particular, we can
obtain the knots 924, 1063, 1065, 1078, 10140, 10142, and 10144 from Figure 20(a).
We can obtain 97, 99, 1012, 1022, and 1034 from Figure 20(c). And we can obtain
101 and 103 from Figure 20(e). All of these are shown in the table of knots in the
online supplement. All other knots that are obtained by considering nonalternating
crossings can be drawn with fewer crossings or a lower tile number.

Finally, by Observation 4 we do not need to consider 12 or more crossing tiles
in this layout, as no minimally space-efficient prime knot mosaics arise from this
consideration. We have considered every possible placement of nine or more
crossing tiles on the fourth layout in Theorem 2 and have found every possible
prime knot with mosaic number 6 and tile number 27. They are exactly those listed
in the theorem. All other prime knots with crossing number at least 9 and mosaic
number 6 must have minimal mosaic tile number 32. �
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(a) (b) (c) (d) (e)

Figure 20. Only possible layouts, after elimination, with 11 cross-
ing tiles for a prime knot with tile number 27.

Now we know the tile number for every prime knot with crossing number less
than or equal to 8. Theorems 3, 4, and 5 tell us the tile number of some of the prime
knots with crossing numbers 9, 10, and 11. Furthermore, we know that all other
prime knots with mosaic number 6 must have minimal mosaic tile number 32 but
not necessarily tile number 32. One problem that complicates the next step is that,
as of the writing of this paper, we do knot know the mosaic number of all prime
knots with crossing number 9 or more. That is, we do not know all prime knots
with mosaic number 6. For this reason, we need to go through the same process
as we did in the preceding proofs to determine which prime knots have mosaic
number 6 and minimal mosaic tile number 32. By doing this, we will also be able to
determine which prime knots have mosaic number greater than 6. The good news is
that this is the final step in determining which prime knots have mosaic number 6 or
less and determining the tile number or minimal mosaic tile numbers of all of these.

Theorem 6. The only prime knots K with mosaic number 6 and minimal mosaic
tile number tM(K )= 32 are

(a) 910, 916, 935,

(b) 1011, 1020, 1021, 1061, 1062, 1064, 1074, 1076, 1077, 10139,

(c) 11a43, 11a44, 11a46, 11a47, 11a58, 11a59, 11a106, 11a139, 11a165, 11a166, 11a179,
11a181, 11a246, 11a247, 11a339, 11a340, 11a341, 11a342, 11a364, 11a367,

(d) 11n71, 11n72, 11n73, 11n74, 11n75, 11n76, 11n77, 11n78,

(e) 12a119,12a165, 12a169, 12a373, 12a376, 12a379, 12a380, 12a444,12a503, 12a722,
12a803, 12a1148, 12a1149, 12a1166,

(f) 13a1230, 13a1236, 13a1461, 13a4573,

(g) 13n2399, 13n2400, 13n2401, 13n2402, and 13n2403.

Notice again our restriction to prime knots with mosaic number 6. Additionally,
notice that this theorem only refers to the minimal mosaic tile number of the knot,
not the tile number. Again, this is because we only know that these two numbers
are equal when they are less than or equal to 27. Some of these knots may have
(and actually do have) tile number less than 32.
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Figure 21. Only possible layout, after elimination, with nine cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

We claim that the minimally space-efficient mosaics for 910, 916, 1020, 1021, and
1077 need 11 crossing tiles. The minimally space-efficient mosaics for 935, 1011,
1062, 1064, 1074, 10139, 11a106, 11a139, 11a166, 11a181, 11a341, 11a342, and 11a364

need 12 crossing tiles. And the minimally space-efficient mosaics for 1061, 1076,
11a44, 11a47, 11a58, 11n76, 11n77, 11n78, 11a165, 11a246, 11a339, 11a340, 12a119,
12a165, 12a169, 12a376, 12a379, 12a444, 12a803, 12a1148, and 12a1166 need 13 crossing
tiles.

Proof. We simply go through the same process that we did in the previous proof.
We search for all of the prime knots that have mosaic number 6 and minimal mosaic
tile number 32. Whatever prime knots that do not show up in this process and that
we have not previously determined the tile number for must have mosaic number
greater than 6. We know from Theorem 2 that any prime knot with mosaic number 6
and minimal mosaic tile number 32 has a space-efficient mosaic with the fifth and
final layout shown there.

As we have done several times previously, we use the building blocks to achieve
all possible configurations, up to symmetry, of nine or more crossings within this
mosaic. For this particular layout, we can only use the filled blocks, not the partially
filled blocks. We can eliminate any layouts that do not meet the requirements of the
observations, any multicomponent links, any duplicate layouts that are equivalent
to others via simple mosaic planar isotopy moves, and any mosaics for which the
tile number can easily be reduced by a simple mosaic planar isotopy move.

First, in the case of nine crossings, after we eliminate the unnecessary layouts we
end up with only one possibility, and it is shown in Figure 21. However, once we
choose specific crossings in an alternating fashion, it is the knot 98, which has tile
number 24. Nothing new arises from considering nonalternating crossings either.

Second, we do the same for 10 crossings, and we end up with five possible
layouts, shown in Figure 22. Choosing alternating crossings in each one, we again
fail to get any prime knots with minimal mosaic tile number 32. Figure 22(a) is 101,
Figure 22(b) and (c) are 1034, and Figures 22(d) and (e) are 1078. Nothing new
arises from considering nonalternating crossings either.

Third, we consider the case where the mosaic has 11 crossing tiles. In this
instance, we end up with the 10 possible layouts shown in Figure 23. With alternating
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(a) (b) (c) (d) (e)

Figure 22. Only possible layouts, after elimination, with 10 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

crossings, the first layout is 11a140, which we already know has tile number 27. The
remaining layouts, given alternating crossings, lead to six distinct knots with minimal
mosaic tile number 32, and with nonalternating crossings we get 10 additional
knots that have minimal mosaic tile number 32. In particular, Figure 23(b) with
alternating crossings is 11a43 and with nonalternating crossings can be made into
11n71, 11n72, 11n73, 11n74, and 11n75. Figures 23(c) and (d) are 11a46 when using
alternating crossings and can be made into 916 or 1077 with nonalternating crossings.
Figures 23(e) and (f) are 11a59 when using alternating crossings and can be made
into 1020 with nonalternating crossings. Figures 23(g) and (h) are 11a179 when
using alternating crossings and can be made into 910 or 1021 with nonalternating
crossings. Figure 23(i) with alternating crossings is 11a247, and Figure 23(j) with
alternating crossings is 11a367. Neither of these last two provide new knots to our
list when considering nonalternating crossings.

Fourth, we consider the possibilities where the mosaic has 12 crossing tiles. In
this case, we end up with the seven possible layouts shown in Figure 24. With
alternating crossings, these layouts lead to five distinct knots with minimal mosaic

(b) (c) (d)(a) (e)

(f) (g) (h) (i) (j)

Figure 23. Only possible layouts, after elimination, with 11 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 24. Only possible layouts, after elimination, with 12 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.

tile number 32, and with nonalternating crossings we get 13 additional knots that
have minimal mosaic tile number 32. In particular, Figures 24(a) and (b) with
alternating crossings are 12a373 and with nonalternating crossings can be made into
1062, 1064, 10139, 11a106, or 11a139. Figures 24(c) and (d) are 12a380 when using
alternating crossings and can be made into 1011, 11a166, or 11a341 with nonalternat-
ing crossings. Figure 24(e) is 12a503 when using alternating crossings and can be
made into 935, 1074, or 11a181 with nonalternating crossings. Figure 24(f) is 12a722

when using alternating crossings and can be made into 11a364 with nonalternating
crossings. Figure 24(g) with alternating crossings is 12a1149 and with nonalternating
crossings can be 11a342.

Fifth, we consider what happens when we place 13 crossing tiles on the mosaic.
In this instance, we end up with the six possible layouts shown in Figure 25. With
alternating crossings, the layouts lead to four distinct knots with minimal mosaic
tile number 32, and with nonalternating crossings we get 26 additional knots that
have minimal mosaic tile number 32. In particular, Figure 25(a) with alternating
crossings is 13a1230 and with nonalternating crossings can be made into 11a44,
11a47, 11n76, 11n77, 11n78, 12a119, 13n2399, 13n2400, 13n2401, 13n2402, or 13n2403.

(a) (b) (c) (d) (e) (f)

Figure 25. Only possible layouts, after elimination, with 13 cross-
ing tiles for a prime knot with minimal mosaic tile number 32.
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Figure 26. The 910 knot represented as a minimally space-efficient
6-mosaic with minimal mosaic tile number 32 and as a space-
efficient 7-mosaic with tile number 27.

Figures 25(b) and (c) are 13a1236 when using alternating crossings and can be made
into 1061, 1076, 11a58, 11a165, 11a340, 12a165, 12a376, or 12a444 with nonalternating
crossings. Figures 25(d) and (e) are 13a1461 when using alternating crossings and
can be made into 11a246, 11a339, 12a169, 12a379, or 12a1148 with nonalternating
crossings. Figure 25(f) is 13a4573 when using alternating crossings and can be made
into 12a803 or 12a1166 with nonalternating crossings.

Finally, by Observation 4, we do not need to consider 14 or more crossing tiles in
this layout. We have considered every possible placement of nine or more crossing
tiles on the final layout of Theorem 2 and have found every possible prime knot
with mosaic number 6 and minimal mosaic tile number 32. �

Because of the work we have completed, we now know every prime knot with
mosaic number 6 or less. We also know the tile number or minimal mosaic tile
number of each of these prime knots. In the table of knots in online supplement, we
provide minimally space-efficient knot mosaics for all of these. These preceding
theorems lead us to the following interesting consequences.

Corollary 7. The prime knots with crossing number at least 9 not listed in
Theorems 3, 4, 5, or 6 have mosaic number 7 or higher.

Theorem 8. The tile number of a knot is not necessarily equal to the minimal
mosaic tile number of a knot.

Proof. According to Theorem 6, the minimal mosaic tile number for 910 is 32.
However, on a 7-mosaic, this knot can be represented using only 27 nonblank
tiles, as depicted in Figure 26. Also note that, as a 7-mosaic, this knot could
be represented with only nine crossings, whereas 11 crossings were required to
represent it as a 6-mosaic. �
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