\bullet
 in Olve a journal of mathematics

Solutions of boundary value problems at resonance with periodic and antiperiodic boundary conditions

Aldo E. Garcia and Jeffrey T. Neugebauer

Solutions of boundary value problems at resonance with periodic and antiperiodic boundary conditions

Aldo E. Garcia and Jeffrey T. Neugebauer
(Communicated by Johnny Henderson)

Abstract

We study the existence of solutions of the second-order boundary value problem at resonance $u^{\prime \prime}=f\left(t, u, u^{\prime}\right)$ satisfying the boundary conditions $u(0)+u(1)=0$, $u^{\prime}(0)-u^{\prime}(1)=0$, or $u(0)-u(1)=0, u^{\prime}(0)+u^{\prime}(1)=0$. We employ a shift method, making a substitution for the nonlinear term in the differential equation so that these problems are no longer at resonance. Existence of solutions of equivalent boundary value problems is obtained, and these solutions give the existence of solutions of the original boundary value problems.

1. Introduction

Consider the second-order boundary value problem

$$
\begin{equation*}
u^{\prime \prime}=f\left(t, u, u^{\prime}\right), \quad t \in(0,1), \tag{1-1}
\end{equation*}
$$

satisfying a combination of antiperiodic and periodic boundary conditions; either

$$
\begin{equation*}
u(0)+u(1)=0, \quad u^{\prime}(0)-u^{\prime}(1)=0 . \tag{1-2}
\end{equation*}
$$

or

$$
\begin{equation*}
u(0)-u(1)=0, \quad u^{\prime}(0)+u^{\prime}(1)=0 . \tag{1-3}
\end{equation*}
$$

Here we assume $f(t, x, y):[0,1] \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous in each of its variables.
Since the boundary value problem $u^{\prime \prime}=0,(1-2)$ has the nontrivial solution $u(t)=t-\frac{1}{2}$, the problem (1-1), (1-2) is said to be at resonance. Similarly, since $u^{\prime \prime}=0,(1-3)$ has the nontrivial solution $u(t) \equiv 1$, the problem (1-1), (1-3) is also at resonance. Hence, standard methods employing Green's functions cannot be used to show the existence of solutions of these boundary value problems directly. Thus, we consider a shifted boundary value problem so that Green's functions can be employed.

[^0]Han [2007] employed a shift argument when studying a three-point boundary value problem

$$
\begin{gathered}
x^{\prime \prime}(t)=f(t, x(t)), \quad t \in(0,1) \\
x^{\prime}(0)=0, \quad x(\eta)=x(1)
\end{gathered}
$$

Here it was assumed $g(t, x)=f(t, x)+\beta^{2} x$ and the equivalent boundary value problem

$$
x^{\prime \prime}(t)+\beta^{2} x(t)=g(t, x(t)), \quad x^{\prime}(0)=0, x(\eta)=x(1)
$$

was studied using the Krasnosel'skii-Guo fixed point theorem [Krasnosel'skii 1964].
Infante, Pietramala, and Tojo [Infante et al. 2016] also employed a shift argument when studying Neumann boundary value problems at resonance

$$
\begin{gathered}
u^{\prime \prime}(t)+h(t, u(t))=0, \quad t \in(0,1), \\
u^{\prime}(0)=u^{\prime}(1)=0 .
\end{gathered}
$$

They assumed $f(t, u)=h(t, u)+\omega^{2} u$ and considered the equivalent boundary value problem

$$
-u^{\prime \prime}(t)+\omega^{2} u(t)=f(t, u(t)), \quad u^{\prime}(0)=u^{\prime}(1)=0 .
$$

The Krasnosel'skii-Guo fixed point theorem was also used in their analysis.
More recently, Almansour and Eloe [2015] and Al Mosa and Eloe [2016] studied two-point boundary value problems

$$
\begin{gathered}
y^{\prime \prime}(t)=f(t, y(t)), \quad t \in[0,1], \\
y^{\prime}(0)=0, \quad y^{\prime}(1)=0,
\end{gathered}
$$

and

$$
\begin{gathered}
y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right), \quad t \in[0,1], \\
y(0)=0, \quad y^{\prime}(0)=y^{\prime}(1),
\end{gathered}
$$

using shift arguments and the Krasnosel'skii-Guo fixed point theorem, the Schauder fixed point theorem, the Leray-Schauder nonlinear alternative [Zeidler 1990] in the former, and monotone methods coupled with upper and lower solutions in the latter.

When considering the first boundary value problem, they assumed $g(t, y)=$ $f(t, y)+\beta^{2} y$ and studied the equivalent boundary value problem

$$
y^{\prime \prime}(t)+\beta^{2} y(t)=g(t, y(t)), \quad y^{\prime}(0)=y^{\prime}(1)=0,
$$

and when considering second, they assumed $g(t, x, y)=f(t, x, y)+\beta y$ and studied the equivalent boundary value problem

$$
y^{\prime \prime}(t)+\beta y^{\prime}(t)=g\left(t, y(t), y^{\prime}(t)\right), \quad y(0)=0, \quad y^{\prime}(0)=y^{\prime}(1) .
$$

Here, we make use of two substitutions, one of which has not been used previously in the literature. In Section 2, we study solutions of (1-1), (1-2) by employing the substitution $g(t, x, y):=f(t, x, y)+\beta y$. The shifted boundary value problem is no longer at resonance, and so a Green's function can be constructed. An appropriate integral operator is defined and fixed point methods are used to show the existence of solutions. In Section 3, we study solutions of (1-1), (1-3). The substitutions mentioned above do not help because in both cases the shifted boundary value problem is still at resonance. Thus, we use the substitution $k(t, x, y)=$ $f(t, x, y)+2 \alpha y+\left(\alpha^{2}+\beta^{2}\right) x$. This substitution has not been used in the prior literature. A similar approach to that in Section 2 is then used to show existence of solutions. The construction of the two Green's functions and the shift employed in Section 3 can both lead to more research in this area.

2. Solutions of (1-1), (1-2)

Notice that for $\beta>0, \beta \neq n \pi, n \in \mathbb{N}$, the boundary value problem $u^{\prime \prime}+\beta^{2} u=0$, (1-2) is at resonance, since $u(t)=\cos \beta t-((1+\cos \beta) / \sin \beta) \sin \beta t$ is a nontrivial solution. If $\beta=n \pi, n \in \mathbb{N}$, then $u(t)=\sin \beta t$ is a nontrivial solution of the boundary value problem. Thus the substitution $g(t, x, y)=f(t, x, y)+\beta^{2} x$ cannot be applied.

Let $\beta>0$ be a constant and assume $g(t, x, y):=f(t, x, y)+\beta y$. We study the shifted differential equation

$$
\begin{equation*}
u^{\prime \prime}+\beta u^{\prime}=g\left(t, u, u^{\prime}\right), \quad t \in(0,1) \tag{2-1}
\end{equation*}
$$

satisfying boundary conditions (1-2). The boundary value problem (2-1), (1-2) is not at resonance, since the unique solution of $u^{\prime \prime}+\beta u^{\prime}=0,(1-2)$, is $u \equiv 0$. Notice if $u(t)$ is a solution of $(2-1),(1-2)$, then

$$
u^{\prime \prime}(t)=g\left(t, u(t), u^{\prime}(t)\right)-\beta u^{\prime}(t)=f\left(t, u(t), u^{\prime}(t)\right)
$$

implying u is a solution of (1-1), (1-2).
We first construct the Green's function associated with $u^{\prime \prime}+\beta u^{\prime}=0,(1-2)$.
Lemma 2.1. Let $h(t)$ be a continuous function. Then $u(t)$ is the unique solution of the boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+\beta u^{\prime}=h(t), \quad t \in(0,1) \tag{2-2}
\end{equation*}
$$

satisfying boundary conditions (1-2) if and only if

$$
u(t)=\int_{0}^{1} G(t, s) h(s) d s
$$

where

$$
G(t, s)=\frac{1}{2 \beta\left(1-e^{-\beta}\right)} \begin{cases}2 e^{-\beta(1-s)}-2 e^{-\beta} e^{-\beta(t-s)}+e^{-\beta}-1, & 0 \leq t \leq s \leq 1 \tag{2-3}\\ 2 e^{-\beta(1-s)}-2 e^{-\beta(t-s)}-e^{-\beta}+1, & 0 \leq s \leq t \leq 1\end{cases}
$$

Proof. Using Laplace transforms, one can show the general solution of (2-2) is given by

$$
u(t)=c_{1}+c_{2} e^{-\beta t}+\frac{1}{\beta} \int_{0}^{t}\left(1-e^{-\beta(t-s)}\right) h(s) d s
$$

Since $u^{\prime}(0)-u^{\prime}(1)=0$, we have

$$
-c_{2} \beta+c_{2} \beta e^{-\beta}-\int_{0}^{1} e^{-\beta(1-s)} h(s) d s=0
$$

Solving for c_{2} gives

$$
c_{2}=-\frac{1}{\beta\left(1-e^{-\beta}\right)} \int_{0}^{1} e^{-\beta(1-s)} h(s) d s
$$

The boundary condition $u(0)+u(1)=0$ gives

$$
c_{1}+c_{2}+c_{1}+c_{2} e^{-\beta}+\frac{1}{\beta} \int_{0}^{1}\left(1-e^{-\beta(t-s)}\right) h(s) d s=0
$$

By substituting c_{2} from above, solving for c_{1}, and simplifying, we have

$$
c_{1}=\frac{1}{2 \beta\left(1-e^{-\beta}\right)} \int_{0}^{1}\left(-1+e^{-\beta}+2 e^{-\beta(1-s)}\right) h(s) d s
$$

Thus

$$
\begin{aligned}
u(t) & =\frac{1}{2 \beta\left(1-e^{-\beta}\right)} \int_{0}^{1}\left(-1+e^{-\beta}+2 e^{-\beta(1-s)}\right) h(s) d s \\
& \quad-\frac{e^{-\beta t}}{\beta\left(1-e^{-\beta}\right)} \int_{0}^{1} e^{-\beta(1-s)} h(s) d s+\frac{1}{\beta} \int_{0}^{t}\left(1-e^{-\beta(t-s)}\right) h(s) d s \\
= & \int_{0}^{1} G(t, s) h(s) d s
\end{aligned}
$$

where

$$
G(t, s)= \begin{cases}\frac{-1+e^{-\beta}+2 e^{-\beta(1-s)}}{2 \beta\left(1-e^{-\beta}\right)}-\frac{e^{-\beta t} e^{-\beta(1-s)}}{\beta\left(1-e^{-\beta}\right)}, & 0 \leq t \leq s \leq 1 \\ \frac{-\left(1-e^{-\beta}\right)+2 e^{-\beta(t-s)}}{2 \beta\left(1-e^{-\beta}\right)}-\frac{e^{-\beta t} e^{-\beta(1-s)}}{\beta\left(1-e^{-\beta}\right)}+\frac{1-e^{-\beta(t-s)}}{\beta}, & 0 \leq s \leq t \leq 1\end{cases}
$$

Simplifying $G(t, s)$ gives (2-3).
The reverse direction of the proof can be shown by direct computation.
Notice that

$$
\frac{\partial}{\partial t} G(t, s)=\frac{1}{1-e^{-\beta}} \begin{cases}e^{-\beta} e^{-\beta(t-s)}, & 0 \leq t \leq s \leq 1 \tag{2-4}\\ e^{-\beta(t-s)}, & 0 \leq s \leq t \leq 1\end{cases}
$$

We point out several properties of the Green's function.

Lemma 2.2. $G(t, s)$ satisfies the following properties:
(1) $G \in C([0,1] \times[0,1])$.
(2) $G(0, s)=-\frac{1}{2 \beta}<0$ for all $s \in[0,1]$.
(3) $G(1, s)=\frac{1}{2 \beta}>0$ for all $s \in[0,1]$.
(4) $\frac{\partial}{\partial t} G(t, s)>0$ for all $(t, s) \in[0,1] \times[0,1]$.
(5) $\max _{t \in[0,1]}|G(t, s)|=\frac{1}{2 \beta}$ for all $s \in[0,1]$.
(6) $\max _{t \in[0,1]} \frac{\partial}{\partial t} G(t, s) \leq \frac{1}{1-e^{-\beta}}$ for all $s \in[0,1]$.
(7) $\max _{t \in[0,1]} \int_{0}^{1}|G(t, s)| d s \leq \frac{(4+\beta) e^{\beta}+\beta-4}{2 \beta^{2}\left(e^{\beta}-1\right)}$.
(8) $\max _{t \in[0,1]} \int_{0}^{1} \frac{\partial}{\partial t} G(t, s) d s=\frac{1}{\beta}$.

All of these properties can be shown directly, so a proof is not given. We point out that property (8) is obtained by making all the terms in $G(t, s)$ positive, integrating, and finding an upper bound when $t \in[0,1]$.

We employ Schauder's fixed point theorem in our analysis. Because of the fact that $G(t, s)$ changes sign, many fixed point theorems using cones cannot be used.

Theorem 2.3 (Schauder fixed point theorem [Hale and Verduyn Lunel 1993]). If \mathcal{M} is a closed, bounded, convex subset of a Banach space \mathcal{B} and $T: \mathcal{M} \rightarrow \mathcal{M}$ is completely continuous, then T has a fixed point in \mathcal{M}.

Let $\mathcal{B}=C^{(1)}[0,1]$ be the Banach space of functions whose first derivatives are continuous endowed with the norm

$$
\|u\|=\max \left\{|u|_{0},\left|u^{\prime}\right|_{0}\right\}
$$

where $|u|_{0}=\max _{t \in[0,1]}|u(t)|$. Let $M>0$. Define $\mathcal{M}=\{u \in \mathcal{B}:\|u\| \leq M\}$. Notice that \mathcal{M} is a closed, bounded, convex subset of \mathcal{B}.

Define the operator $T: \mathcal{B} \rightarrow \mathcal{B}$ by

$$
T u(t)=\int_{0}^{1} G(t, s) g\left(s, u(s), u^{\prime}(s)\right) d s
$$

Thus if u is a fixed point of T, then u is a solution of (2-1), (1-2). A standard application of the Arzelà-Ascoli theorem gives us that T is completely continuous. Define

$$
\max _{t \in[0,1]} \int_{0}^{1}|G(t, s)| d s:=\bar{G} \quad \text { and } \quad \max _{t \in[0,1]} \int_{0}^{1} \frac{\partial}{\partial t} G(t, s) d s:=\bar{G}^{\prime}
$$

Theorem 2.4. Assume $f(t, x, y)$ is continuous in $[0,1] \times \mathbb{R} \times \mathbb{R}$ with

$$
|f(t, x, y)+\beta y| \leq \min \left\{\frac{M}{\bar{G}}, \frac{M}{\bar{G}^{\prime}}\right\}
$$

for all $(t, x, y) \in[0,1] \times[-M, M] \times[-M, M]$. Then (1-1), (1-2) has a solution $u^{*} \in \mathcal{M}$.

Proof. Since $g(t, x, y)=f(t, x, y)+\beta y$,

$$
|g(t, x, y)| \leq \min \left\{\frac{M}{\bar{G}}, \frac{M}{\bar{G}^{\prime}}\right\}
$$

for all $(t, x, y) \in[0,1] \times[-M, M] \times[-M, M]$.
Now, for $u \in \mathcal{M}$,

$$
\begin{gathered}
|T u(t)| \leq \int_{0}^{1}|G(t, s)|\left|g\left(s, u(s), u^{\prime}(s)\right)\right| d s \leq \frac{M}{\bar{G}} \int_{0}^{1}|G(t, s)| d s=M, \\
\left|(T u)^{\prime}(t)\right| \leq \int_{0}^{1} \frac{\partial}{\partial t} G(t, s)\left|g\left(s, u(s), u^{\prime}(s)\right)\right| d s \leq \beta M \int_{0}^{1} \frac{\partial}{\partial t} G(t, s) d s=M .
\end{gathered}
$$

So $\|T u\| \leq M$, and $T: \mathcal{M} \rightarrow \mathcal{M}$. Thus T has a fixed point $u^{*} \in \mathcal{M}$ which is a solution of (2-1), (1-2). Therefore, u^{*} is a solution of (1-1), (1-2).

Example 2.5. Define

$$
f(t, x, y)=\frac{5 x^{2} t^{2}}{y^{2}+2}-5 y .
$$

Let $\beta=5$. Then from Lemma 2.2

$$
\min \left\{\frac{M}{\bar{G}}, \frac{M}{\bar{G}^{\prime}}\right\} \leq \min \left\{\frac{2 \beta^{2}\left(e^{\beta}-1\right)}{(4+\beta) e^{\beta}+\beta-4} M, \beta M\right\}=5 M .
$$

So

$$
|f(t, x, y)+5 y|=\frac{5 x^{2} t^{2}}{y^{2}+2} \leq 5 M^{2} \leq 5 M
$$

if $M \leq 1$. So the boundary value problem

$$
\begin{gathered}
u^{\prime \prime}=\frac{5 u^{2} t^{2}}{\left(u^{\prime}\right)^{2}+2}-5 u^{\prime}, \quad t \in(0,1) \\
u(0)+u(1)=0, \quad u^{\prime}(0)-u^{\prime}(1)=0
\end{gathered}
$$

has a solution u^{*} with $\left\|u^{*}\right\| \leq 1$.

3. Solutions of (1-1), (1-3)

For $\beta>0$, the boundary value problem $u^{\prime \prime}+\beta^{2} u=0,(1-3)$ is at resonance, since

$$
u(t)=\cos \beta t-\left(\frac{1-\cos \beta}{\sin \beta}\right) \sin \beta t
$$

gives a nontrivial solution. If $\beta=n \pi, n \in \mathbb{N}$, then $u(t)=\cos \beta t$ is a nontrivial solution of the boundary value problem. Thus the substitution $k(t, x, y)=$ $f(t, x, y)+\beta^{2} x$ cannot be applied. Also, the boundary value problem $u^{\prime \prime}+\beta u^{\prime}=0$, (1-3) is at resonance, since $u(t) \equiv 1$ gives a nontrivial solution. This implies the substitution $k(t, x, y)=f(t, x, y)+\beta^{2} y$ cannot be used. Thus, neither substitution used in previous literature can be employed.

Let $\alpha>0, \beta \in\left(0, \frac{\pi}{2}\right)$ and define

$$
k(t, x, y)=f(t, x, y)+2 \alpha y+\left(\alpha^{2}+\beta^{2}\right) x .
$$

Here we consider the equivalent boundary value problem

$$
\begin{equation*}
u^{\prime \prime}+2 \alpha u^{\prime}+\left(\alpha^{2}+\beta^{2}\right) u=k\left(t, u, u^{\prime}\right), \quad t \in(0,1), \tag{3-1}
\end{equation*}
$$

satisfying boundary conditions (1-3), which is not at resonance, since the unique solution of $u^{\prime \prime}+2 \alpha u^{\prime}+\left(\alpha^{2}+\beta^{2}\right) u=0,(1-3)$ is $u \equiv 0$. If u is a solution of (3-1), (1-3), then u is a solution of (1-1), (1-3).

Again, we construct a corresponding Green's function.

Lemma 3.1. The unique solution of

$$
\begin{equation*}
u^{\prime \prime}+2 \alpha u^{\prime}+\left(\alpha^{2}+\beta^{2}\right) u=h(t), \quad t \in(0,1), \tag{3-2}
\end{equation*}
$$

satisfying the boundary conditions (1-3) is given by

$$
u(t)=\int_{0}^{1} H(t, s) h(s) d s,
$$

where

$$
\begin{equation*}
H(t, s)=\frac{1}{2 \beta(\beta \sinh \alpha-\alpha \sin \beta)} \Psi(t, s) \tag{3-3}
\end{equation*}
$$

with

$$
\Psi(t, s)=\left\{\begin{array}{cl}
e^{-\alpha(t-s)}\left[-\beta e^{-\alpha} \sin (\beta(s-t))+2 \alpha \sin (\beta(1-s)) \sin (\beta t)\right. & \\
-\beta \sin (\beta t) \cos (\beta(1-s))+\beta \cos (\beta t) \sin (\beta(1-s))], & 0 \leq t \leq s \leq 1, \\
e^{-\alpha(t-s)}\left[\beta e^{\alpha} \sin (\beta(t-s))+2 \alpha \sin (\beta s) \sin (\beta(1-t))\right. & \\
-\beta \sin (\beta s) \cos (\beta(1-t))+\beta \cos (\beta s) \sin (\beta(1-t))], & 0 \leq s \leq t \leq 1 .
\end{array}\right.
$$

Proof. If u satisfies (3-2), then, using Laplace transforms,

$$
u(t)=e^{-\alpha t}\left(c_{1} \cos (\beta t)+c_{2} \sin (\beta t)\right)+\frac{1}{\beta} \int_{0}^{t}\left(e^{-\alpha(t-s)} \sin (\beta(t-s))\right) h(s) d s .
$$

Solving the system $u(0)-u(1)=0, u^{\prime}(0)+u^{\prime}(1)=0$ gives

$$
\begin{aligned}
& c_{1}=-\frac{1}{2 \alpha e^{-\alpha} \sin (\beta)+\beta e^{-2 \alpha}-\beta} \\
& \quad \times\left[\int_{0}^{1}\left[e^{-\alpha(1-s)} \sin (\beta(1-s))-e^{-\alpha(2-s)} \sin (\beta s)\right] h(s) d s\right], \\
& c_{2}=-\frac{1}{\beta e^{-\alpha} \sin (\beta)\left(2 \alpha e^{-\alpha} \sin (\beta)+\beta e^{-2 \alpha}-\beta\right)} \\
& \quad \times\left[\int _ { 0 } ^ { 1 } \left[\beta e^{-\alpha(3-s)}[\cos (\beta) \sin (\beta s)+\sin (\beta(1-s))]\right.\right. \\
& \quad-e^{-\alpha(2-s)}[\beta \cos (\beta) \sin (\beta(1-s)) \\
& \quad+\beta \sin (\beta s)-2 \alpha \sin (\beta) \sin (\beta(1-s))]] h(s) d s]
\end{aligned}
$$

The Green's function given in (3-3) can then be obtained.
Notice

$$
\begin{equation*}
\frac{\partial}{\partial t} H(t, s)=\frac{1}{2 \beta(\beta \sinh \alpha-\alpha \sin \beta)} \Phi(t, s), \tag{3-4}
\end{equation*}
$$

where

$$
\Phi(t, s)=\left\{\begin{array}{cl}
e^{-\alpha(t-s)}\left[e^{-\alpha} \beta^{2} \cos (\beta(s-t))+2 \alpha \beta \sin (\beta(1-s)) \cos (\beta t)\right. & \\
\left.-\beta^{2} \sin (\beta(1-s)) \sin (\beta t)-\beta^{2} \cos (\beta(1-s)) \cos (\beta t)\right] \\
-\alpha e^{-\alpha(t-s)}\left[2 \alpha \sin (\beta(1-s)) \sin (\beta t)-e^{-\alpha} \beta \sin (\beta(s-t))\right. \\
+\beta \sin (\beta(1-s)) \cos (\beta t)-\beta \cos (\beta(1-s)) \sin (\beta t)], \quad 0 \leq t \leq s \leq 1, \\
e^{-\alpha(t-s)}\left[e^{\alpha} \beta^{2} \cos (\beta(t-s))-2 \alpha \beta \sin (\beta s) \cos (\beta(1-t))\right. & \\
\left.-\beta^{2} \sin (\beta s) \sin (\beta(1-t))-\beta^{2} \cos (\beta s) \cos (\beta(1-t))\right] & \\
-\alpha e^{-\alpha(t-s)}\left[2 \alpha \sin (\beta s) \sin (\beta(1-t))+e^{\alpha} \beta \sin (\beta(t-s))\right. \\
-\beta \sin (\beta s) \cos (\beta(1-t))+\beta \cos (\beta s) \sin (\beta(1-t))], \quad 0 \leq s \leq t \leq 1 .
\end{array}\right.
$$

We point out several properties of the Green's function.

Lemma 3.2. $H(t, s)$ satisfies the following properties:
(1) $H \in C([0,1] \times[0,1])$.
(2) $H(0, s)=H(1, s)=\frac{e^{\alpha s}\left(\beta \sin (\beta(1-s))-e^{-\alpha} \beta \sin (\beta s)\right)}{2 \beta(\beta \sinh \alpha-\alpha \sin \beta)}$ for all $s \in[0,1]$.
(3) $\max _{t \in[0,1]}|H(t, s)| \leq \frac{\beta e^{\alpha}+2 \alpha+2 \beta}{2 \beta(\beta \sinh \alpha-\alpha \sin \beta)}$ for all $s \in[0,1]$.
(4) $\max _{t \in[0,1]}\left|\frac{\partial}{\partial t} H(t, s)\right| \leq \frac{\alpha \beta e^{\alpha}+2 \alpha^{2}+2 \beta^{2}+2 \alpha \beta+\beta^{2} e^{\alpha}}{2 \beta(\beta \sinh \alpha-\alpha \sin \beta)}$ for all $s \in[0,1]$.
(5) $\max _{t \in[0,1]} \int_{0}^{1}|H(t, s)| d s \leq \frac{\beta+\beta \sinh \alpha}{\left(\alpha^{2}+\beta^{2}\right)(\beta \sinh \alpha-\alpha \sin \beta)}$.
(6) $\max _{t \in[0,1]} \int_{0}^{1}\left|\frac{\partial}{\partial t} H(t, s)\right| d s \leq \frac{\alpha^{2} e^{\alpha}+\alpha^{2}+\beta^{2}+\beta^{2} e^{\alpha}+\alpha e^{\alpha}+\alpha \beta+3 \beta}{\left(\alpha^{2}+\beta^{2}\right)(\beta \sinh \alpha-\alpha \sin \beta)}$.

Again, a proof is not given, since all these properties can be verified directly. Properties (5) and (6) are obtained by making all the terms in $H(t, s)$ and $(\partial / \partial t) H(t, s)$, respectfully, positive, integrating, and finding an upper bound when $t \in[0,1]$.

Define the operator $T: \mathcal{B} \rightarrow \mathcal{B}$ by

$$
T u(t)=\int_{0}^{1} H(t, s) k\left(s, u(s), u^{\prime}(s)\right) d s
$$

Thus if u is a fixed point of T, then u is a solution of (3-1), (1-3). A standard application of the Arzelà-Ascoli theorem gives us that T is completely continuous.

Define

$$
\max _{t \in[0,1]} \int_{0}^{1}|H(t, s)| d s:=\bar{H} \quad \text { and } \quad \max _{t \in[0,1]} \int_{0}^{1}\left|\frac{\partial}{\partial t} H(t, s)\right| d s:=\bar{H}^{\prime}
$$

Theorem 3.3. Assume $f(t, x, y)$ is continuous in $[0,1] \times \mathbb{R} \times \mathbb{R}$ with

$$
\left|f(t, x, y)+2 \alpha y+\left(\alpha^{2}+\beta^{2}\right) x\right| \leq \min \left\{\frac{M}{\bar{H}}, \frac{M}{\bar{H}^{\prime}}\right\}
$$

for all $(t, x, y) \in[0,1] \times[-M, M] \times[-M, M]$. Then $(1-1),(1-3)$ has a solution $u^{*} \in \mathcal{M}$.

The proof is similar to the proof of Theorem 2.4 and is therefore omitted.

References

[A1 Mosa and Eloe 2016] S. Al Mosa and P. Eloe, "Upper and lower solution method for boundary value problems at resonance", Electron. J. Qual. Theory Differ. Equ. 2016 (2016), art. id. 40. MR Zbl
[Almansour and Eloe 2015] A. Almansour and P. Eloe, "Fixed points and solutions of boundary value problems at resonance", Ann. Polon. Math. 115:3 (2015), 263-274. MR Zbl
[Hale and Verduyn Lunel 1993] J. K. Hale and S. M. Verduyn Lunel, Introduction to functionaldifferential equations, Applied Mathematical Sciences 99, Springer, 1993. MR Zbl
[Han 2007] X. Han, "Positive solutions for a three-point boundary value problem at resonance", J. Math. Anal. Appl. 336:1 (2007), 556-568. MR Zbl
[Infante et al. 2016] G. Infante, P. Pietramala, and F. A. F. Tojo, "Non-trivial solutions of local and non-local Neumann boundary-value problems", Proc. Roy. Soc. Edinburgh Sect. A 146:2 (2016), 337-369. MR Zbl
[Krasnosel'skii 1964] M. A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Int. Series of Monographs in Pure Appl. Math. 45, Macmillan, New York, 1964. MR Zbl
[Zeidler 1990] E. Zeidler, Nonlinear functional analysis and its applications, II/A: Linear monotone operators, Springer, 1990. MR Zbl
aldo_garciaguinto@mymail.eku.edu
Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY, United States
jeffrey.neugebauer@eku.edu Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, KY, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ / y$ year for the electronic version, and \$/year ($+\$$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2019 vol. 12 no. 1

Optimal transportation with constant constraint 1Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
Fair choice sequences 13
William J. Keith and Sean Grindatti
Intersecting geodesics and centrality in graphs 31
Emily Carter, Bryan Ek, Danielle Gonzalez, Rigoberto Flórez and Darren A. Narayan
The length spectrum of the sub-Riemannian three-sphere 45
David Klapheck and Michael VanValkenburgh
Statistics for fixed points of the self-power map 63
Matthew Friedrichsen and Joshua Holden
Analytical solution of a one-dimensional thermistor problem with Robin boundary 79
conditionVolodymyr Hrynkiv and Alice Turchaninova
On the covering number of S_{14} 89
Ryan Oppenheim and Eric Swartz
Upper and lower bounds on the speed of a one-dimensional excited random walk 97
Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson,Jacob Smith and Kevin M. Stangl
Classifying linear operators over the octonions 117
Alex Putnam and Tevian Dray
Spectrum of the Kohn Laplacian on the Rossi sphere 125
Tawfik Abbas, Madelyne M. Brown, Ravikumar Ramasami and Yunus E. Zeytuncu
On the complexity of detecting positive eigenvectors of nonlinear cone maps 141
Bas Lemmens and Lewis White
Antiderivatives and linear differential equations using matrices 151
Yotsanan Meemark and Songpon Sriwongsa
Patterns in colored circular permutations 157
Daniel Gray, Charles Lanning and Hua Wang
Solutions of boundary value problems at resonance with periodic and antiperiodic 171
boundary conditions
Aldo E. Garcia and Jeffrey T. Neugebauer

[^0]: MSC2010: primary 34B15; secondary 34B27.
 Keywords: boundary value problem, resonance, shift.

