\bullet
 involve

 a journal of mathematicsPatterns in colored circular permutations
Daniel Gray, Charles Lanning and Hua Wang

Patterns in colored circular permutations

Daniel Gray, Charles Lanning and Hua Wang
(Communicated by Joshua Cooper)

Pattern containment and avoidance have been extensively studied in permutations. Recently, analogous questions have been examined for colored permutations and circular permutations. In this note, we explore these problems in colored circular permutations. We present some interesting observations, some of which are direct generalizations of previously established results. We also raise some questions and propose directions for future study.

1. Background

Patterns are essentially subpermutations of a bigger permutation. For two permutations π and τ of lengths n and k with $n \geq k$, we say that π contains τ as a pattern if there is a subsequence of entries of $\pi,\left(\pi_{i_{1}}, \pi_{i_{2}}, \pi_{i_{3}}, \ldots, \pi_{i_{k}}\right)$, which is order isomorphic to τ; i.e., $\pi_{i_{s}} \leq \pi_{i_{t}}$ if and only if $\tau_{s} \leq \tau_{t}$. Such a subsequence is called an occurrence of τ in π. If no occurrence of τ is present in π, we say that π avoids τ.

Most of the earlier work on patterns concerns pattern avoidance; see [Bóna 2012] for a nice introduction. A more comprehensive study of pattern containment was first proposed by H. Wilf in 1992 [Liendo 2012]. There are two natural questions one might ask regarding pattern containment. First, what is the shortest permutation that contains every element in some set of permutations? Second, for a given pattern, in what permutation does this pattern occur the most? The former deals with superpatterns, whereas the latter concerns pattern packing.

Superpatterns. For a set \mathcal{P} of permutations we say that a permutation π is a \mathcal{P}-superpattern if it contains at least one occurrence of every $\tau \in \mathcal{P}$. We also define

$$
\operatorname{sp}(\mathcal{P})=\min \{n: \text { there is a } P \text {-superpattern of length } n\}
$$

and $\operatorname{sp}(k)=\operatorname{sp}(\mathcal{P})$ when \mathcal{P} is the set of all permutations of length k.
For results on the bounds of $\mathrm{sp}(k)$, see [Arratia 1999; Eriksson et al. 2007; Miller 2009]. Bounds of $\operatorname{sp}(P)$ have also been studied for layered permutations [Gray

[^0]2015], 321-avoiding permutations [Bannister et al. 2014], m-colored permutations [Gray and Wang 2016], and words [Burstein et al. 2002/03].

Pattern packing. Letting $f(\pi, \tau)$ be the number of occurrences of τ in π, we define

$$
g(n, \tau)=\max \{f(\sigma, \tau): \sigma \text { is a permutation of length } n\}
$$

and the packing density of τ as

$$
\delta(\tau)=\lim _{n \rightarrow \infty} \frac{g(n, \tau)}{\binom{n}{k}}
$$

A permutation π (of length n) with $f(\pi, \tau)=g(n, \tau)$ is called τ-optimal.
For packing densities of length-3 and length-4 patterns, see [Albert et al. 2002; Price 1997; Stromquist 1993]. There are three length-4 patterns whose packing densities remain open, as are any longer nonlayered patterns.

Pattern avoidance. Pattern avoidance has been well-studied for permutations; see [Bóna 2012] for details. In the case of colored permutations, [Mansour 2001] provides a formula for the number of permutations avoiding all length-2 permutations whose entries are colorable in r ways. For circular permutations, [Callan 2002] counts the number of circular permutations avoiding 1324, 1342, and 1234. Both topics are relatively new, and there are still many open questions.

Our contribution. There are two natural variations of permutations, colored permutations and circular permutations, where the first one assigns colors to each entry and the second arranges entries around a circle. In colored permutations, superpatterns [Gray and Wang 2016], pattern packing [Just and Wang 2016], and pattern avoidance [Mansour 2001] have been considered. Noncolored pattern containment [Gray et al. 2017] and pattern avoidance [Callan 2002] have been studied for circular patterns. In this paper, we will consider the combination of these two variations, the colored circular permutations. First, we will introduce the necessary terminology and notation in Section 2. We then discuss "supercolored circular permutations" in Section 3, where we point out that many of the results in [Gray and Wang 2016] can be directly generalized to the colored circular permutations. In Section 4, we discuss pattern packing in colored circular permutations, including some generalizations of results in [Just and Wang 2016]. Lastly, in Section 5 we consider pattern avoidance in colored circular permutations. We conclude our work by commenting on the many remaining problems for future work in Section 6.

2. Terminologies in colored and circular permutations

We start with some formal terminologies and notations for colored permutations and patterns.

Definition 2.1. Let k and m be any positive integers. An m-colored permutation of length k is any permutation of length k where each entry is colored one of m given colors; we allow distinct entries of the permutation to be colored differently. We denote the set of all permutations of length k in m colors by $\mathcal{S}_{k, m}$.

In the case that there are only two or three colors, we will color the entries of a permutation "red", "green", or "blue"; thus, we may have the colored permutation $2_{r} 1_{b} 3_{r}$, which denotes the permutation 213 whose first and third entries are colored "red" and whose second entry is colored "blue". If more than three colors are allowed, we will just label the colors with natural numbers; hence, the colored permutation $1_{1} 3_{4} 4_{1} 5_{3} 2_{2}$ is the permutation 13452 whose first and third entries are colored 1 , fifth entry is colored 2 , fourth entry is colored 3 , and second entry is colored 4.

Definition 2.2. Let k and m be any positive integers. A monochromatic m-colored permutation of length k is any m-colored permutation for which every entry is colored the same color. We denote the set of all monochromatic m-colored permutations of length k by $\mathcal{M}_{k, m}$.
Definition 2.3. Let k and m be any positive integers. A nonmonochromatic m colored permutation of length k is any m-colored permutation for which there exist at least two distinct entries that are colored differently. We denote the set of all nonmonochromatic m-colored permutations of length k by $\mathcal{N}_{k, m}$.

The union of $\mathcal{N}_{k, m}$ and $\mathcal{M}_{k, m}$ is $\mathcal{S}_{k, m}$, the set of all m-colored permutations of length k. For example, $1_{r} 2_{b} 3_{b}$ is nonmonochromatic since the first entry and second entry are colored differently, while $1_{r} 2_{r} 3_{r}$ and $1_{b} 2_{b} 3_{b}$ are both monochromatic. For comparison, we list $\mathcal{S}_{2,2}, \mathcal{N}_{2,2}$, and $\mathcal{M}_{2,2}$ below:

$$
\begin{aligned}
\mathcal{S}_{2,2} & =\left\{1_{r} 2_{r}, 1_{r} 2_{b}, 1_{b} 2_{r}, 1_{b} 2_{b}, 2_{r} 1_{r}, 2_{r} 1_{b}, 2_{b} 1_{r}, 2_{b} 1_{b}\right\}, \\
\mathcal{N}_{2,2} & =\left\{1_{r} 2_{b}, 1_{b} 2_{r}, 2_{r} 1_{b}, 2_{b} 1_{r}\right\}, \\
\mathcal{M}_{2,2} & =\left\{1_{r} 2_{r}, 1_{b} 2_{b}, 2_{r} 1_{r}, 2_{b} 1_{b}\right\} .
\end{aligned}
$$

Definition 2.4. For colored permutations p and q we say that p contains q as a colored pattern if there is some subsequence of p, say P, which satisfies the following two conditions:

- The i-th entry of P is the same color as the i-th entry of q for all i.
- P is order isomorphic to q.

If there is no such P satisfying both conditions, we say that p avoids q as a colored pattern.

We will usually drop the phrase "as a colored pattern" and just say " p contains q " when it is obvious that we are dealing with colored permutations. For instance, if
$p=1_{r} 3_{b} 2_{r}$ and $q=2_{b} 1_{r}$, we see that p contains q since the subsequence $\left(3_{b}, 2_{r}\right)$ of p satisfies both of the conditions above. However, if $q=2_{r} 1_{b}$ then p avoids q since there is no subsequence of p simultaneously satisfying both conditions.

Similar to the noncolored case, for a collection \mathcal{P} of colored permutations we define the \mathcal{P}-superpattern and $\operatorname{sp}(\mathcal{P})$ accordingly. Note that the permutation $p=1_{r} 2_{b} 6_{r} 5_{b} 4_{r} 3_{b}$ contains every colored permutation in $\mathcal{S}_{2,2}$. Hence, p is an $\mathcal{S}_{2,2}$-superpattern. Brute force shows that there is no shorter $\mathcal{S}_{2,2}$-superpattern; therefore $\operatorname{sp}\left(\mathcal{S}_{2,2}\right)=6$.

Next we formalize the concept of pattern containment/avoidance in circular permutations. Note that the following definition also applies to colored permutations.

Definition 2.5. Let $p=p_{1} p_{2} \cdots p_{n}$ be a permutation of length n. The circular shift of p, denoted $S(p)$, is given by

$$
S(p)=p_{n} p_{1} p_{2} \cdots p_{n-1} .
$$

If we take a permutation, π, and wrap its entries clockwise around a circle, equally spread out within one revolution, then we have created a circular permutation, π_{c}. We say that $\pi_{c}=\tau_{c}$ if τ is just a cyclic shift of π, i.e., $S^{i}(\tau)=\pi$ for some i.
Definition 2.6. For colored permutations p and q we say that p contains q circularly if p contains $S^{i}(q)$ as a colored pattern for some nonnegative integer i.
Definition 2.7. Let \mathcal{P} be any collection of permutations. A circular \mathcal{P}-superpattern is a permutation which contains every $p \in \mathcal{P}$ as a circular pattern. We let $\mathrm{sp}_{c}(\mathcal{P})$ denote the length of the shortest circular \mathcal{P}-superpattern. When \mathcal{P} is the set of all circular patterns of length k we simply write $\operatorname{sp}_{c}(k)$.

A useful concept in the study of pattern packing in colored permutations will be "colored blocks", which we define below.

Definition 2.8. In a colored permutation π, a colored block is a maximal monochromatic segment $\pi_{i}^{(a)}$ in which every entry in this segment has color a and every entry not in this segment is either larger or smaller than each entry in $\pi_{i}^{(a)}$.

For example, the permutation $\pi=1_{r} 2_{r} 6_{b} 5_{b} 3_{b} 4_{r}$ has four colored blocks. From left to right, they are $\pi_{1}^{(r)}=1_{r} 2_{r}, \pi_{2}^{(b)}=6_{b} 5_{b}, \pi_{3}^{(b)}=3_{b}, \pi_{4}^{(r)}=4_{r}$. Indeed every colored permutation has a unique decomposition into colored blocks: Given a colored permutation, it can first be decomposed into maximal monochromatic subsequences and it is easy to see that there is a unique way to do this. Within each monochromatic subsequence there is a unique way to separate the entries according to their numerical values.

When comparing the numerical values between different blocks, we say that $\pi_{i}^{(r)}<\pi_{j}^{(b)}$ when all entries of $\pi_{i}^{(r)}$ are less than all entries of $\pi_{j}^{(b)}$. It is easy to see that this concept generalizes naturally to the circular case.

For colored patterns τ and permutations π we define $f_{c}(\pi, \tau)$ to be the number of occurrences of τ in π wrapped around a circle; i.e.,

$$
f_{c}(\pi, \tau)=f(\pi, \tau)+f(\pi, S(\tau))+f\left(\pi, S^{2}(\tau)\right)+\cdots+f\left(\pi, S^{k-1}(\tau)\right)
$$

Then, similar to before,

$$
g_{c}(n, \tau)=\max \left\{f_{c}(\sigma, \tau): \sigma \text { is a permutation of length } n\right\} .
$$

If π is of length n and $f_{c}(\pi, \tau)=g_{c}(n, \tau)$, then we say that π is circular τ-optimal.
Definition 2.9. Let τ be a colored permutation of length k. The circular packing density of τ, denoted by $\delta_{c}(\tau)$, is defined by

$$
\delta_{c}(\tau)=\lim _{n \rightarrow \infty} \frac{g_{c}(n, \tau)}{\binom{n}{k}} .
$$

3. Superpatterns

In this section we consider questions related to superpatterns in colored circular permutations. We note that some of the results in this section are direct generalizations from those in [Gray and Wang 2016]. For this reason some details will be omitted.
Theorem 3.1. For any positive integers k and m, we have that

$$
\mathrm{sp}_{c}\left(\mathcal{S}_{k, m}\right)=m \mathrm{sp}_{c}(k)
$$

Proof. Let p^{\prime} be a circular $\mathcal{S}_{k, m}$-superpattern and p_{i}^{\prime} be the longest monochromatic subsequence in p^{\prime} in color i. It follows that p^{\prime} is a circular k-superpattern and consequently $\left|p_{i}^{\prime}\right| \geq \operatorname{sp}_{c}(k)$ for any $1 \leq i \leq m$. Hence

$$
\left|p^{\prime}\right|=\sum_{i=1}^{m}\left|p_{i}^{\prime}\right| \geq m \operatorname{sp}_{c}(k)
$$

Now, let p be a circular permutation of length $\mathrm{sp}_{c}(k)$ that contains all noncolored patterns of length k. Consider the m-colored circular permutation $p^{\prime \prime}$, constructed from p by replacing each $1 \leq j \leq \operatorname{sp}_{c}(k)$ in p with the sequence

$$
s_{j}=[m(j-1)+1]_{1}[m(j-1)+2]_{2} \cdots[m(j-1)+m]_{m} .
$$

It is easy to see that

$$
\left|p^{\prime \prime}\right|=m|p|=m \operatorname{sp}_{c}(k)
$$

and that $p^{\prime \prime}$ is a $\mathcal{S}_{k, m}$-superpattern. Thus,

$$
\operatorname{sp}_{c}\left(\mathcal{S}_{k, m}\right) \leq\left|p^{\prime \prime}\right|=m \operatorname{sp}_{c}(k) .
$$

With Theorem 3.1, we can use previously established results [Gray et al. 2017] on $\mathrm{sp}_{c}(k)$ to bound $\mathrm{sp}_{c}\left(\mathcal{S}_{k, m}\right)$.

Corollary 3.2. For positive integers k and m we have

$$
\operatorname{sp}_{c}\left(\mathcal{S}_{k, m}\right)=m \mathrm{sp}_{c}(k) \geq m g(k) \frac{k^{2}}{e^{2}},
$$

where $g(k) \rightarrow 1$ as $k \rightarrow \infty$, and

$$
\operatorname{sp}_{c}\left(\mathcal{S}_{k, m}\right)=m \operatorname{sp}_{c}(k) \leq m(\operatorname{sp}(k-1)+1) \leq m\left(\frac{1}{2} k(k-1)+1\right) .
$$

Consequently,

$$
m g(k) \frac{k^{2}}{e^{2}} \leq \operatorname{sp}_{c}\left(\mathcal{S}_{k, m}\right) \leq m\left(\frac{1}{2} k(k-1)+1\right),
$$

where $g(k) \rightarrow 1$ as $k \rightarrow \infty$.
As expected, the bounds for $\mathrm{sp}_{c}\left(\mathcal{S}_{k, m}\right)$ are simply m times the bounds for $\mathrm{sp}_{c}(k)$. Next, we restrict our attention to only monochromatic or nonmonochromatic patterns. First we note the following facts on the sizes of $\mathcal{M}_{k, m}$ and $\mathcal{N}_{k, m}$:

- $\left|\mathcal{S}_{k, m}\right|=m^{k} k$!.
- $\left|\mathcal{M}_{k, m}\right|=m k!$.
- $\left|\mathcal{N}_{k, m}\right|=\left|\mathcal{S}_{k, m}\right|-\left|\mathcal{M}_{k, m}\right|=\left(m^{k-1}-1\right)\left|\mathcal{M}_{k, m}\right|$.

We now establish a lower bound for $\operatorname{sp}_{c}\left(\mathcal{N}_{k, m}\right)$.
Theorem 3.3. For positive integers k and m,

$$
\operatorname{sp}_{c}\left(\mathcal{N}_{k, m}\right) \geq m g(k, m) \frac{k^{2}}{e^{2}},
$$

where $g(k, m) \rightarrow 1$ as $k \rightarrow \infty$.
Proof. Let $n=\operatorname{sp}_{c}\left(\mathcal{N}_{k, m}\right)$, and our $\mathcal{N}_{k, m}$-superpattern of length n must contain a circular shift of every permutation in $\mathcal{N}_{k, m}$. Note that at most k such permutations can be circular shifts of each other; hence at least $\left|\mathcal{N}_{k, m}\right| / k$ permutations from $\mathcal{N}_{k, m}$ must be contained in the superpattern. Consequently

$$
\binom{n}{k} \geq \frac{\left|\mathcal{N}_{k, m}\right|}{k}=\frac{\left(m^{k}-m\right) k!}{k}=\left(m^{k}-m\right)(k-1)!.
$$

By the fact $n^{k} / k!\geq\binom{ n}{k}$ and Stirling's approximation $k!\geq \sqrt{2 \pi k}\left(k^{k} / e^{k}\right)$, we have

$$
\frac{n^{k}}{k!} \geq\left(m^{k}-m\right)(k-1)!
$$

and hence

$$
\begin{aligned}
n \geq\left(\left(m^{k}-m\right) \frac{(k!)^{2}}{k}\right)^{1 / k} & \geq\left(\left(m^{k}-m\right) 2 \pi \frac{k^{2 k}}{e^{2 k}}\right)^{1 / k} \\
& =m\left(\left(1-m^{-k+1}\right) 2 \pi\right)^{1 / k} \frac{k^{2}}{e^{2}}=m g(k, m) \frac{k^{2}}{e^{2}}
\end{aligned}
$$

with $g(k, m)=\left(\left(1-m^{-k+1}\right) 2 \pi\right)^{1 / k} \rightarrow 1$ as $k \rightarrow \infty$.

It is interesting to note that this lower bound is similar to that found for $\operatorname{sp}_{c}\left(\mathcal{S}_{k, m}\right)$ in Corollary 3.2. To bound $\operatorname{sp}_{c}\left(\mathcal{N}_{k, m}\right)$ from above, first note that a circular $\mathcal{M}_{k, m^{-}}$ superpattern must have m copies of a circular k-superpattern, one for each color. Then, we have

$$
\operatorname{sp}_{c}\left(\mathcal{N}_{k, m}\right) \leq \operatorname{sp}_{c}\left(\mathcal{S}_{k, m}\right)=m \operatorname{sp}_{c}(k)=\operatorname{sp}_{c}\left(\mathcal{M}_{k, m}\right) .
$$

Given the fact that $\left|\mathcal{N}_{k, m}\right|=\left(m^{k-1}-1\right)\left|\mathcal{M}_{k, m}\right|$, it is rather surprising that the shortest $\mathcal{N}_{k, m}$-superpattern is not longer than the shortest $\mathcal{M}_{k, m}$-superpattern. The following further analyzes the relationship between them.
Theorem 3.4. For any positive integers $k \geq 2$ and m, we have

$$
\operatorname{sp}_{c}\left(\mathcal{M}_{k-1, m}\right) \leq \mathrm{sp}_{c}\left(\mathcal{N}_{k, m}\right) \leq \operatorname{sp}_{c}\left(\mathcal{M}_{k, m}\right)
$$

Proof. The second inequality follows from the discussion above.
On the other hand, let q be an m-colored pattern of length k with all but one entry of color i. For some circular shift of q to be contained in a circular $\mathcal{N}_{k, m}$-superpattern, a circular shift of the length- $(k-1)$ monochromatic pattern in color i must be contained in the superpattern. Hence all length- $(k-1)$ monochromatic patterns (of any color) must occur in a circular $\mathcal{N}_{k, m}$-superpattern, and $\mathrm{sp}_{c}\left(\mathcal{M}_{k-1, m}\right) \leq \mathrm{sp}_{c}\left(\mathcal{N}_{k, m}\right)$.

4. Pattern packing

Our results in this section mainly concern the characteristics of the optimal colored circular permutations when the pattern under consideration is described through colored blocks. Again, some of our results here are direct generalizations of those in noncircular case [Just and Wang 2016], for which reason we skip some details.

In the case of having only two colored blocks, we can see that a pattern must be of the form $\pi=\pi_{1} \pi_{2}$ with π_{1} in red and π_{2} in blue. We will assume, without loss of generality, that $\pi_{1}<\pi_{2}$. In this case, we may simply say that the pattern is of the form $r b$ with $r<b$, and similarly for patterns with more colored blocks.
Theorem 4.1. For a pattern ρ with two colored blocks of the form $r b$ with $r<b$, there is an optimal circular permutation π of the form $R B$ with $R<B$.
Proof. Let π be a ρ-optimal permutation of length n with colored blocks $\pi_{1} \pi_{2} \cdots \pi_{k}$. We can assume without loss of generality that π_{1} is red.

Now, let us take all the red blocks $\pi_{r_{1}} \pi_{r_{2}} \cdots \pi_{r_{s}}$ and blue blocks $\pi_{b_{1}} \pi_{b_{2}} \cdots \pi_{b_{t}}$, and form a new circular permutation $\pi^{\prime}=\pi_{r_{1}} \cdots \pi_{r_{s}} \pi_{b_{1}} \cdots \pi_{b_{t}}$. It is easy to see that any occurrence of ρ in π is also in π^{\prime}.

Next, since ρ is of the form $r b$ with $r<b$, we claim that, in our optimal permutation π^{\prime}, every red entry must be (numerically) less than every blue entry. Otherwise, one may always "rearrange" the numerical values so that the numerical
ordering stays the same among entries of the same color, and so that all red entries are smaller than the blue ones. The resulting permutation can only contain more occurrences of ρ.

Consequently, all red blocks together simply form a single block in π and so do the blue blocks. Our conclusion, then, follows.

Next, we consider patterns with three colored blocks. Note that for circular patterns with three colored blocks and two colors, $r b_{1} b_{2}$ with $b_{1}<r<b_{2}$ is the only case that we needed to investigate: With three colored blocks and two colors there are always one block with one color (say red) and two blocks with the other (say blue). One of the circular shifts of this pattern must be of the form $r b_{1} b_{2}$. By taking a circular shift of the reversed pattern (i.e., $r b_{2} b_{1}$) if necessary, we may also assume that $b_{1}<r<b_{2}$.
Theorem 4.2. For a pattern ρ with three colored blocks of the form $r b_{1} b_{2}$ and $b_{1}<r<b_{2}$, there is an optimal circular permutation π of the same form.
Proof. Let π be a ρ-optimal circular permutation of length n. First, we will show that we can put all blue blocks in increasing order of their numerical values and next to each other. Let $\pi_{r_{1}}, \pi_{r_{2}}, \ldots, \pi_{r_{s}}$ be the red blocks of π.

Now, for an occurrence of ρ in π, suppose R_{ρ} (in π) is the part corresponding to r (in ρ). Let $\pi_{b_{<R}}$ be the collection of all blue blocks (with numerical value) less than R_{ρ}, and let $\pi_{b_{>R_{\rho}}}$ be the set of all blue blocks greater than R_{ρ}. Then, any occurrence of $r b_{1} b_{2}$ with $r \sim R_{\rho}$ must have b_{1} occurring in $\pi_{b_{<R_{\rho}}}$ and b_{2} occurring in $\pi_{b_{>R_{\rho}}}$. The maximum number of such occurrences (i.e., the maximum possible contribution of R_{ρ} to $\left.f_{c}(\pi, \rho)\right)$ is

$$
f\left(\pi_{b_{<R_{\rho}}}, b_{1}\right) f\left(\pi_{b_{>R_{\rho}}}, b_{2}\right)
$$

As far as the ordering of the blue blocks is concerned, arranging the blue blocks in increasing order achieves the above maximum. At this point it is also easy to see that putting blocks of the same color together will not reduce the number of occurrences of ρ. Denote such an optimal permutation by $\pi^{\prime}=\pi_{r_{1}} \cdots \pi_{r_{s}} \pi_{b_{1}} \cdots \pi_{b_{t}}$, with $\pi_{b_{i}}<\pi_{b_{i+1}}$ for any $1 \leq i \leq t-1$.

Next, we show that all red entries form a single block, or equivalently, the numerical value of any red block is between those of $\pi_{b_{j_{0}-1}}$ and $\pi_{b_{j_{0}}}$ for some fixed j_{0}. Let $\pi_{b_{\geq j}}$ be the collection of blue blocks $\pi_{b_{j}}, \pi_{b_{j+1}}, \ldots, \pi_{b_{t}}$, and let $\pi_{b_{<j}}$ be the collection of blocks $\pi_{b_{1}}, \ldots, \pi_{b_{j}}$. Then, there must exist some j_{0} that maximizes the occurrences of b_{1} in $\pi_{b_{<j}}$ and b_{2} in $\pi_{b_{\geq j}}$. In other words,

$$
f\left(\pi_{b_{<j_{0}}}, b_{1}\right) f\left(\pi_{b_{\geq j_{0}}}, b_{2}\right) \geq f\left(\pi_{b_{<j}}, b_{1}\right) f\left(\pi_{b_{\geq j}}, b_{2}\right)
$$

for any $1<j \leq t$. So,

$$
f_{c}\left(\pi^{\prime}, \rho\right) \leq f\left(\pi_{r_{1}} \cdots \pi_{r_{s}}, r\right) f\left(\pi_{b_{<j_{0}}}, b_{1}\right) f\left(\pi_{b_{\geq j_{0}}}, b_{2}\right)
$$

with equality when $\pi_{b_{j_{0}-1}}<\pi_{r_{i}}<\pi_{b_{j_{0}}}$ for any $1 \leq i \leq s$. From this it follows that there are exactly one single red block and two blue blocks in $\pi=R B_{1} B_{2}$ with $B_{1}<R<B_{2}$.

It remains to consider the case when we have three colored blocks in three different colors, i.e., the pattern $r b g$ with $r<b<g$.

Theorem 4.3. For a pattern ρ of the form $r b g$ with $r<b<g$, there is an optimal circular permutation π of the same form.

Proof. Let π be a ρ-optimal circular permutation of length n with R^{\prime}, B^{\prime} and G^{\prime} being the collections of all red blocks (in their original order), blue blocks and green blocks respectively. An occurrence of ρ in π must consist of an occurrence of r in R^{\prime}, an occurrence of b in B^{\prime}, and an occurrence of g in G^{\prime}. Hence

$$
f(\pi, \rho) \leq f\left(R^{\prime}, r\right) f\left(B^{\prime}, b\right) f\left(G^{\prime}, g\right)
$$

with equality if each of R^{\prime}, B^{\prime} and G^{\prime} is a single block, arranged in this order, and $R^{\prime}<B^{\prime}<G^{\prime}$.

To summarize the above observations, we have the following.
Corollary 4.4. For any circular pattern with two or three colored blocks, there is a corresponding optimal circular permutation of the same form.

Remark 4.5. After seeing the above results on patterns with two or three colored blocks, it is natural to guess that the same holds for patterns with more blocks. Consequently one can ask if there is always an optimal circular permutation of the same form as the pattern. We have not been able to prove either way.

On the other hand, considering $\rho=1_{r} 2_{b}$, it is not hard to check that $\pi=$ $\left(1_{r} 3_{b} 2_{r} 4_{b}\right)_{c}$ is an optimal length-4 circular permutation for ρ. Thus, there does exist an optimal permutation that is not of the form $R B$ with $R<B$. Evidence seems to suggest that this is the only such case.

5. Pattern avoidance

The numbers of m-colored (noncircular) permutations that avoid one or two 2-letter patterns were presented in [Mansour 2001], together with some discussion of the connection between pattern avoidance in noncolored permutations and colored permutations. In [Callan 2002], pattern avoidance in circular permutations was studied. It was pointed out that, when considered as circular permutations, none avoid any 2-letter patterns and the identity (reverse identity) is the only one avoiding the pattern 132 (123). In this section we extend this study to colored circular permutations, generalizing a little of both [Callan 2002] and [Mansour 2001].

Avoiding a monochromatic length-2 pattern in $\mathcal{S}_{\boldsymbol{k}, \boldsymbol{m}}$. Without loss of generality, we may assume the monochromatic length-2 pattern is $1_{1} 2_{1}$. Then, to avoid such a pattern, our permutation π in $\mathcal{S}_{k, m}$ can contain at most one entry of color 1 . Consider two cases:

- There is no entry with color 1 in π. Then, there are a total of $(k-1)$! noncolored circular permutations of length k, and each of the k entries has $m-1$ choices of colors (i.e., the colors $2,3, \ldots, m$); thus the number of such permutations is

$$
(k-1)!(m-1)^{k}
$$

- There is exactly one entry with color 1 . Out of the k entries $1,2, \ldots, k$ there are k choices for this particular entry of color 1 . There are still $(k-1)$! ways to wrap the k entries (regardless of their colors) around a circle. Now for each of the remaining $k-1$ entries that are not of color 1 , there are $m-1$ choices of colors. Hence the number of such permutations is

$$
k!(m-1)^{k-1} .
$$

Consequently, we have the following.
Theorem 5.1. The number of circular permutations in $\mathcal{S}_{k, m}$ that avoid a given monochromatic length-2 pattern is

$$
(k-1)!(m-1)^{k}+k!(m-1)^{k-1}=(k-1)!(m-1)^{k-1}(k+m) .
$$

Avoiding nonmonochromatic length-2 pattern in $\mathcal{S}_{\boldsymbol{k}, \boldsymbol{m}}$. Again, without loss of generality, let us assume this pattern to be $1_{1} 2_{2}$. For a circular permutation π in $\mathcal{S}_{k, m}$, let E_{1} and E_{2} be the sets of entries in π that are colored 1 and 2 respectively. It is easy to see that a $1_{1} 2_{2}$ pattern will occur if there is any entry in E_{1} that is of smaller numerical value than one in E_{2}. Thus, all entries in E_{1} are larger than those in E_{2}. Suppose $\left|E_{1} \cup E_{2}\right|=i$ for some $0 \leq i \leq k$. Then, there are $i+1$ ways to partition the entries into E_{1} and E_{2} (i.e., to find a $j=0,1 \ldots, i$ such that the smallest j entries are colored 2 and the rest are colored 1).

Thus, still with $(k-1)$! ways to wrap all entries around a circle, there are $\binom{k}{i}$ ways to choose entries of $E_{1} \cup E_{2}$. After identifying j there are $(m-2)^{k-i}$ ways to color the remaining entries. Consequently the number of such permutations is

$$
\begin{aligned}
& (k-1)!\sum_{i=0}^{k}\left((m-2)^{k-i}(i+1)\binom{k}{i}\right) \\
& \quad=(k-1)!\sum_{i=1}^{k}\left((m-2)^{k-i} i\binom{k}{i}\right)+(k-1)!\sum_{i=0}^{k}\left((m-2)^{k-i}\binom{k}{i}\right) \\
& \quad=(k-1)!\sum_{i=1}^{k}\left((m-2)^{(k-1)-(i-1)} k\binom{k-1}{i-1}\right)+(k-1)!\sum_{i=0}^{k}\left((m-2)^{k-i}\binom{k}{k-i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =k!((m-2)+1)^{k-1}+(k-1)!((m-2)+1)^{k} \\
& =(k-1)!(m-1)^{k}+k!(m-1)^{k-1}=(k-1)!(m-1)^{k-1}(k+m) .
\end{aligned}
$$

As a result we have the following.
Theorem 5.2. The number of circular permutations in $\mathcal{S}_{k, m}$ that avoid a given nonmonochromatic length-2 pattern is

$$
(k-1)!(m-1)^{k-1}(k+m) .
$$

Avoiding monochromatic patterns of length $\mathbf{3}$ in $\mathcal{S}_{\boldsymbol{k}, \boldsymbol{m}}$. All circular permutations of length 3 are equivalent under circular shift and reverse. So we will only consider, without loss of generality, the pattern $1_{1} 3_{1} 2_{1}$. It is known that in the noncolored case the only circular permutation that avoids 132 is the identity permutation.

Let π be a permutation that avoids $1_{1} 3_{1} 2_{1}$ in $\mathcal{S}_{k, m}$, and let E_{1} (of cardinality $i=0,1, \ldots, k)$ be the set of entries of color 1 , then:

- If $i \geq 3$, there is only one way to order the entries in E_{1} (i.e., in increasing order). Starting with ($k-1$)! ways to wrap the k entries (regardless of color) around a circle, only one of the $(i-1)$! orderings of the entries in E_{1} can be chosen. Noting that there are $\binom{k}{i}$ ways to pick the numerical values of the entries in E_{1} and $(m-1)^{k-i}$ ways to assign colors to the remaining entries, we have the number of such permutations as

$$
\sum_{i=3}^{k}\left(\binom{k}{i} \frac{(k-1)!}{(i-1)!}(m-1)^{k-i}\right) .
$$

- If $i \leq 2$, then there are $\binom{k}{i}$ ways to pick these i entries, $(k-1)$! ways to wrap all the entries around the circle and $(m-1)^{k-i}$ ways to color the other entries. The number of such permutations is

$$
\sum_{i=0}^{2}\left(\binom{k}{i}(k-1)!(m-1)^{k-i}\right) .
$$

We may combine the above two formulas and conclude the following.
Theorem 5.3. The number of circular permutations in $\mathcal{S}_{k, m}$ that avoid a given monochromatic length-3 pattern is

$$
(k-1)!(m-1)^{k}+\sum_{i=1}^{k}\left(\binom{k}{i} \frac{(k-1)!}{(i-1)!}(m-1)^{k-i}\right) .
$$

Wilf classes. Theorems 5.1 and 5.2 imply that for any m-colored pattern of length 2 , say ϕ, the number of ϕ-avoiding circular permutations in $\mathcal{S}_{k, m}$ is $(k-1)!(m-1)^{k-1}(k+m)$. This interesting (and perhaps a little surprising) observation is analogous to the findings in [Mansour 2001] in noncircular case.

This also implies that there is only one Wilf class of colored circular permutations when restricted by one pattern of length 2 .

6. Concluding remarks and additional questions

In this short note, we considered questions related to superpatterns, pattern packing, and pattern avoidance in colored circular permutations. We presented some elementary observations, especially those generalized from previously established results on colored (but not circular) permutations, on each of these three questions. Many interesting questions remain to be further explored.

In Section 3, we introduced generalizations of a few facts on colored superpatterns. The arguments of these generalizations follow from direct adjustment of those in [Gray and Wang 2016]. There are, however, also some constructive proofs that cannot be directly generalized to circular cases. It would be interesting to further investigate them.

The several theorems in Section 4 claim that for patterns with two or three colored blocks their corresponding optimal colored circular permutations include at least one with exactly the same format (in terms of the colored blocks). With these facts, one may easily calculate the packing densities of various patterns. It is not clear whether this is true for more colored blocks. It is also mentioned that, for the pattern $\rho=1_{r} 2_{b}$, there exist optimal permutations that have a different format. It seems likely that this is the only such case, though we do not have a proof yet.

The numbers of permutations avoiding various given patterns, as studied in Section 5, lead to an interesting statement on the Wilf classes of colored circular permutations restricted by 2 -letter patterns. It appears to be much more complicated to examine the same problem for colored circular permutations restricted by longer patterns or more than one 2-letter patterns.

References

[^1][Eriksson et al. 2007] H. Eriksson, K. Eriksson, S. Linusson, and J. Wästlund, "Dense packing of patterns in a permutation", Ann. Comb. 11:3-4 (2007), 459-470. MR Zbl
[Gray 2015] D. Gray, "Bounds on superpatterns containing all layered permutations", Graphs Combin. 31:4 (2015), 941-952. MR Zbl
[Gray and Wang 2016] D. Gray and H. Wang, "Note on superpatterns", Involve 9:5 (2016), 797-804. MR Zbl
[Gray et al. 2017] D. Gray, C. Lanning, and H. Wang, "Pattern containment in circular permutations", preprint, 2017. To appear in Integers.
[Just and Wang 2016] M. Just and H. Wang, "Note on packing patterns in colored permutations", Online J. Anal. Comb. 11 (2016), art. id. 4. MR Zbl
[Liendo 2012] M. L. Liendo, Preferential arrangement containment in strict superpatterns, master's thesis, East Tennessee State University, 2012, available at https://dc.etsu.edu/etd/1428/.
[Mansour 2001] T. Mansour, "Pattern avoidance in coloured permutations", Sém. Lothar. Combin. 46 (2001), art. id. B46g. MR Zbl
[Miller 2009] A. Miller, "Asymptotic bounds for permutations containing many different patterns", J. Combin. Theory Ser. A 116:1 (2009), 92-108. MR Zbl
[Price 1997] A. L. Price, Packing densities of layered patterns, Ph.D. thesis, University of Pennsylvania, 1997, available at https://search.proquest.com/docview/304421853. MR
[Stromquist 1993] W. Stromquist, "Packing layered posets into posets", preprint, 1993, available at http://walterstromquist.com/papers/POSETS.DOC.

Received: 2017-11-29 Revised: 2018-01-21 Accepted: 2018-02-14

dagray@georgiasouthern.edu	Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, United States
lannin3@clemson.edu	Department of Mathematical Sciences, Clemson University, Clemson, SC, United States
hwang@georgiasouthern.edu	Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ / y$ year for the electronic version, and \$/year ($+\$$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2019 vol. 12 no. 1

Optimal transportation with constant constraint 1Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
Fair choice sequences 13
William J. Keith and Sean Grindatti
Intersecting geodesics and centrality in graphs 31
Emily Carter, Bryan Ek, Danielle Gonzalez, Rigoberto Flórez and Darren A. Narayan
The length spectrum of the sub-Riemannian three-sphere 45
David Klapheck and Michael VanValkenburgh
Statistics for fixed points of the self-power map 63
Matthew Friedrichsen and Joshua Holden
Analytical solution of a one-dimensional thermistor problem with Robin boundary 79
conditionVolodymyr Hrynkiv and Alice Turchaninova
On the covering number of S_{14} 89
Ryan Oppenheim and Eric Swartz
Upper and lower bounds on the speed of a one-dimensional excited random walk 97
Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson,Jacob Smith and Kevin M. Stangl
Classifying linear operators over the octonions 117
Alex Putnam and Tevian Dray
Spectrum of the Kohn Laplacian on the Rossi sphere 125
Tawfik Abbas, Madelyne M. Brown, Ravikumar Ramasami and Yunus E. Zeytuncu
On the complexity of detecting positive eigenvectors of nonlinear cone maps 141
Bas Lemmens and Lewis White
Antiderivatives and linear differential equations using matrices 151
Yotsanan Meemark and Songpon Sriwongsa
Patterns in colored circular permutations 157
Daniel Gray, Charles Lanning and Hua Wang
Solutions of boundary value problems at resonance with periodic and antiperiodic 171
boundary conditions
Aldo E. Garcia and Jeffrey T. Neugebauer

[^0]: MSC2010: primary 05A05; secondary 05A15, 05A16.
 Keywords: Circular permutations, patterns.
 This work was partially supported by a grant from the Simons Foundation (\#245307).

[^1]: [Albert et al. 2002] M. H. Albert, M. D. Atkinson, C. C. Handley, D. A. Holton, and W. Stromquist, "On packing densities of permutations", Electron. J. Combin. 9:1 (2002), art. id. R5. MR Zbl
 [Arratia 1999] R. Arratia, "On the Stanley-Wilf conjecture for the number of permutations avoiding a given pattern", Electron. J. Combin. 6 (1999), art. id. N1. MR Zbl
 [Bannister et al. 2014] M. J. Bannister, W. E. Devanny, and D. Eppstein, "Small superpatterns for dominance drawing", pp. 92-103 in 2014 Proceedings of the Eleventh Workshop on Analytic Algorithmics and Combinatorics (ANALCO), edited by M. Drmota and M. D. Ward, SIAM, Philadelphia, PA, 2014. MR
 [Bóna 2012] M. Bóna, Combinatorics of permutations, 2nd ed., CRC Press, Boca Raton, FL, 2012. MR Zbl
 [Burstein et al. 2002/03] A. Burstein, P. Hästö, and T. Mansour, "Packing patterns into words", Electron. J. Combin. 9:2 (2002/03), art. id. R20. MR Zbl
 [Callan 2002] D. Callan, "Pattern avoidance in circular permutations", preprint, 2002. arXiv

