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Pattern containment and avoidance have been extensively studied in permutations.
Recently, analogous questions have been examined for colored permutations and
circular permutations. In this note, we explore these problems in colored circular
permutations. We present some interesting observations, some of which are direct
generalizations of previously established results. We also raise some questions
and propose directions for future study.

1. Background

Patterns are essentially subpermutations of a bigger permutation. For two permuta-
tions � and � of lengths n and k with n� k, we say that � contains � as a pattern
if there is a subsequence of entries of � , .�i1 ; �i2 ; �i3 ; : : : ; �ik /, which is order
isomorphic to � ; i.e., �is ��it if and only if �s� �t . Such a subsequence is called an
occurrence of � in � . If no occurrence of � is present in � , we say that � avoids � .

Most of the earlier work on patterns concerns pattern avoidance; see [Bóna 2012]
for a nice introduction. A more comprehensive study of pattern containment was
first proposed by H. Wilf in 1992 [Liendo 2012]. There are two natural questions
one might ask regarding pattern containment. First, what is the shortest permutation
that contains every element in some set of permutations? Second, for a given
pattern, in what permutation does this pattern occur the most? The former deals
with superpatterns, whereas the latter concerns pattern packing.

Superpatterns. For a set P of permutations we say that a permutation � is a
P-superpattern if it contains at least one occurrence of every � 2 P . We also define

sp.P/Dminfn W there is a P -superpattern of length ng

and sp.k/D sp.P/ when P is the set of all permutations of length k.
For results on the bounds of sp.k/, see [Arratia 1999; Eriksson et al. 2007; Miller

2009]. Bounds of sp.P / have also been studied for layered permutations [Gray

MSC2010: primary 05A05; secondary 05A15, 05A16.
Keywords: Circular permutations, patterns.
This work was partially supported by a grant from the Simons Foundation (#245307).

157

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2019.12-1
http://dx.doi.org/10.2140/involve.2019.12.157


158 DANIEL GRAY, CHARLES LANNING AND HUA WANG

2015], 321-avoiding permutations [Bannister et al. 2014], m-colored permutations
[Gray and Wang 2016], and words [Burstein et al. 2002/03].

Pattern packing. Letting f .�; �/ be the number of occurrences of � in � , we define

g.n; �/Dmaxff .�; �/ W � is a permutation of length ng:

and the packing density of � as

ı.�/D lim
n!1

g.n; �/�
n
k

� :

A permutation � (of length n) with f .�; �/D g.n; �/ is called � -optimal.
For packing densities of length-3 and length-4 patterns, see [Albert et al. 2002;

Price 1997; Stromquist 1993]. There are three length-4 patterns whose packing
densities remain open, as are any longer nonlayered patterns.

Pattern avoidance. Pattern avoidance has been well-studied for permutations; see
[Bóna 2012] for details. In the case of colored permutations, [Mansour 2001] pro-
vides a formula for the number of permutations avoiding all length-2 permutations
whose entries are colorable in r ways. For circular permutations, [Callan 2002]
counts the number of circular permutations avoiding 1324, 1342, and 1234. Both
topics are relatively new, and there are still many open questions.

Our contribution. There are two natural variations of permutations, colored permu-
tations and circular permutations, where the first one assigns colors to each entry and
the second arranges entries around a circle. In colored permutations, superpatterns
[Gray and Wang 2016], pattern packing [Just and Wang 2016], and pattern avoidance
[Mansour 2001] have been considered. Noncolored pattern containment [Gray et al.
2017] and pattern avoidance [Callan 2002] have been studied for circular patterns.
In this paper, we will consider the combination of these two variations, the colored
circular permutations. First, we will introduce the necessary terminology and
notation in Section 2. We then discuss “supercolored circular permutations” in
Section 3, where we point out that many of the results in [Gray and Wang 2016] can
be directly generalized to the colored circular permutations. In Section 4, we discuss
pattern packing in colored circular permutations, including some generalizations of
results in [Just and Wang 2016]. Lastly, in Section 5 we consider pattern avoidance
in colored circular permutations. We conclude our work by commenting on the
many remaining problems for future work in Section 6.

2. Terminologies in colored and circular permutations

We start with some formal terminologies and notations for colored permutations
and patterns.
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Definition 2.1. Let k and m be any positive integers. An m-colored permutation
of length k is any permutation of length k where each entry is colored one of m
given colors; we allow distinct entries of the permutation to be colored differently.
We denote the set of all permutations of length k in m colors by Sk;m.

In the case that there are only two or three colors, we will color the entries of a
permutation “red”, “green”, or “blue”; thus, we may have the colored permutation
2r1b3r , which denotes the permutation 213 whose first and third entries are colored
“red” and whose second entry is colored “blue”. If more than three colors are
allowed, we will just label the colors with natural numbers; hence, the colored
permutation 1134415322 is the permutation 13452 whose first and third entries are
colored 1, fifth entry is colored 2, fourth entry is colored 3, and second entry is
colored 4.

Definition 2.2. Let k and m be any positive integers. A monochromatic m-colored
permutation of length k is any m-colored permutation for which every entry is
colored the same color. We denote the set of all monochromatic m-colored permu-
tations of length k by Mk;m.

Definition 2.3. Let k and m be any positive integers. A nonmonochromatic m-
colored permutation of length k is any m-colored permutation for which there exist
at least two distinct entries that are colored differently. We denote the set of all
nonmonochromatic m-colored permutations of length k by Nk;m.

The union of Nk;m and Mk;m is Sk;m, the set of all m-colored permutations of
length k. For example, 1r2b3b is nonmonochromatic since the first entry and second
entry are colored differently, while 1r2r3r and 1b2b3b are both monochromatic.
For comparison, we list S2;2, N2;2, and M2;2 below:

S2;2 D f1r2r ; 1r2b; 1b2r ; 1b2b; 2r1r ; 2r1b; 2b1r ; 2b1bg;

N2;2 D f1r2b; 1b2r ; 2r1b; 2b1rg;

M2;2 D f1r2r ; 1b2b; 2r1r ; 2b1bg:

Definition 2.4. For colored permutations p and q we say that p contains q as
a colored pattern if there is some subsequence of p, say P, which satisfies the
following two conditions:

� The i -th entry of P is the same color as the i -th entry of q for all i .

� P is order isomorphic to q.

If there is no such P satisfying both conditions, we say that p avoids q as a colored
pattern.

We will usually drop the phrase “as a colored pattern” and just say “p contains q”
when it is obvious that we are dealing with colored permutations. For instance, if
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pD 1r3b2r and qD 2b1r , we see that p contains q since the subsequence .3b; 2r/
of p satisfies both of the conditions above. However, if q D 2r1b then p avoids q
since there is no subsequence of p simultaneously satisfying both conditions.

Similar to the noncolored case, for a collection P of colored permutations
we define the P-superpattern and sp.P/ accordingly. Note that the permutation
p D 1r2b6r5b4r3b contains every colored permutation in S2;2. Hence, p is an
S2;2-superpattern. Brute force shows that there is no shorter S2;2-superpattern;
therefore sp.S2;2/D 6.

Next we formalize the concept of pattern containment/avoidance in circular
permutations. Note that the following definition also applies to colored permutations.

Definition 2.5. Let p D p1p2 � � �pn be a permutation of length n. The circular
shift of p, denoted S.p/, is given by

S.p/D pnp1p2 � � �pn�1:

If we take a permutation, � , and wrap its entries clockwise around a circle, equally
spread out within one revolution, then we have created a circular permutation, �c .
We say that �c D �c if � is just a cyclic shift of � , i.e., S i .�/D � for some i .

Definition 2.6. For colored permutationsp and q we say thatp contains q circularly
if p contains S i .q/ as a colored pattern for some nonnegative integer i .

Definition 2.7. Let P be any collection of permutations. A circular P-superpattern
is a permutation which contains every p 2 P as a circular pattern. We let spc.P/
denote the length of the shortest circular P-superpattern. When P is the set of all
circular patterns of length k we simply write spc.k/.

A useful concept in the study of pattern packing in colored permutations will be
“colored blocks”, which we define below.

Definition 2.8. In a colored permutation � , a colored block is a maximal monochro-
matic segment �.a/i in which every entry in this segment has color a and every
entry not in this segment is either larger or smaller than each entry in �.a/i .

For example, the permutation � D 1r2r6b5b3b4r has four colored blocks. From
left to right, they are �.r/1 D 1r2r , �

.b/
2 D 6b5b , �.b/3 D 3b , �.r/4 D 4r . Indeed

every colored permutation has a unique decomposition into colored blocks: Given
a colored permutation, it can first be decomposed into maximal monochromatic
subsequences and it is easy to see that there is a unique way to do this. Within each
monochromatic subsequence there is a unique way to separate the entries according
to their numerical values.

When comparing the numerical values between different blocks, we say that
�
.r/
i < �

.b/
j when all entries of �.r/i are less than all entries of �.b/j . It is easy to

see that this concept generalizes naturally to the circular case.
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For colored patterns � and permutations � we define fc.�; �/ to be the number
of occurrences of � in � wrapped around a circle; i.e.,

fc.�; �/D f .�; �/Cf .�; S.�//Cf .�; S
2.�//C � � �Cf .�; Sk�1.�//:

Then, similar to before,

gc.n; �/Dmaxffc.�; �/ W � is a permutation of length ng:

If � is of length n and fc.�; �/D gc.n; �/, then we say that � is circular � -optimal.

Definition 2.9. Let � be a colored permutation of length k. The circular packing
density of � , denoted by ıc.�/, is defined by

ıc.�/D lim
n!1

gc.n; �/�
n
k

� :

3. Superpatterns

In this section we consider questions related to superpatterns in colored circular per-
mutations. We note that some of the results in this section are direct generalizations
from those in [Gray and Wang 2016]. For this reason some details will be omitted.

Theorem 3.1. For any positive integers k and m, we have that

spc.Sk;m/Dm spc.k/:

Proof. Let p0 be a circular Sk;m-superpattern and p0i be the longest monochromatic
subsequence in p0 in color i . It follows that p0 is a circular k-superpattern and
consequently jp0i j � spc.k/ for any 1� i �m. Hence

jp0j D

mX
iD1

jp0i j �m spc.k/:

Now, let p be a circular permutation of length spc.k/ that contains all noncolored
patterns of length k. Consider the m-colored circular permutation p00, constructed
from p by replacing each 1� j � spc.k/ in p with the sequence

sj D Œm.j � 1/C 1�1Œm.j � 1/C 2�2 � � � Œm.j � 1/Cm�m:

It is easy to see that
jp00j Dmjpj Dm spc.k/

and that p00is a Sk;m-superpattern. Thus,

spc.Sk;m/� jp
00
j Dm spc.k/: �

With Theorem 3.1, we can use previously established results [Gray et al. 2017]
on spc.k/ to bound spc.Sk;m/.
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Corollary 3.2. For positive integers k and m we have

spc.Sk;m/Dm spc.k/�mg.k/
k2

e2
;

where g.k/! 1 as k!1, and

spc.Sk;m/Dm spc.k/�m.sp.k� 1/C 1/�m
�
1
2
k.k� 1/C 1

�
:

Consequently,

mg.k/
k2

e2
� spc.Sk;m/�m

�
1
2
k.k� 1/C 1

�
;

where g.k/! 1 as k!1.

As expected, the bounds for spc.Sk;m/ are simplym times the bounds for spc.k/.
Next, we restrict our attention to only monochromatic or nonmonochromatic patterns.
First we note the following facts on the sizes of Mk;m and Nk;m:
� jSk;mj DmkkŠ .
� jMk;mj DmkŠ .

� jNk;mj D jSk;mj � jMk;mj D .m
k�1� 1/jMk;mj.

We now establish a lower bound for spc.Nk;m/.
Theorem 3.3. For positive integers k and m,

spc.Nk;m/�mg.k;m/
k2

e2
;

where g.k;m/! 1 as k!1.

Proof. Let nD spc.Nk;m/, and our Nk;m-superpattern of length n must contain a
circular shift of every permutation in Nk;m. Note that at most k such permutations
can be circular shifts of each other; hence at least jNk;mj=k permutations from
Nk;m must be contained in the superpattern. Consequently�n

k

�
�
jNk;mj
k
D
.mk �m/kŠ

k
D .mk �m/.k� 1/Š :

By the fact nk=kŠ�
�
n
k

�
and Stirling’s approximation kŠ�

p
2�k.kk=ek/, we have

nk

kŠ
� .mk �m/.k� 1/Š

and hence

n�

�
.mk�m/

.kŠ/2

k

�1=k
�

�
.mk�m/2�

k2k

e2k

�1=k
Dm

�
.1�m�kC1/2�

�1=k k2
e2
Dmg.k;m/

k2

e2

with g.k;m/D
�
.1�m�kC1/2�

�1=k
! 1 as k!1. �
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It is interesting to note that this lower bound is similar to that found for spc.Sk;m/
in Corollary 3.2. To bound spc.Nk;m/ from above, first note that a circular Mk;m-
superpattern must have m copies of a circular k-superpattern, one for each color.
Then, we have

spc.Nk;m/� spc.Sk;m/Dm spc.k/D spc.Mk;m/:

Given the fact that jNk;mj D .mk�1 � 1/jMk;mj, it is rather surprising that the
shortest Nk;m-superpattern is not longer than the shortest Mk;m-superpattern. The
following further analyzes the relationship between them.

Theorem 3.4. For any positive integers k � 2 and m, we have

spc.Mk�1;m/� spc.Nk;m/� spc.Mk;m/:

Proof. The second inequality follows from the discussion above.
On the other hand, let q be an m-colored pattern of length k with all but

one entry of color i . For some circular shift of q to be contained in a circular
Nk;m-superpattern, a circular shift of the length-.k�1/ monochromatic pattern in
color i must be contained in the superpattern. Hence all length-.k�1/ monochro-
matic patterns (of any color) must occur in a circular Nk;m-superpattern, and
spc.Mk�1;m/� spc.Nk;m/. �

4. Pattern packing

Our results in this section mainly concern the characteristics of the optimal colored
circular permutations when the pattern under consideration is described through
colored blocks. Again, some of our results here are direct generalizations of those
in noncircular case [Just and Wang 2016], for which reason we skip some details.

In the case of having only two colored blocks, we can see that a pattern must be
of the form � D �1�2 with �1 in red and �2 in blue. We will assume, without loss
of generality, that �1 < �2. In this case, we may simply say that the pattern is of
the form rb with r < b, and similarly for patterns with more colored blocks.

Theorem 4.1. For a pattern � with two colored blocks of the form rb with r < b,
there is an optimal circular permutation � of the form RB with R < B .

Proof. Let � be a �-optimal permutation of length nwith colored blocks �1�2 � � ��k .
We can assume without loss of generality that �1 is red.

Now, let us take all the red blocks �r1�r2 � � ��rs and blue blocks �b1�b2 � � ��bt ,
and form a new circular permutation � 0 D �r1 � � ��rs�b1 � � ��bt . It is easy to see
that any occurrence of � in � is also in � 0.

Next, since � is of the form rb with r < b, we claim that, in our optimal
permutation � 0, every red entry must be (numerically) less than every blue entry.
Otherwise, one may always “rearrange” the numerical values so that the numerical
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ordering stays the same among entries of the same color, and so that all red entries
are smaller than the blue ones. The resulting permutation can only contain more
occurrences of �.

Consequently, all red blocks together simply form a single block in � and so do
the blue blocks. Our conclusion, then, follows. �

Next, we consider patterns with three colored blocks. Note that for circular
patterns with three colored blocks and two colors, rb1b2 with b1 < r < b2 is the
only case that we needed to investigate: With three colored blocks and two colors
there are always one block with one color (say red) and two blocks with the other
(say blue). One of the circular shifts of this pattern must be of the form rb1b2. By
taking a circular shift of the reversed pattern (i.e., rb2b1) if necessary, we may also
assume that b1 < r < b2.

Theorem 4.2. For a pattern � with three colored blocks of the form rb1b2 and
b1 < r < b2, there is an optimal circular permutation � of the same form.

Proof. Let � be a �-optimal circular permutation of length n. First, we will show
that we can put all blue blocks in increasing order of their numerical values and
next to each other. Let �r1 ; �r2 ; : : : ; �rs be the red blocks of � .

Now, for an occurrence of � in � , suppose R� (in �) is the part corresponding
to r (in �). Let �b<R be the collection of all blue blocks (with numerical value)
less than R�, and let �b>R� be the set of all blue blocks greater than R�. Then,
any occurrence of rb1b2 with r � R� must have b1 occurring in �b<R� and b2
occurring in �b>R� . The maximum number of such occurrences (i.e., the maximum
possible contribution of R� to fc.�; �/) is

f .�b<R� ; b1/f .�b>R� ; b2/:

As far as the ordering of the blue blocks is concerned, arranging the blue blocks in
increasing order achieves the above maximum. At this point it is also easy to see that
putting blocks of the same color together will not reduce the number of occurrences
of �. Denote such an optimal permutation by � 0 D �r1 � � ��rs�b1 � � ��bt , with
�bi < �biC1 for any 1� i � t � 1.

Next, we show that all red entries form a single block, or equivalently, the
numerical value of any red block is between those of �bj0�1 and �bj0 for some
fixed j0. Let �b�j be the collection of blue blocks �bj ; �bjC1 ; : : : ; �bt , and let
�b<j be the collection of blocks �b1 ; : : : ; �bj . Then, there must exist some j0 that
maximizes the occurrences of b1 in �b<j and b2 in �b�j . In other words,

f .�b<j0
; b1/f .�b�j0

; b2/� f .�b<j ; b1/f .�b�j ; b2/

for any 1 < j � t . So,

fc.�
0; �/� f .�r1 � � ��rs ; r/f .�b<j0

; b1/f .�b�j0
; b2/
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with equality when �bj0�1 < �ri < �bj0 for any 1 � i � s. From this it follows
that there are exactly one single red block and two blue blocks in � DRB1B2 with
B1 <R < B2. �

It remains to consider the case when we have three colored blocks in three
different colors, i.e., the pattern rbg with r < b < g.

Theorem 4.3. For a pattern � of the form rbg with r < b < g, there is an optimal
circular permutation � of the same form.

Proof. Let � be a �-optimal circular permutation of length n with R0, B 0 and G0

being the collections of all red blocks (in their original order), blue blocks and
green blocks respectively. An occurrence of � in � must consist of an occurrence
of r in R0, an occurrence of b in B 0, and an occurrence of g in G0. Hence

f .�; �/� f .R0; r/f .B 0; b/f .G0; g/

with equality if each of R0, B 0 and G0 is a single block, arranged in this order, and
R0 < B 0 <G0. �

To summarize the above observations, we have the following.

Corollary 4.4. For any circular pattern with two or three colored blocks, there is a
corresponding optimal circular permutation of the same form.

Remark 4.5. After seeing the above results on patterns with two or three colored
blocks, it is natural to guess that the same holds for patterns with more blocks.
Consequently one can ask if there is always an optimal circular permutation of the
same form as the pattern. We have not been able to prove either way.

On the other hand, considering � D 1r2b , it is not hard to check that � D
.1r3b2r4b/c is an optimal length-4 circular permutation for �. Thus, there does
exist an optimal permutation that is not of the form RB with R < B . Evidence
seems to suggest that this is the only such case.

5. Pattern avoidance

The numbers of m-colored (noncircular) permutations that avoid one or two 2-letter
patterns were presented in [Mansour 2001], together with some discussion of the
connection between pattern avoidance in noncolored permutations and colored
permutations. In [Callan 2002], pattern avoidance in circular permutations was
studied. It was pointed out that, when considered as circular permutations, none
avoid any 2-letter patterns and the identity (reverse identity) is the only one avoiding
the pattern 132 (123). In this section we extend this study to colored circular
permutations, generalizing a little of both [Callan 2002] and [Mansour 2001].
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Avoiding a monochromatic length-2 pattern in Sk;m. Without loss of generality,
we may assume the monochromatic length-2 pattern is 1121. Then, to avoid such
a pattern, our permutation � in Sk;m can contain at most one entry of color 1.
Consider two cases:

� There is no entry with color 1 in � . Then, there are a total of .k�1/Š noncolored
circular permutations of length k, and each of the k entries has m� 1 choices of
colors (i.e., the colors 2; 3; : : : ; m); thus the number of such permutations is

.k� 1/Š .m� 1/k :

� There is exactly one entry with color 1. Out of the k entries 1; 2; : : : ; k there
are k choices for this particular entry of color 1. There are still .k � 1/Š ways to
wrap the k entries (regardless of their colors) around a circle. Now for each of the
remaining k � 1 entries that are not of color 1, there are m� 1 choices of colors.
Hence the number of such permutations is

kŠ .m� 1/k�1:

Consequently, we have the following.

Theorem 5.1. The number of circular permutations in Sk;m that avoid a given
monochromatic length-2 pattern is

.k� 1/Š .m� 1/kC kŠ .m� 1/k�1 D .k� 1/Š .m� 1/k�1.kCm/:

Avoiding nonmonochromatic length-2 pattern in Sk;m. Again, without loss of
generality, let us assume this pattern to be 1122. For a circular permutation �
in Sk;m, letE1 andE2 be the sets of entries in � that are colored 1 and 2 respectively.
It is easy to see that a 1122 pattern will occur if there is any entry in E1 that is
of smaller numerical value than one in E2. Thus, all entries in E1 are larger than
those in E2. Suppose jE1[E2j D i for some 0� i � k. Then, there are iC1 ways
to partition the entries into E1 and E2 (i.e., to find a j D 0; 1 : : : ; i such that the
smallest j entries are colored 2 and the rest are colored 1).

Thus, still with .k � 1/Š ways to wrap all entries around a circle, there are
�
k
i

�
ways to choose entries of E1[E2. After identifying j there are .m� 2/k�i ways
to color the remaining entries. Consequently the number of such permutations is

.k�1/Š

kX
iD0

�
.m�2/k�i .iC1/

�k
i

��
D .k�1/Š

kX
iD1

�
.m�2/k�i i

�k
i

��
C.k�1/Š

kX
iD0

�
.m�2/k�i

�k
i

��

D .k�1/Š

kX
iD1

�
.m�2/.k�1/�.i�1/k

�k�1
i�1

��
C.k�1/Š

kX
iD0

�
.m�2/k�i

� k

k�i

��
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D kŠ ..m�2/C1/k�1C.k�1/Š ..m�2/C1/k

D .k�1/Š .m�1/kCkŠ .m�1/k�1 D .k�1/Š .m�1/k�1.kCm/:

As a result we have the following.

Theorem 5.2. The number of circular permutations in Sk;m that avoid a given
nonmonochromatic length-2 pattern is

.k� 1/Š .m� 1/k�1.kCm/:

Avoiding monochromatic patterns of length 3 in Sk;m. All circular permutations
of length 3 are equivalent under circular shift and reverse. So we will only consider,
without loss of generality, the pattern 113121. It is known that in the noncolored
case the only circular permutation that avoids 132 is the identity permutation.

Let � be a permutation that avoids 113121 in Sk;m, and let E1 (of cardinality
i D 0; 1; : : : ; k) be the set of entries of color 1, then:

� If i � 3, there is only one way to order the entries in E1 (i.e., in increasing
order). Starting with .k�1/Š ways to wrap the k entries (regardless of color) around
a circle, only one of the .i � 1/Š orderings of the entries in E1 can be chosen.
Noting that there are

�
k
i

�
ways to pick the numerical values of the entries in E1 and

.m� 1/k�i ways to assign colors to the remaining entries, we have the number of
such permutations as

kX
iD3

��k
i

�.k� 1/Š
.i � 1/Š

.m� 1/k�i
�
:

� If i � 2, then there are
�
k
i

�
ways to pick these i entries, .k� 1/Š ways to wrap all

the entries around the circle and .m� 1/k�i ways to color the other entries. The
number of such permutations is

2X
iD0

��k
i

�
.k� 1/Š.m� 1/k�i

�
:

We may combine the above two formulas and conclude the following.

Theorem 5.3. The number of circular permutations in Sk;m that avoid a given
monochromatic length-3 pattern is

.k� 1/Š .m� 1/kC

kX
iD1

��k
i

�.k� 1/Š
.i � 1/Š

.m� 1/k�i
�
:

Wilf classes. Theorems 5.1 and 5.2 imply that for any m-colored pattern of
length 2, say �, the number of �-avoiding circular permutations in Sk;m is
.k � 1/Š.m � 1/k�1.k C m/. This interesting (and perhaps a little surprising)
observation is analogous to the findings in [Mansour 2001] in noncircular case.
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This also implies that there is only one Wilf class of colored circular permutations
when restricted by one pattern of length 2.

6. Concluding remarks and additional questions

In this short note, we considered questions related to superpatterns, pattern pack-
ing, and pattern avoidance in colored circular permutations. We presented some
elementary observations, especially those generalized from previously established
results on colored (but not circular) permutations, on each of these three questions.
Many interesting questions remain to be further explored.

In Section 3, we introduced generalizations of a few facts on colored superpatterns.
The arguments of these generalizations follow from direct adjustment of those in
[Gray and Wang 2016]. There are, however, also some constructive proofs that
cannot be directly generalized to circular cases. It would be interesting to further
investigate them.

The several theorems in Section 4 claim that for patterns with two or three
colored blocks their corresponding optimal colored circular permutations include at
least one with exactly the same format (in terms of the colored blocks). With these
facts, one may easily calculate the packing densities of various patterns. It is not
clear whether this is true for more colored blocks. It is also mentioned that, for the
pattern �D 1r2b , there exist optimal permutations that have a different format. It
seems likely that this is the only such case, though we do not have a proof yet.

The numbers of permutations avoiding various given patterns, as studied in
Section 5, lead to an interesting statement on the Wilf classes of colored circular
permutations restricted by 2-letter patterns. It appears to be much more complicated
to examine the same problem for colored circular permutations restricted by longer
patterns or more than one 2-letter patterns.
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