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We introduce a formalism to analyze partially defined functions between ordered
sets. We show that our construction provides a uniform and conceptual approach
to all the main definitions encountered in elementary real analysis including
Dedekind cuts, limits and continuity.

1. Introduction

Following the pioneering work of Bolzano and Weierstrass, “(ε, δ)-definitions” are
at the heart of textbook presentations of elementary analysis; see, e.g., [Rudin
1953]. While with practice the motivated student quickly becomes proficient in this
language, it is natural to ask if fundamental notions such as limits, continuity and
integrals could perhaps be defined more conceptually.

In the present paper we develop a rather general framework, which we refer to
as Darboux calculus, whose specialization to the context of real analysis provides
a unified and conceptual approach to all the main definitions encountered in, say,
single variable calculus. Our starting point is the observation that the completeness
of the ordered set of extended real numbers R̂ = {±∞} ∪R is equivalent to the
validity of the following.

Lemma 1.1. Let O be a (partially) ordered set, let S ⊆ O be any subset and let
ψ : S → R̂ be an order-preserving function. Then the set of order-preserving
functions f :O→ R̂ whose restriction to S coincides with ψ has a maximum and a
minimum.

In particular, such an order-preserving function ψ singles out a distinguished
subset Dar(ψ)⊆O, the Darboux set of ψ , of elements on which the maximum and
minimum extensions of ψ coincide. Equivalently, Dar(ψ) can be thought of as the
subset to which ψ extends canonically. We denote this canonical extension by exψ .

The prototypical example of this construction is provided by the Darboux integral.
Let O denote the set of all bounded functions on an interval [a, b] ⊆R, let S be the
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subset of step functions and let ψ be the function that to each step function assigns
its integral defined naively in terms of signed areas of rectangles. In this case, as
shown in Example 7.9 below, Dar(ψ) coincides with the set of Darboux integrable
functions on [a, b] and exψ is the Darboux integral.

This approach to the Darboux integral exemplifies the philosophy of this paper:
naturally occurring pairs (X , ϕ) consisting of a class X of R̂-valued functions and
an order-preserving function ϕ :X→ R̂ are of the form (Dar(ψ), exψ) for a suitable
order-preserving function ψ defined on a subset S ⊆X of functions that “obviously
belong to X ”.

For instance, let O be the set of all sequences of real numbers, let S be the
subset of sequences that are eventually constant and let ψ be the function that to
each sequence η ∈ S assigns the only value that η attains infinitely many times.
Then, as shown in as shown in Example 7.5 below, Dar(ψ) coincides with the
set of convergent (possibly to ±∞) sequences and exψ( f )= limn f (n) for every
f ∈ Dar(ψ). The advantage here is that instead of having to come up with a
clever (ε, δ)-definition of limit of a sequence we only need to prescribe the obvious
limit of an eventually constant sequence and the formalism of Darboux calculus
automatically takes care of the general case.

Similarly, let O be the set of all functions f :R→R and fix x0 ∈R. It is shown in
Example 7.6 that if S denotes the set of all functions that are constant on some open
neighborhood of x0 and ψ is the function that to each η ∈ S assigns ψ(η)= η(x0),
then Dar(ψ) is the set of functions that are continuous at x0 and exψ( f )= f (x0)

for all f ∈ Dar(ψ). Once again, given as only input the set of functions that are
obviously continuous at x0, our machinery returns the set of functions that are
continuous at x0 as output. We view this as an intuitive alternative to the standard
(ε, δ)-definition of continuity.

The statement of Lemma 1.1 holds more generally if R̂ is replaced with any
ordered set that is complete in the sense that every subset has a least upper bound
and a greatest lower bound. Furthermore, the inclusion ι : S ↪→O can be replaced
with an arbitrary embedding of ordered sets. In fact, the reader familiar with
category theory will easily recognize the maximum and minimum extensions of ψ
in Lemma 1.1 as, respectively, the right and left Kan extensions [Mac Lane 1971]
(assuming they exist) of ψ along ι. Similarly, the Darboux set of ψ can be thought
of as the equalizer of the left and right Kan extensions. Here we are implicitly using
the standard interpretation of an ordered set O as a category whose objects are
the elements x ∈O and such that Hom(x, y) consists of a single element if x ≤ y
and is empty otherwise. From the vantage point of category theory, the present
paper can be summarized as the observation that equalizers of left and right Kan
extensions arise naturally in elementary analysis. While some of our propositions
and theorems are particular instances of much more general results about left and
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right Kan extensions, we choose to give self-contained proofs in the case of ordered
sets. In this way, we hope to provide evidence of the effectiveness of Darboux
calculus as a stand-alone approach to the foundations of analysis that might be one
day used to teach the subject at the undergraduate level.

An example of the flexibility of categorical thinking in this context comes from
looking at the Yoneda embedding of an ordered set O into the set of order-preserving
functions from O to the unique (up to a unique isomorphism) nontrivial ordered
set with two elements. As it turns out, the Darboux set of the identity function
of the image of the Yoneda embedding essentially coincides with the Dedekind–
MacNeille completion of O. While the idea of understanding Dedekind cuts in
terms of presheaves is not new, see, e.g., [Taylor 1999], our emphasis is on the fact
that Darboux sets are not only effective in isolating interesting classes of R-valued
functions but can be used to construct R itself! In fact we show that with a little
more effort, the field structure of R can also be recovered from that of Q in terms of
Kan extensions. Our exposition appears to be somewhat more succinct, direct and
self-contained than previous treatments of elementary analysis based on category
theory; see, e.g., [Univalent Foundations 2013; Taylor 2010; Edalat and Lieutier
2004]. It would be interesting to carry out a detailed comparison between these
approaches and the one presented here.

The paper is organized as follows. Section 2 contains basic material on ordered
sets and order-preserving functions. In Section 3 we introduce the main concepts
used in this paper, including Darboux sets and Darboux extensions. Section 4 is
devoted to the notion of completeness defined here in terms of extensions of partially
defined order-preserving functions. As we show, our definition, which we refer to as
Darboux completeness, is in fact equivalent to the more familiar notion of Dedekind
completeness. In Sections 5–6 we discuss the Yoneda embedding and the Darboux
completion of an arbitrary ordered set. In particular in Section 5 we use Darboux
extensions to prove that completely integrally closed subgroups of automorphisms
of a complete ordered set lift to automorphisms of the completion, a result that
we use to construct the field operations on R. Our strategy here can be thought of
as a Darboux-theoretic version of the approach used in [Fuchs 1963] to establish
similar results directly at the level of Dedekind cuts. Once the real numbers are
constructed, in Section 7 we shift our attention to ordered sets of R-valued functions.
We prove that an R-valued function f has limit with respect to some filter basis F
(in the sense that each ε-neighborhood of the limit contains the image f (S) of
some S ∈ F) if and only if f is in the Darboux set of the partial function defined
by assigning to each function constant on some S ∈ F the only value that it attains
on S. This characterization of convergence with respect to a filter basis yields at
once Darboux-theoretic formulations of several (ε, δ)-definitions such as limits of
sequences, limits of functions of one real variable and continuity. After discussing
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Darboux integrability (after which the general notion of Darboux set is modeled),
we use Darboux calculus to prove a theorem which simultaneously generalizes the
usual linearity theorems for limits, continuous functions and integrals. In fact, all
the major theorems of elementary real analysis (e.g., the intermediate value theorem,
the extreme value theorem and the fundamental theorem of calculus) can be proved
conceptually using the language of Darboux calculus. We hope to come back to
this point elsewhere and ultimately provide an exhaustive and fully self-contained
treatment of elementary real analysis in the language of this paper.

2. Preliminaries on ordered sets

Definition 2.1. A (partially) ordered set is a set O together with a reflexive, anti-
symmetric, and transitive relation, which we denote by ≤.

Example 2.2. If O is an ordered set, every subset S ⊆O inherits an induced order.
For every x, y ∈ O such that x ≤ y, the interval with endpoints x and y is the
(ordered) subset [x, y] of all z ∈O such that x ≤ z ≤ y.

Example 2.3. A discrete set is an ordered set with the trivial order with respect
to which x ≤ y if and only if x = y. If O is an ordered set, we denote by |O| its
underlying discrete set.

Remark 2.4. If O is an ordered set, we denote by Oop the opposite ordered set
such that |Oop

| = |O| and x ≤ y in Oop if and only if y ≤ x in O.

Example 2.5. Given two ordered sets O1,O2, we denote by O1×O2 the ordered
set such that |O1×O2| = |O1|× |O2| with order such that (x1, x2)≤ (y1, y2) if and
only if x1 ≤ y1 and x2 ≤ y2.

Definition 2.6. Let O and P be ordered sets. The set of order-preserving functions
from O to P is

OP(O,P)= { f : |O| → |P| | f (x)≤ f (y) if x ≤ y}.

We view OP(O,P) as an ordered set such that f ≤ g if and only if f (x) ≤ g(x)
for all x ∈O. We use the shorthand notation OP(O)=OP(O,O). We also say that
f ∈ OP(O,P) is an embedding if for any x, y ∈ O, f (x) ≤ f (y) implies x ≤ y.

An isomorphism is a surjective embedding. Given an ordered set O, we denote by
Aut(O) the group of all isomorphisms in OP(O).

Definition 2.7. If O is an ordered set, we define its augmentation to be the ordered
set Ô such that

(1) |Ô| = |O| ∪ {−∞,+∞};
(2) the canonical inclusion of |O| into |Ô| defines an embedding of O into Ô;

(3) Ô = [−∞,+∞].
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Definition 2.8. Let O and P be ordered sets. A partial function ψ :O⇀ P from
O to P is an order-preserving function ψ : dom(ψ)→ P defined on an ordered
subset dom(ψ)⊆O called the domain of ψ . The ordered set im(ψ)=ψ(dom(ψ))
is called the image of ψ . An extension of ψ to O is an order-preserving function
f :O→ P whose restriction f |dom(ψ) to dom(ψ) coincides with ψ .

Example 2.9. Let O be an ordered set and let 1 be the unique (up to a unique
isomorphism) ordered set with one element. Then O is canonically identified with
OP(1,O).

Definition 2.10. Let O and P be ordered sets. A set 9 of partial functions from
O to P is compatible if for any ψ ′, ψ ′′ ∈ 9, the restrictions of ψ ′ and ψ ′′ to
dom(ψ ′)∩ dom(ψ ′′) coincide. If 9 is compatible, we define its common extension
to be the partial function ψ :O⇀ P such that

dom(ψ)=
⋃
ψ ′∈9

dom(ψ ′)

and ψ(x)= ψ ′(x) for every x ∈ dom(ψ ′) and for every ψ ′ ∈9.

Remark 2.11. Let O and P be ordered sets. If ψ is the common extension of a
compatible set 9 of partial functions from O to P, then f :O→ P is an extension
of ψ to O if and only if it is an extension of ψ ′ to O for each ψ ′ ∈9.

3. Darboux sets and Darboux extensions

Definition 3.1. Let O and P be ordered sets. A partial function ψ : O ⇀ P is
extremizable if there exist extensions lexψ , uexψ : O→ P of ψ to O such that
lexψ ≤ f ≤ uexψ for all extensions f : O→ P of ψ to O. If this is the case, we
call lexψ and uexψ the lower and upper extensions of ψ , respectively.

Remark 3.2. Let ψ :O→ P be an extremizable partial function. If x ∈ dom(ψ),
then lexψ(x)= uexψ(x). Therefore, if f :O→ P is an order-preserving function
such that lexψ ≤ f ≤ uexψ , then f is automatically an extension of ψ .

Example 3.3. Let O and P be ordered sets and let ψ :O⇀ P̂ be a partial function
such that dom(ψ) = {x}. Then ψ is extremizable. Moreover, lexψ(y) = ψ(x) if
x ≤ y and lexψ(y) = −∞ otherwise. Similarly, uexψ(y) = ψ(x) if y ≤ x and
uexψ(y)=+∞ otherwise.

Definition 3.4. Let O and P be ordered sets. For each extremizable partial function
ψ :O⇀ P, we define the Darboux set of ψ to be

Dar(ψ)= {x ∈O | lexψ(x)= uexψ(x)}.

Moreover, we denote by exψ : O ⇀ P the Darboux extension of ψ , i.e., the
restriction of uexψ (or equivalently of lexψ ) to Dar(ψ).



366 MARCO ALDI AND ALEXANDER MCCLEARY

Definition 3.5. Let O, P be ordered sets and let ψ be a partial function from O to P.
We say that x ∈O is ψ-bounded if y ≤ x ≤ z for some y, z ∈ dom(ψ). We denote
the set of ψ-bounded elements of O by B(ψ). We say that ψ is encompassing if
every element of O is ψ-bounded. Moreover, for each extremizable ψ :O⇀ P we
define the bounded Darboux set of ψ to be the subset BDar(ψ) of all ψ-bounded
elements of Dar(ψ).

Remark 3.6. Let O, P be ordered sets and let ψ be the common extension of a
compatible set 9 of partial functions from O to P. If any ψ ′ ∈9 is encompassing,
then dom(ψ ′)⊆ dom(ψ) implies that ψ is also encompassing.

Remark 3.7. Let O and P be ordered sets and let 9 be a compatible set of ex-
tremizable partial functions from O to P. If the common extension ψ of 9 is
also extremizable, then Remark 2.11 implies that f ∈ [lexψ , uexψ ] if and only if
f ∈ [lexψ ′, uexψ ′] for each ψ ′ ∈9. In particular,

{uexψ } =
⋂
ψ ′∈9

[uexψ , uexψ ′] and {lexψ } =
⋂
ψ ′∈9

[lexψ ′, lexψ ].

Remark 3.8. Let O and P be ordered sets and let ψ be an extremizable partial
function from O to P. If f :O→ P is an extension of exψ to O, then its restriction
to dom(ψ) coincides with ψ and thus lexψ ≤ f ≤ uexψ . Since by construction lexψ
and uexψ restrict to exψ on Dar(ψ), it follows that the set of extensions of exψ to O
coincides with the set of extensions of ψ to O. In particular, Dar(exψ)= Dar(ψ)
and exexψ = exψ .

Definition 3.9. Let O1, O2 and O3 be ordered sets. The partial functions ψ1 :

O1 ⇀O2 and ψ2 :O2 ⇀O3 are composable if dom(ψ2)∩ im(ψ1) is nonempty. If
this is the case, their composition is the partial function ψ2 ◦ψ1 : O1 ⇀ O3 such
that (ψ2 ◦ψ1)(x)= ψ2(ψ1(x)) for each x in

dom(ψ2 ◦ψ1)= {x ∈ dom(ψ1) | ψ1(x) ∈ dom(ψ2)}.

Proposition 3.10. Let O1, O2 and O3 be ordered sets. Let ψ1 : O1 ⇀ O2 and
ψ2 :O2 ⇀O3 be partial functions such that

(i) dom(ψ2)⊆ im(ψ1);

(ii) ψ1, ψ2 and ψ2 ◦ψ1 are extremizable.

Then

(1) lexψ2◦ψ1 ≤ lexψ2 ◦ lexψ1 ≤ uexψ2 ◦ uexψ1 ≤ uexψ2◦ψ1 ;

(2) exψ1

(
Dar(ψ2 ◦ψ1)∩Dar(ψ1)

)
⊆ Dar(ψ2);

(3) (exψ2 ◦ exψ1)(x)= exψ2◦ψ1(x) for all x ∈ Dar(ψ1)∩Dar(ψ2 ◦ψ1).
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Proof. Item (1) is a consequence of the fact that uexψ2 ◦ uexψ1 and lexψ2 ◦ lexψ1 are
extensions of ψ2 ◦ψ1 to O1. If x ∈ Dar(ψ2 ◦ψ1)∩Dar(ψ1), then (1) implies

exψ2◦ψ1(x)= lexψ2(exψ1(x))= uexψ2(exψ1(x)),

which proves (2) and (3). �

Remark 3.11. Since dom(ψ2) = O2 implies lexψ2 = ψ2 = uexψ2 , we know that
Dar(ψ2 ◦ ψ1) ⊆ Dar(ψ1) whenever the partial function ψ2 in the statement of
Proposition 3.10 is an embedding and thus exψ1(Dar(ψ2 ◦ψ1))⊆ Dar(ψ2).

Lemma 3.12. Let O, P, P ′ be ordered sets and let ψ : O ⇀ OP(P,P ′) be an
extremizable partial function. For each p∈P, let evp :OP(P,P ′)→P ′ be the order-
preserving function that to each f : P→ P ′ assigns its evaluation evp( f )= f (p)
at p. If evp ◦ψ :O⇀ P ′ is extremizable for every p ∈ P, then

evp ◦ uexψ = uexevp◦ψ and evp ◦ lexψ = lexevp◦ψ .

Proof. Using Proposition 3.10, evp ◦uexψ = uexevp ◦ uexψ ≤ uexevp◦ψ . Consider the
order-preserving function g :O→ OP(P,P ′) such that (g(x))(p)= uexevp◦ψ for
every x ∈O and for every p ∈ P. Then (g(η))(p)= uexevp◦ψ(η)= (ψ(η))(p) for
every η ∈ dom(ψ). Therefore, g ≤ uexψ and thus uexevp◦ψ = evp ◦ g ≤ evp ◦ uexψ .
Hence, evp ◦ uexψ = uexevp◦ψ . The second equality is proved in a similar way. �

Lemma 3.13. Let O, P1, P2 be ordered sets, let ψ : O ⇀ P1 × P2 be a partial
function and for i = 1, 2 let πi : P1×P2→ Pi be the (order-preserving) projection
onto the respective factor. Then ψ is extremizable if and only if πi ◦ψ : O⇀ Pi

is extremizable for each i = 1, 2. If this is the case, then πi ◦ uexψ = uexπi◦ψ and
πi ◦ lexψ = lexπi◦ψ for each i = 1, 2.

Proof. Assume that ψ is extremizable. Then πi ◦ lexψ and πi ◦ uexψ are extensions
of the partial function πi ◦ψ : O⇀ Pi (with domain dom(ψ)) for each i = 1, 2.
Furthermore, if f1 :O→P1 and f2 :O→P2 are, respectively, extensions of π1◦ψ

and π2 ◦ψ , then ( f1, f2) :O→ P1×P2 is an extension of ψ . By assumption, this
implies lexψ ≤ ( f1, f2)≤ uexψ and thus

πi ◦ lexψ ≤ fi ≤ πi ◦ uexψ

for each i = 1, 2. Hence π ◦ψi is extremizable, πi ◦uexψ = uexπi◦ψ and πi ◦ lexψ =
lexπi◦ψ for each i =1, 2. Conversely, assume that π1◦ψ and π2◦ψ are extremizable.
Then (lexπ1◦ψ , lexπ2◦ψ) and (uexπ1◦ψ , uexπ2◦ψ) are both extensions of ψ = (π1◦ψ,

π2 ◦ψ). Moreover, if f : O→ P1×P2 is any extension of ψ , then πi ◦ f is an
extension of πi ◦ψ for each i = 1, 2. Since f = (π1 ◦ f, π2 ◦ f ), this implies

(lexπ1◦ψ , lexπ2◦ψ)≤ f ≤ (uexπ1◦ψ , uexπ2◦ψ)
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and thus ψ is extremizable with lower extension equal to (lexπ1◦ψ , lexπ2◦ψ) and
upper extension equal to (uexπ1◦ψ , uexπ2◦ψ). �

Remark 3.14. Let O be a nonempty ordered set and let ∅ :O⇀O be the empty
partial function of O, i.e., the unique partial function from O to itself whose
domain is the empty set. Since the set of extensions of ∅ to O coincides with
OP(O), if ∅ is extremizable, then in particular lex∅ ≤ x ≤ uex∅ for every constant
function x : O → O. In other words, the lower and upper Darboux extensions
of the empty partial function are constant and (with a slight abuse of notation)
O = [lex∅(O), uex∅(O)].

4. Darboux-complete ordered sets

Definition 4.1. An ordered set P is Darboux complete if every partial function
from P̂ to itself is extremizable.

Example 4.2. Since by Example 3.3 each partial function f :∅̂⇀∅̂ is extremizable,
the empty ordered set ∅ is Darboux complete.

Lemma 4.3. Let S be a nonempty subset of a Darboux-complete ordered set P. If
idS : P̂⇀ P̂ is the identity function on S and J = [uexidS (−∞), lexidS (+∞)], then

(1) S ⊆ J ;

(2) J is the intersection of all intervals of P̂ that contain S.

Proof. Since P is Darboux complete, lexidS and uexidS exist. For every s ∈ S

uexidS (−∞)≤ uexidS (s)= lexidS (s)≤ lexidS (+∞),

which implies (1). If x, y ∈ P̂ are such that S ⊆ [x, y], let ψ : P̂ ⇀ P̂ be the
partial function with domain Ŝ whose restriction to S is the identity and such that
ψ(−∞)= x and ψ(+∞)= y. Then

x = uexψ(−∞)≤ uexidS (−∞)≤ lexidS (+∞)≤ lexψ(+∞)= y. �

Proposition 4.4. Let P be an ordered set. The following are equivalent:

(1) P is Darboux complete.

(2) Every partial function with codomain P̂ is extremizable.

(3) For every ordered set O, every partial function with codomain OP(O, P̂) is
extremizable.

Proof. Assume that P is Darboux complete. Let ψ be a partial function from an
ordered set O to P̂ and let x ∈O. Consider the subsets

Sx = {ψ(y) | y ≤ x and y ∈ dom(ψ)} ⊆ P̂, (1)

Sx
= {ψ(y) | x ≤ y and y ∈ dom(ψ)} ⊆ P̂ (2)



DARBOUX CALCULUS 369

together with their identity functions idSx , idSx : P̂ ⇀ P̂ . Define l, u :O→ P̂ such
that

l(x)= lexidSx
(+∞) and u(x)= uexidSx (−∞)

for all x ∈O. To see that l and u are indeed order-preserving, assume that x, y ∈O
are such that x ≤ y. Since Sx ⊆ Sy , lexidSy

is an extension of idSx and thus l is
order-preserving. Similarly, u is order-preserving because S y

⊆ Sx implies that the
restriction of lexidSx

to S y coincides with idS y . Moreover l is an extension of ψ
to O since for every x ∈ dom(ψ), Sx ⊆ [−∞, ψ(x)] and Lemma 4.3 implies

ψ(x)= lexidSx
(ψ(x))≤ l(x)≤ ψ(x).

On the other hand, ψ(y) = f (y) ≤ f (x) for any extension f of ψ to O and for
any ψ(y) ∈ Sx . Therefore, Sx ⊆ [−∞, f (x)] and thus (using again Lemma 4.3),
l(x)≤ f (x). Together with a similar argument involving u, this proves (2). Assume
that (2) holds and let O, O′ be arbitrary ordered sets. Consider the canonical
embedding α that to each partial function ψ :O′⇀ OP(O, P̂) assigns the partial
function α(ψ) :O′×O⇀ P̂ such that (α(ψ))(x ′, x)= (ψ(x ′))(x) for all (x ′, x) ∈
dom(α(ψ)) = dom(ψ)×O. The Darboux completeness of P ensures that α(ψ)
is extremizable and thus lexα(ψ) ≤ α( f )≤ uexα(ψ) for each extension f of ψ to O′.
Since the restriction of α to the subset of order-preserving functions O′→OP(O, P̂)
is an isomorphism, lexψ =α−1(lexα(ψ)) and uexψ =α−1(uexα(ψ)), which proves (3).
Example 2.9 shows that (1) is a particular case of (3), which concludes the proof. �

Remark 4.5. Let P be an ordered set. Assume P is a Darboux-complete ordered
set, and S ⊆ P is nonempty and bounded, i.e., S ⊆ [x, y] for some x, y ∈ P. Then
Lemma 4.3 implies that lexidS (+∞) and uexidS (−∞) are respectively the least
upper bound sup(S) and the greatest lower bound inf(S) of S. Therefore, P is
Dedekind complete. Conversely, suppose that the least upper bound and the greatest
lower bound of every nonempty bounded subset of P exist. Given any partial
function ψ : P̂→ P̂ , let Sx and Sx be defined as in (1) and (2) respectively. Then
the same argument as in the proof of Proposition 4.4 shows that ψ is extremizable
with lexψ(x) = sup(Sx) and uexψ(x) = inf(Sx) for all x ∈ O. Hence, P is Dar-
boux complete if and only if P is Dedekind complete. While these two notions
of completeness are equivalent, the point of view of this paper is that Darboux
completeness allows for a more direct and conceptual route to the foundations of
elementary analysis.

Corollary 4.6. Let O be an ordered set, let P be a Darboux-complete ordered set
and let N be a positive integer. Every encompassing partial function from O to PN

is extremizable.

Proof. By Lemma 3.13, it suffices to prove the N = 1 case. Let ϕ : O ⇀ P
be encompassing and let ι : P → P̂ . By assumption, for each z ∈ O there exist
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x, y ∈ dom(ϕ) such that x ≤ z ≤ y and thus

ϕ(x)= ι(ϕ(x))≤ lexι◦ϕ(z)≤ uexι◦ϕ(z)≤ ι(ψ(y))= ϕ(y).

Therefore, lexι◦ϕ and uexι◦ϕ have their image contained in P and thus are extensions
of ϕ to O. Moreover, lexι◦ϕ(x) ≤ f (x) ≤ uexι◦ϕ(x) for every extension f of ϕ
to O and for every x ∈ P. Hence ϕ is extremizable and lexϕ(x) = lexι◦ϕ(x),
uexϕ(x)= uexιϕ(x) for all x ∈O. �

Example 4.7. We define the free cocompletion of an ordered set O to be the ordered
set O∨ = OP(Oop, ∅̂). Let P = O∨ \ {±∞}, where ±∞ denotes the constant
function such that im(±∞)=±∞. Combining Example 4.2 with Proposition 4.4
shows that every partial function with codomain O∨ = P̂ is extremizable. Using
Proposition 4.4 again, we conclude that P is Darboux complete.

Example 4.8. Let O be an ordered set, let P be a Darboux-complete ordered set
and let S be a nonempty subset of O. Furthermore, let ψS : OP(O,P) ⇀ P̂ be
the partial function with domain the subset of functions that are constant on S and
such that ψS( f )= f (x) for every f ∈ dom(ψS) and every x ∈ S. For each x ∈ S,
evx coincides with ψS on dom(ψS) and thus evx ∈ [lexψS , uexψS ]. In particular, if
f :O→ P is in the Darboux set of ψS , then evx ◦ f = evy ◦ f for every x, y ∈ S,
i.e., f is constant on S. Hence, dom(ψS)= Dar(ψS).

Remark 4.9. Using the notation of Example 4.8, assume furthermore that O is
discrete. For every order-preserving function f :O→ P and for every y ∈ P, let
fy ∈ dom(ψS) be the function whose restriction to O \ S coincides with f and
such that fy(x) = y for all x ∈ S. In particular, if there exists y, z ∈ P such that
f (x) ∈ [y, z] for all x ∈ S, then f ∈ [ fy, fz] and thus [lexψS , uexψS ] ⊆ [y, z].
Moreover, Corollary 4.6 implies that the restriction ϕS :B(ψS)⇀P of ψS to B(ψ)
is extremizable.

5. Completely integrally closed subgroups

Proposition 5.1. Let O, O′ be ordered sets, let P be a Darboux-complete ordered
set and consider the composition of ordered functions µ :OP(P̂)×OP(P̂)→OP(P̂)
defined by setting µ(ϕ, ϕ′)= ϕ ◦ϕ′ for all ϕ, ϕ′ ∈ OP(P̂). If ψ :O⇀ OP(P̂) and
ψ ′ :O′⇀ OP(P̂) are partial functions with images in Aut(P̂), then

µ ◦ (uexψ × uexψ ′)= uexµ◦(ψ×ψ ′) and µ ◦ (lexψ × lexψ ′)= lexµ◦(ψ×ψ ′) .

Proof. Since µ◦ (uexψ × uexψ ′) is an extension of µ◦ (ψ×ψ ′) to O×O′, we have
µ◦ (uexψ × uexψ ′)≤ uexµ◦(ψ×ψ ′). On the other hand, if η ∈ dom(ψ) is fixed, then

(ψ(η))−1
◦ uexµ◦(ψ×ψ ′)(η, η′)= ψ ′(η′)
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for every η′ ∈ dom(ψ ′). Using the assumption that ψ ′ is extremizable, it follows
that

(ψ(η))−1
◦ uexµ◦(ψ×ψ ′)(η, x ′)≤ uexψ ′(x ′)

and thus

uexµ◦(ψ×ψ ′)(η, x ′)≤ ψ(η) ◦ uexψ ′(x ′)

= (µ ◦ (uexψ × uexψ ′))(η, x ′)≤ uexµ◦(ψ×ψ ′)(η, x ′)

for all (η, x ′) ∈ dom(ψ)×O′. Setting q = (uexψ ′(x ′))(p) yields

evp ◦ uexµ◦(ψ×ψ ′)(η, x)= (ψ(η))(q)= uexevq◦ψ(η)

for every p ∈ P̂ and for every η ∈ dom(ψ). Lemma 3.12 then implies

evp ◦ uexµ◦(ψ×ψ ′)(x, x ′)≤ uexevq◦ψ(x)= evq ◦ uexψ(x)

= evp ◦µ ◦ (uexψ × uexψ ′)(x, x ′)

for all p ∈ P̂ and for all (x, x ′)∈O×O′. This proves the first half of the proposition,
the second equality is proved in a similar way. �

Remark 5.2. Given any ordered set O, the ordered set OP(O) of order-preserving
functions f :O→O is a monoid with respect to composition.

Definition 5.3. Let O be an ordered set. A subgroup (that is, a submonoid closed
under inverses) A of OP(O) is completely integrally closed if for every a, a′ ∈A,
an
≤ a′ for all n ∈ N implies a ≤ idO.

Remark 5.4. Completely integrally closed subgroups are a particular instance of the
more general notion of (abstract) completely integrally closed ordered groups, which
plays a key role in the classical study [Fuchs 1963] of embeddings in Dedekind-
complete ordered groups. The remainder of this section can be thought of as an
alternate construction of these embeddings formulated in the equivalent language
of Darboux-complete ordered sets. Our main application is the self-contained
construction of the field structure on the ordered set of real numbers described in
Section 6.

Proposition 5.5. Let P be a Darboux-complete ordered set. If A is a completely
integrally closed subgroup of OP(P̂), then BDar(idA) is a subgroup of OP(P̂).

Proof. Since lexidA ◦µ and uexidA ◦µ are extensions of µ◦(idA× idA) to (OP(P̂))2,
we obtain

lexµ◦(idA×idA) ≤ lexidA ◦µ≤ uexidA ◦µ≤ uexµ◦(idA×idA) . (3)

By Proposition 5.1, we conclude that these inequalities restrict to equalities on
(Dar(idA))

2. Hence Dar(idA) is closed under composition. We conclude that
Dar(idA), which contains the submonoid A of OP(P̂), is itself a submonoid of
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OP(P̂). Given ϕ1, ϕ2 ∈ BDar(idA), by definition there exist ai , a′i ∈ A such that
ai ≤ ϕi ≤ a′i for i = 1, 2. Therefore a1 ◦ a2 ≤ ϕ1 ◦ϕ2 ≤ a′1 ◦ a′2 and thus BDar(ψ)
is also a submonoid. In order to construct inverses, consider the partial function
ψ : (OP(P̂))op ⇀OP(P̂) with domain A and such that ψ(a)= a−1 for every a ∈A.
By Proposition 5.1,

lexψ(ϕ) ◦ϕ = lexµ◦(ψ×idA)(ϕ, ϕ)≤ uexµ◦(ψ×idA)(ϕ, ϕ)

for all ϕ ∈ Dar(idA). Since im(ψ)=A,

idA ◦µ(ψ × idA)= µ(ψ × idA)

and thus, using Proposition 3.10,

lexψ(ϕ) ◦ϕ ≤ lexidA(lexµ◦(ψ×idA)(ϕ, ϕ))≤ lexidA(uexµ◦(ψ×idA)(ϕ, ϕ)). (4)

Let ϕ∈BDar(idA), a∈A such that a≤ϕ, and a′∈A such that a′≤uexµ◦(ψ×idA)(ϕ,ϕ).
Then we have

a ◦ a′ ≤ a ◦ uexµ◦(ψ×idA)(ϕ, ϕ)≤ a ◦ uexµ◦(ψ×idA)(a, ϕ)= ϕ.

Iterating the same argument with a replaced by a ◦ (a′)n−1 yields a ◦ (a′)n ≤ ϕ for
all n ∈ N. Since A is completely integrally closed, this implies a′ ≤ idP̂ . Together
with a similar argument involving lexµ◦(ψ×idA), we conclude that

lexidA(uexµ◦(ψ×idA)(ϕ, ϕ))≤ idP ≤ uexidA(lexµ◦(ψ×idA)(ϕ, ϕ)).

Therefore, applying uexidA to both sides of (4) and using Proposition 3.10 yields

idP̂ ≤ uexidA(lexµ◦(ψ×idA)(ϕ, ϕ))≤ uexidA(lexψ(ϕ)) ◦ϕ ≤ uexidA(idP̂)= idP̂ ,

where the last equality follows from the fact that idP̂ is an element of A. Hence ϕ
has a left inverse. A similar argument shows that it has right inverse and concludes
the proof. �

Corollary 5.6. Let P be a Darboux-complete ordered set and let A ⊆ OP(P̂)
be a commutative completely integrally closed subgroup. Then BDar(idA) is a
commutative group.

Proof. Let µ′ :OP(P̂)×OP(P̂)→OP(P̂) denote composition in reverse order; i.e.,
µ′(ϕ, ϕ′) = ϕ′ ◦ ϕ for all ϕ, ϕ′ ∈ OP(P̂). Since the restrictions of lexidA ◦µ

′ and
uexidA ◦µ

′ to A×A coincide with µ ◦ (idA× idA), we obtain

lexµ◦(idA×idA) ≤ lexidA ◦µ
′
≤ uexidA ◦µ

′
≤ uexµ◦(idA×idA) .

Together with (3), this implies the commutativity of the monoid Dar(idA), which
contains BDar(idA). �
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6. The Darboux completion

Remark 6.1. Let O be an ordered set. For each x ∈ O, let δx : Oop ⇀ ∅̂ be the
partial function such that dom(δx)= {x} and δx(x)=+∞. Then lexδx (y)=+∞
if and only if y ≤ x . Let us define Y (x) = lexδx for every x ∈ O. If f ∈ O∨

then f (x) = +∞ if and only if Y (x) ≤ f . Moreover, f ≤ g in O∨ if and only if
Y (x)≤ f implies Y (x)≤ g. In particular, Y (x)≤ Y (y) if and only if x ≤ y. Hence
the assignment x 7→ Y (x) defines an order-preserving embedding Y : O→ O∨

called the Yoneda embedding of O.

Proposition 6.2. Let O be an ordered set, let ϕ :O∨⇀O∨ be the identity function
of the image of the Yoneda embedding of O and let Dar(O) denote the Darboux set
of ϕ. Then

(1) lexϕ = idO∨ ;

(2) if g ∈ OP(Dar(O)) restricts to the identity on Y (O), then g = idDar(O);

(3) uexϕ(O∨)⊆ Dar(O);
(4) the empty partial function of Dar(O) is extremizable.

Proof. Since idO∨ restricts to ϕ on Y (O), we know lexϕ( f )≤ f for every f ∈O∨. On
the other hand, Y (x)≤ f implies Y (x)= lexϕ(Y (x))≤ lexϕ( f ). Using Remark 6.1,
this proves (1). Item (2) follows immediately from (1) and the definition of Dar(O).
Proposition 3.10 and (1) yield

uexϕ = uexϕ ◦ lexϕ ≤ uexϕ ◦ uexϕ ≤ uexϕ◦ϕ = uexϕ,

which readily implies (3). Since +∞ ≤ uexϕ(+∞) ≤ +∞, we have +∞ ∈
Dar(O). If −∞ 6= Dar(O), then by Remark 6.1 there exists x ∈ O such that
Y (x)≤ uexϕ(−∞). By Lemma 4.3 this implies x ≤ y for all y ∈O. Therefore, the
empty partial function of Dar(O) is extremizable, uex∅(O)=+∞ and lex∅(O) is
the function that takes the value −∞ on the complement of a set of cardinality at
most 1. �

Definition 6.3. Using the notation of Proposition 6.2 and Remark 3.14, we define
the Darboux completion of an ordered set O to be the ordered set

Dar′(O)= Dar(O) \ {lex∅(Dar(O)), uex∅(Dar(O))}.

Corollary 6.4. The Darboux completion of an ordered set is Darboux complete.

Proof. Let O be an ordered set and let ι : Dar(O)→O∨ be the inclusion. For any
partial functionψ :Dar(O)⇀Dar(O), Example 4.7 ensures that ι◦ψ is extremizable.
By Proposition 6.2, uexϕ ◦ uexι◦ψ and uexϕ ◦ lexι◦ψ are order-preserving functions
in OP(Dar(O)) that restrict to ψ on dom(ψ). On the other hand, lexι◦ψ ≤ ι ◦ g ≤
uexι◦ψ for any extension g of ψ to Dar(O). Since uexϕ ◦ι ◦ g = g, this implies
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uexϕ ◦ lexψ ′ ≤ g ≤ uexϕ ◦ uexψ ′ and thus ψ is extremizable. This concludes the
proof, since by construction Dar(O) is canonically isomorphic to D̂ar′(O). �

Remark 6.5. From now on we use the Yoneda embedding to canonically identify
O with a subset of Dar(O)⊆O∨. In particular, this provides a canonical embedding
of OP(O) into the set of partial functions Dar(O) ⇀ Dar(O).

Example 6.6. We define the set of real numbers to be the Darboux completion R of
the ordered set Q of rational numbers. Moreover, Dar(Q) is canonically identified
with the set of extended real numbers R̂= R∪ {±∞}.

Example 6.7. Let Q>0 ⊆Q be the ordered set of positive rational numbers and let
R>0=Dar′(Q>0). Extending each function in Dar′(Q>0) by+∞ to Q\Q>0 yields
a canonical embedding of R>0 into R whose image consists of real numbers that are
greater than Y (0). Moreover, the composition of this embedding with the canonical
embedding of Q>0 into Dar′(Q>0) coincides with the restriction of the canonical
embedding of Q into R. Keeping in mind the above canonical identifications, it
makes sense to write equalities such as Q>0 =Q∩R>0.

Remark 6.8. Let O be an ordered set, let P be a complete ordered set and let
ψ :Dar(O)⇀ P̂ be an embedding with domain Y (O) and inverse ψ ′ : P̂⇀Dar(O).
Since uexψ ′ ◦ uexψ restricts to the identity on Y (O), it is equal to idDar(O) by
Proposition 6.2. Therefore, uexψ : Dar(O)→ P̂ is an embedding. In particular,
it can attain the values ±∞ at most once, which implies that uexψ restricts to an
embedding f :Dar′(O)→P. By Remark 4.5 this implies that Dar′(O) also satisfies
the universal property of the Dedekind–MacNeille completion of O and is therefore
canonically isomorphic to it. In particular, this shows that our definition of R is
canonically isomorphic to the ordered set R′ of Dedekind cuts of Q. In fact, in
this case it is easy to see directly that uexψ ′ : R̂′→ R̂ is injective since it maps the
cut associated to a rational number x to Y (x) and (uexψ ′(C))−1(+∞)= C for any
irrational cut C .

Proposition 6.9. There exists a canonical embedding α : Aut(O)→ Aut(Dar(O)).
Moreover, α is a group homomorphism.

Proof. Let ϕ ∈ Aut(O). Using the convention of Remark 6.5, we may think of ϕ as
a partial function Dar(O) ⇀ Dar(O). Then by Remark 6.8

lexϕ−1 ◦ uexϕ = idDar(O) = uexϕ ◦ lexϕ−1 .

This implies that uexϕ is invertible and uexϕ ≤ lexϕ ◦ lexϕ−1 ◦ uexϕ ≤ lexϕ . There-
fore, exϕ ∈Aut(Dar(O)). Let α(ϕ)=exϕ for all ϕ∈Aut(O). Combining Remark 6.8
and Proposition 3.10, we conclude that α is an injective group homomorphism and
the proposition is proved. �
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Example 6.10. Addition in Q defines an embedding λ : Q→ Aut(Q) such that
(λ(r))(s) = r + s for all r, s ∈ Q. Composing with α we obtain an embedding
β :Q→ Aut(R̂). Since every (order-preserving) automorphism of R̂ necessarily
fixes ±∞, we have a canonical identification of Aut(R̂) with Aut(R). In particular,
(β(x))(±∞)=±∞ for all x ∈Q.

Proposition 6.11. R is canonically isomorphic to BDar(idβ(Q)).

Proof. Considering the embedding β constructed in Example 6.10 as a partial
function R⇀ OP(R̂) (which is extremizable by Proposition 4.4), we obtain order-
preserving functions lexβ, uexβ : R → OP(R̂). The order-preserving function
ev0 : BDar(idβ(Q))→R is surjective by Remark 6.8 since ev0 ◦ lexβ and ev0 ◦uexβ
both restrict to the identity on Q. Since lexβ ◦ev0 and uexβ ◦ev0 both restrict to the
identity on β(Q), they both equal the identity on BDar(idβ(Q)). Therefore ev0 is
invertible with inverse exβ . �

Remark 6.12. Combining Proposition 6.11 with Corollary 5.6, we conclude that
R has a canonical structure of commutative group. Alternatively, this structure can
be understood as follows. Let + be the addition operation on Q, thought of as a
partial function R×R⇀ R. Since (exβ(r))(s)= r + s for all r, s ∈Q, we obtain

lex+(x, y)≤ (exβ(x))(y)≤ uex+(x, y) (5)

for all x, y ∈ R. On the other hand, for every r ∈ Q both exβ(r)−1
◦ uex+(r,−)

and exβ(r)−1
◦ lex+(r,−) restrict to the identity of Q. By Remark 6.8, this implies

lex+(r,−) = exβ(r) = uex+(r,−) for all r ∈Q and thus lexβ(x) ≤ lex+(x,−) ≤
uex+(x,−) ≤ uexβ(x) for all x ∈ R. Hence the inequalities of (5) are actually
equalities for all x, y ∈ R.

Remark 6.13. A similar argument shows that the multiplication on Q>0 thought
of as a partial function • : R>0×R>0 ⇀ R>0 defines a partial function γ : R>0 ⇀

Aut(R>0) such that dom(γ )=Q>0 and (exγ (x))(y)= ex•(x, y) for all x, y ∈R>0.

Theorem 6.14. (R>0, ex+, ex•) is a semifield.

Proof. Let ψ : (R>0)
3 ⇀ R>0 be the partial function with domain (Q>0)

3 and such
that ψ(r, s, t) = r(s + t) for all r, s, t ∈ Q>0. Since ex•(r, ex+(s, t)) = ψ(r, s, t)
for all r, s, t ∈Q>0,

lexψ(x, y, z)≤ ex•(x, ex+(y, z))≤ uexψ(x, y, z) (6)

for all x, y, z∈R>0. On the other hand, since γ (s+t) agrees with both lexψ(−, s, t)
and uexψ(−, s, t) on Q>0 for all s, t ∈ Q>0, they also agree on R>0. Using that
(γ (s+ t))(x)= ex•(x, s+ t)= (exγ (x))(s+ t), we obtain

lex+(y, z)≤ (exγ (x))−1 lexψ(x, y, z)≤ (exγ (x))−1 uexψ(x, y, z)≤ uex+(y, z).
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Since ex•(x, ex+(y, z))= (exγ (x))(ex+(y, z)) for all x, y, z ∈ R>0, we conclude
that the inequalities of (6) are in fact equalities. It follows from the distributivity
of • over + on Q>0 that ex+(ex•(r, t), ex•(r, t)) = ψ(r, s, t) for all r, s, t ∈ Q>0.
Hence, ex• distributes over ex+ on R>0 and the theorem is proved. �

Remark 6.15. A standard argument shows that ex• can be canonically extended to
an operation · on R (which is not order-preserving) in such a way that (R, ex+, · )
is a field. With a slight abuse of notation, from now on we write + for ex+. Since
(β(x))(±∞)=±∞ for all x ∈Q, we set x + (±∞)=±∞ for all x ∈ R.

Remark 6.16. For each ordered set O, the set OP(O,R) inherits a canonical struc-
ture of R-algebra with operations defined pointwise on O. In particular, f1 ≤ f2

implies f1+ f3 ≤ f2+ f3 for any f1, f2, f3 ∈OP(O,R) and f1 f3 ≤ f2 f3 whenever
0≥ f3.

7. Limits and integrals

Definition 7.1. A filter basis on an ordered set O is a collection F of nonempty
subsets of O that is closed under finite intersections. To each filter basis F of O we
associate the partial function ψF : OP(O,R) ⇀ R̂ such that

dom(ψF )=
⋃
S∈F

dom(ψS),

where ψS is defined as in Example 4.8 and ψF ( f )=ψS( f ) for each f ∈ dom(ψS)

and for each S ∈ F.

Definition 7.2. Let O be a discrete set and let F be a filter basis on O. An order-
preserving function f :O→ R is F-convergent if there exists limF ( f ) ∈ R̂ such
that for every ε > 0 there exists S ∈ F such that f (x)∈ [limF ( f )−ε, limF ( f )+ε]
for all x ∈ S.

Theorem 7.3. Let O be a discrete set and let F be a filter basis on O. An order-
preserving function f : O → R is F-convergent if and only if f ∈ Dar(ψF ).
Moreover, exψF ( f )= limF ( f ) for all f ∈ Dar(ψF ).

Proof. Assume that f ∈ Dar(ψF ). Then by Remark 2.11 for every ε > 0 there
exist S ′,S ′′ ∈ F such that [exψF ( f ), exψS′

( f )] ⊆ [exψF ( f ), exψF ( f ) + ε] and
[exψS′′

( f ), exψF ( f )] ⊆ [exψF ( f )− ε, exψF ( f )]. Therefore, setting S = S ′∩S ′′ we
obtain

exψF ( f )− ε ≤ lexψS ( f )≤ f (x)≤ uexψS ( f )≤ exψF ( f )+ ε

for every x ∈ S. Hence f is F-convergent and limF ( f )= exψF ( f ). Conversely, if
f is F-convergent, for every ε > 0 there exists S ∈ F such that

lim
F
( f )− ε ≤ f (x)≤ lim

F
( f )+ ε
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for all x ∈ S. Using Remark 4.9, this implies

[lexψF ( f ), uexψF ( f )] ⊆ [lexψS ( f ), uexψS ( f )] ⊆ [lim
F
( f )− ε, lim

F
( f )+ ε]

for every ε > 0. Hence, f ∈ Dar(ψF ) and limF ( f )= exψF ( f ). �

Remark 7.4. In terms of the philosophy outlined in Section 1, the functions in
dom(ψF ), i.e., the functions that are constant on some element of F, are “obviously
F-convergent” and ψF is their “obvious limit”. Feeding the machinery of Darboux
calculus with this information results in a construction of general F-convergent
functions that is alternative to the (ε, δ)-definition given in Definition 7.2.

Example 7.5. Let N be the set of natural numbers with its usual order. Let O= |N|
and let F = {N\[1, n]}n∈N. Then OP(O,R) is the set of all sequences, dom(ψF ) is
the set of sequences that are eventually constant and ψF ( f ) is the function that to
such a sequence assigns its obvious limit, i.e., the only value that f attains infinitely
many times. Moreover, Dar(ψF ) is precisely the set of all convergent sequences
(including those converging to ±∞) and exψF is their limit.

Example 7.6. Let O = |R|, let x0 ∈ R and let F be the collection of all subsets
of the form [x0 − δ, x0 + δ] for some δ > 0. Then OP(O,R) is the set of all
real-valued functions of one real variable, dom(ψF ) is the subset of functions that
are constant in a neighborhood of x0 and ψF ( f ) = f (x0) for all f ∈ dom(ψF ).
Moreover, Dar(ψF ) is precisely the set of all functions that are continuous at x0

and exψF ( f )= f (x0) for all f ∈ dom(ψF ).

Example 7.7. In the notation of Example 7.6, we could also consider F to be the
collection of all subsets of the form [x0− δ, x0+ δ] \ {x0} for some δ > 0. Then
f ∈ Dar(ψF ) if and only if f has a limit at x0, in which case exψF ( f ) equals the
limit. We leave the obvious variations leading to left and right limits to the reader.

Definition 7.8. We denote by Int(O) the ordered set of all intervals with endpoints
in O with order given by [a, b] ≤ [c, d] if and only if c ≤ a ≤ b ≤ d. We write
int(O) for the collection of nonempty subsets of O of the form [x, z] \ {x, z}, for
some [x, z] ∈ Int(O) (also ordered by inclusion).

Example 7.9. For any J ∈ Int(R) let m : int(J )→ R>0 be the order-preserving
function defined by m([x, z]\{x, z})= z−x whenever x ≤ z and 0 otherwise. Given
J ∈ Int(R), let Par(J ) be the collection of partitions of J, i.e., finite collections
P ⊆ int(J ) of mutually disjoint subsets such that J \

⋃
I∈P I is finite. For each

I ∈ int(J ), letψI :OP(|J |,R)⇀ R̂ be the partial function associated to the nonempty
subset I as in Example 4.8. In particular, the set of all bounded R-valued functions
on J coincides with

O = B(ψJ )=
⋂
I∈P

B(ψI )
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for any P ∈Par(J ). Let ϕI :B(ψI )⇀R be the extremizable partial function defined
as in Remark 4.9 for each I ∈ int(J ) and let UP , LP :O→R be the order-preserving
functions defined by

UP =
∑
I∈P

m(I ) uexϕI and LP =
∑
I∈P

m(I ) lexϕI .

By Remark 4.9 it is clear that for each f ∈ O, UP( f ) coincides with the usual
upper Darboux sums of f and LP( f ) coincides with the usual lower Darboux sums
of f ; see, e.g., [Rudin 1953]. On the other hand, for each P ∈ Par(J ) consider the
partial function ϕP :O⇀ R defined by

ϕP( f )=
∑
I∈P

m(I )ϕI ( f ) (7)

for each element f of
dom(ϕP)=

⋂
I∈P

dom(ϕI ).

Since ϕP is clearly encompassing, it is also extremizable by Corollary 4.6. Moreover,

lexϕP ≤ LP ≤UP ≤ uexϕP , (8)

as each term in the above chain of inequalities restricts to ϕP on dom(ϕP). Since
each function in O attains only finitely many values, dom(ϕP) ∼= RN for some
integer N. In particular, Corollary 4.6 ensures that if ρP :O⇀ dom(ϕP) denotes
the identity function on dom(ϕP) then ρP is extremizable. Therefore

uexϕP ≤ ϕP ◦ uexρP =

∑
I∈P

m(I )(ϕI ◦ uexρP )≤
∑
I∈P

m(I ) uexϕI ◦ρP =UP . (9)

Combined with an analogous estimate for lexϕP and (8), (9) shows that uexϕP =UP

and lexϕP = LP . Since m(I ) = m(I1) + m(I2) whenever I \ (I1 ∪ I2) is finite
and I ⊆ I ′ implies ϕI ( f ) = ϕI ′( f ) for each f ∈ dom(ϕ′I ), we have for each
f ∈ dom(ϕP)∩ dom(ϕP ′)

ϕP( f )=
∑
I∈P

m(I )ϕI ( f )=
∑
I∈P

∑
I ′∈P ′

m(I∩I ′)ϕI∩I ′( f )=
∑
I ′∈P ′

m(I ′)ϕI ′( f )=ϕP ′( f ).

Let ϕ be the common extension of the compatible set {ϕP}P∈Par(J ). In particular,
dom(ϕ) is the set of step functions on J, i.e., the set of all functions on |J | that
are constant on each interval of some partition of J. Combining Remark 3.6 with
Corollary 4.6 we conclude that ϕ is encompassing and thus extremizable. By
Remark 3.7, an order-preserving function g : O→ R restricts to ϕ on dom(ϕ) if
and only if

g ∈
⋂

P∈Par(J )

[lexϕP , uexϕP ] =

⋂
P∈Par(J )

[LP ,UP ].
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Hence, lexϕ and uexϕ coincide with the lower and upper integrals of f on J,
respectively. In particular, Dar(ϕ) coincides with the set of functions on J that are
integrable in the sense of Riemann and exϕ is the Riemann integral. This is in fact
the motivating example for the philosophy of Section 1: to define the Riemann
integral it is sufficient to feed the “obvious” definition for step functions, given
by (7), into the machinery of Darboux calculus to automatically obtain the correct
general definition.

Theorem 7.10 (linearity). Let ψ : OP(O,R) ⇀ R be a partial function such that

(1) ψ is encompassing;

(2) dom(ψ) is an R-linear subspace of OP(O,R);

(3) ψ is an R-linear transformation.

Then for every f1, f2 ∈ OP(O,R) and for every nonnegative a1, a2 ∈ R

uexψ(a1 f1+ a2 f2)≤ a1 uexψ( f1)+ a2 uexψ( f2) (10)

and similarly
a1 lexψ( f1)+ a2 lexψ( f2)≤ lexψ(a1 f1+ a2 f2). (11)

Moreover
− lexψ( f )= uexψ(− f ) (12)

for every f ∈OP(O,R). In particular, Dar(ψ) is an R-linear subspace of OP(O,R)

and exψ is R-linear.

Proof. Since ψ is encompassing, it is extremizable. By the additivity of ψ , the
assignment f1 7→ uexψ( f1+ η2)−ψ(η2) coincides with ψ on dom(ψ) for each
fixed η2 ∈ dom(ψ). Therefore

uexψ( f1+ η2)≤ uexψ( f1)+ψ(η2) (13)

for every f1 ∈ OP(O,R) and for every η2 ∈ dom(ψ). In particular

uexψ( f1)+ψ(η2)= uexψ(( f1+ η2)+ (−η2))+ψ(η2)≤ uexψ( f1+ η2)

and thus the inequality in (13) is actually an equality. Therefore, for each f1 ∈

OP(O,R) the assignment f2 7→ uexψ( f1 + f2)− uexψ( f1) coincides with ψ on
dom(ψ). This proves (10) when a1 = a2 = 1. Since ψ is compatible with scalar
multiplication, a is a positive real number and the assignment f 7→ a−1 uexψ(a f )
coincides with ψ on dom(ψ). Therefore, uexψ(a f ) ≤ a uexψ( f ), which in turn
implies

a uexψ( f )= a uexψ(a−1(a f ))≤ uexψ(a f ).

As a result, a uexψ( f )= uexψ(a f ) for every positive real number a and for every
f ∈ OP(O,R). This proves (10) and (11) is proved similarly. Since ψ is odd,
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the assignments f 7→ − lexψ(− f ) and f 7→ − uexψ(− f ) both restrict to ψ on
dom(ψ) and thus

lexψ( f )≤− uexψ(− f )≤− lexψ(− f )≤ uexψ( f ) (14)

for every f ∈OP(O,R). The first inequality in (14) implies uexψ(− f )≤− lexψ( f ),
while the last inequality of (14) implies − lexψ( f )≤ uexψ(− f ) and thus (12). The
last statement is a straightforward consequence of (10)–(12). �

Example 7.11. Specializing Theorem 7.10 to Examples 7.5–7.9 we obtain the
well-known linearity theorems for limits of sequences, continuous functions, limits
of functions of real variable and integrals.
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