

Antiderivatives and linear differential equations using matrices
Yotsanan Meemark and Songpon Sriwongsa





# Antiderivatives and linear differential equations using matrices

## Yotsanan Meemark and Songpon Sriwongsa

(Communicated by Kenneth S. Berenhaut)

We show how to find the closed-form solutions for antiderivatives of  $x^n e^{ax} \sin bx$  and  $x^n e^{ax} \cos bx$  for all  $n \in \mathbb{N}_0$  and  $a, b \in \mathbb{R}$  with  $a^2 + b^2 \neq 0$  by using an idea of Rogers, who suggested using the inverse of the matrix for the differential operator. Additionally, we use the matrix to illustrate the method to find the particular solution for a nonhomogeneous linear differential equation with constant coefficients and forcing terms involving  $x^n e^{ax} \sin bx$  or  $x^n e^{ax} \cos bx$ .

## 1. Matrix inversion

The concepts of basis and matrix for a linear transformation relative to bases are fundamental in linear algebra. Rogers [1997] suggested an application of the inverse of the matrix for the differential operator on  $C^{\infty}(\mathbb{R})$  relative to a given basis  $\mathcal{B}$  to obtain antiderivatives of functions in  $\mathcal{B}$ . This idea was used with Chevbyshev's polynomials and some binomial identities to get a formula for integrating the power of cosines [Meemark and Leela-apiradee 2011]. Also, the integrals of powers of sine and tangent were obtained by Matlak et al. [2014]. This idea provides a useful application of linear algebra to calculus.

Let n be a nonnegative integer and  $\mu=a+bi$  a nonzero complex number. In this work, we apply the idea of Rogers with the complex approach to find the antiderivatives of  $x^n e^{ax} \sin bx$  and  $x^n e^{ax} \cos bx$  for all  $n \in \mathbb{N}_0$  and  $a, b \in \mathbb{R}$  with  $a^2+b^2\neq 0$ . More precisely,  $x^n e^{\mu x}=x^n e^{ax}\cos bx+ix^n e^{ax}\sin bx$ . The linearity of the integral operator and comparing the real and imaginary parts yield the desired integrals.

Consider the set of linearly independent functions

$$\mathcal{B}_n = \{e^{\mu x}, xe^{\mu x}, \dots, x^n e^{\mu x}\}.$$

MSC2010: primary 15A09; secondary 34A30.

Keywords: differential operator, inverse of matrix, rectangular form.

Let V be the space with the basis  $\mathcal{B}_n$  and  $\mathcal{D}: V \to V$  be the linear operator defined by  $\mathcal{D}(f) = f'$  for all  $f \in V$ . Since V contains no nonzero constant function,  $\mathcal{D}: V \to V$  is invertible. Note that for  $j \in \{0, 1, 2, ..., n\}$ , we have

$$\mathcal{D}(x^j e^{\mu x}) = \mu x^j e^{\mu x} + j x^{j-1} e^{\mu x}.$$

This yields the following theorem.

**Theorem 1.** The matrix for  $\mathcal{D}$  relative to the basis  $\mathcal{B}_n$  is

$$D_n = [\mathcal{D}]_{\mathcal{B}_n} = \begin{bmatrix} \mu & 1 & & \\ & \mu & 2 & & \\ & & \mu & \ddots & \\ & & & \ddots & n \\ & & & & \mu \end{bmatrix}.$$

According to Rogers' technique [1997], we shall use the inverse of  $D_n$  to find the general formula for  $\int x^n e^{\mu x} dx$ . From the above theorem,  $D_n$  is invertible and  $D_n^{-1}$  is the upper triangular matrix given by

$$D_n^{-1} = \begin{bmatrix} c_{0,0} & c_{0,1} & \cdots & c_{0,n} \\ & c_{1,1} & \cdots & c_{1,n} \\ & & \ddots & \vdots \\ & & c_{n,n} \end{bmatrix}.$$

Identifying  $\int x^n e^{\mu x} dx$  with the value  $D_n^{-1}(x^n e^{\mu x}) \in V$ , we get

$$\int x^n e^{\mu x} \, dx = \sum_{i=0}^n c_{j,n} x^j e^{\mu x},$$

where the  $c_{j,n}, j \in \{0, 1, ..., n\}$ , satisfy the system of equations

$$\mu c_{0,n} + c_{1,n} = 0,$$

$$\mu c_{1,n} + 2c_{2,n} = 0,$$

$$\vdots$$

$$\mu c_{n-1,n} + nc_{n,n} = 0,$$

$$\mu c_{n,n} = 1,$$

because the product of  $D_n$  and  $D_n^{-1}$  is the identity matrix. Clearly,  $c_{n,n} = 1/\mu$ . The back-substitution yields

$$c_{j,n} = c_{n-(n-j),n} = \left(\frac{-n}{\mu}\right) \left(\frac{-(n-1)}{\mu}\right) \cdots \left(\frac{-(j-1)}{\mu}\right) \left(\frac{1}{\mu}\right) = \left(\frac{n!}{j!}\right) \left(\frac{(-1)^{n-j}}{\mu^{n-j+1}}\right)$$

for all  $j \in \{0, 1, ..., n-1\}$ . Hence, we have shown:

**Theorem 2.** For each  $j \in \{0, 1, ..., n\}$ , we have

$$c_{j,n} = \left(\frac{n!}{j!}\right) \left(\frac{(-1)^{n-j}}{\mu^{n-j+1}}\right).$$

Note that the integration by parts provides the recursion

$$\int x^n e^{\mu x} \, dx = \frac{1}{\mu} x^n e^{\mu x} - \frac{n}{\mu} \int x^{n-1} e^{\mu x} \, dx.$$

It follows that the algorithm presented in Theorem 2, requiring only the last column of  $D_n^{-1}$ , is more efficient than integration by parts, which requires the computation of the entire matrix  $D_n^{-1}$ .

## 2. Applications

We use the result from Theorem 2 to find the closed-form of  $\int x^n e^{ax} \sin bx \, dx$  and  $\int x^n e^{ax} \cos bx \, dx$ . Moreover, we also use the basis introduced in the above section to find the particular solution for a nonhomogeneous linear differential equation with constant coefficients and forcing terms involving  $x^n e^{ax} \sin bx$  or  $x^n e^{ax} \cos bx$ .

For real  $\mu$ , the general form of  $\int x^n e^{\mu x} dx$  derived in Theorem 2 is the final form. Now, we assume that  $\mu = a + ib$  with  $b \neq 0$ ; the rectangular form of  $\int x^n e^{\mu x} dx$  still remains to be computed. First, we express  $\int x^n e^{\mu x} dx = (p_n(x) - iq_n(x))e^{\mu x}$  for some polynomials  $p_n(x)$  and  $q_n(x)$  of degree n in  $\mathbb{R}[x]$ . Let  $\varrho = |\mu|$  and  $\varphi = \arg(\mu)$ . Then we have

$$\frac{1}{\mu} = \frac{1}{\varrho} e^{-i\varphi} \quad \text{and} \quad \frac{1}{\mu^{n-j+1}} = \frac{1}{\varrho^{n-j+1}} e^{-i\varphi(n-j+1)};$$

hence

$$c_{j,n} = (-1)^{n-j} \left(\frac{n!}{j!}\right) (s_{n-j+1} - it_{n-j+1}),$$

where

$$s_m = \frac{1}{\varrho^m} \cos m\varphi$$
 and  $t_m = \frac{1}{\varrho^m} \sin m\varphi$  for  $m \in \mathbb{N}$ .

Since

$$\int x^n e^{\mu x} dx = \sum_{j=0}^n c_{j,k} x^j e^{\mu x} = (p_n(x) - i q_n(x)) e^{\mu x},$$

by comparing the real and imaginary parts, we have

$$p_n(x) = \sum_{j=0}^n (-1)^{n-j} \left(\frac{n!}{j!}\right) s_{n-j+1} x^j \quad \text{and} \quad q_n(x) = \sum_{j=0}^n (-1)^{n-j} \left(\frac{n!}{j!}\right) t_{n-j+1} x^j.$$

Moreover,

$$\int x^n e^{\mu x} dx = (p_n(x) - iq_n(x))e^{\mu x} = (p_n(x) - iq_n(x))[e^{ax}(\cos bx + i\sin bx)]$$
$$= e^{ax}[p_n(x)\cos bx + q_n(x)\sin bx] - ie^{ax}[q_n(x)\cos bx - p_n(x)\sin bx]$$

and

$$\int x^n e^{\mu x} dx = \int x^n e^{ax} \cos bx dx + i \int x^n e^{ax} \sin bx dx.$$

In conclusion, we obtain the antiderivatives of  $x^n e^{ax} \sin bx$  and  $x^n e^{ax} \cos bx$ .

**Theorem 3.** For  $n \in \mathbb{N} \cup \{0\}$  and  $a, b \in \mathbb{R}$  with  $a^2 + b^2 \neq 0$ ,

$$\int x^n e^{ax} \sin bx \, dx = -e^{ax} [q_n(x) \cos bx - p_n(x) \sin bx] + C,$$

$$\int x^n e^{ax} \cos bx \, dx = e^{ax} [p_n(x) \cos bx + q_n(x) \sin bx] + C,$$

where  $p_n(x)$  and  $q_n(x)$  are polynomials of degree n computed above.

Finally, we remark that to apply the idea of Rogers [1997] and obtain the same results, one may use the basis

$$C_n = \{e^{ax} \sin bx, e^{ax} \cos bx, xe^{ax} \sin bx, xe^{ax} \cos bx,$$
$$x^2 e^{ax} \sin bx, x^2 e^{ax} \cos bx, \dots, x^n e^{ax} \sin bx, x^n e^{ax} \cos bx\}$$

instead of  $\mathcal{B}_n$  introduced above. But then the matrix for the differential operator relative to  $\mathcal{C}_n$  has the block matrix form

$$D = \begin{bmatrix} A & I_2 & & & \\ & A & 2I_2 & & \\ & & A & \ddots & \\ & & & \ddots & nI_2 \\ & & & A \end{bmatrix},$$

where

$$A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

and  $I_2$  is the  $2 \times 2$  identity matrix, and the computation for the matrix  $D^{-1}$  is tedious. The use of the complex approach and the basis  $\mathcal{B}_n$  reduce the complexity of the computation. Moreover, our approach can be used to find the particular solution for a nonhomogeneous linear differential equation with constant coefficients and forcing terms involving  $x^n e^{ax} \sin bx$  or  $x^n e^{ax} \cos bx$  as follows.

Recall from Theorem 1 that the matrix for the differential operator relative to the basis  $\mathcal{B}_n$  is

$$D_n = \begin{bmatrix} \mu & 1 & & & \\ & \mu & 2 & & \\ & & \mu & \ddots & \\ & & & \ddots & n \\ & & & & \mu \end{bmatrix}.$$

It is immediate from the linearity of the differential operator that it suffices to find the particular solution of the equation

$$a_k y^{(k)} + \dots + a_0 y = x^n e^{\mu x} = (x^n e^{ax} \cos bx) + i(x^n e^{ax} \sin bx),$$

denoted by  $y_p$ . Note that  $[x^n e^{\mu x}]_{D_n} = (0, \dots, 0, 1)^T$ . Let  $L = a_k D^k + \dots + a_0 I$ . We shall find a solution of  $L[y_p]_{D_n} = (0, \dots, 0, 1)^T$ . Then we get that  $y_1 = \text{Re } y_p$  and  $y_2 = \text{Im } y_p$  are the particular solutions for the equations  $a_k y^{(k)} + \dots + a_0 y = x^n e^{ax} \cos bx$  and  $a_k y^{(k)} + \dots + a_0 y = x^n e^{ax} \sin bx$ , respectively.

**Example.** Consider the equations  $y'' - 3y' + 2y = xe^x \sin x$  and  $y'' - 3y' + 2y = xe^x \cos x$ . As per the set-up above,

$$\mu = 1 + i, \quad L = \begin{bmatrix} \mu^2 - 3\mu + 2 & 2\mu - 3 \\ 0 & \mu^2 - 3\mu + 2 \end{bmatrix},$$

and so the solution  $[y_p]_{D_1}$  of  $L[y_p]_{D_1} = (0, \dots, 0, 1)^T$  is

$$\left(-\frac{2\mu-3}{(\mu^2-3\mu+2)^2}, \frac{1}{\mu^2-3\mu+2}\right)^T$$
.

Then

$$y_p = -\frac{2\mu - 3}{(\mu^2 - 3\mu + 2)^2}e^{\mu x} + \frac{1}{\mu^2 - 3\mu + 2}xe^{\mu x}.$$

Hence, the particular solution of the first equation is

$$y_1 = \text{Im } y_p = e^x \left( \left( -1 - \frac{1}{2}x \right) \sin x - \left( \frac{1}{2} - \frac{1}{2}x \right) \cos x \right),$$

and the particular solution of the second equation is

$$y_2 = \text{Re } y_p = e^x \left( \left( -1 - \frac{1}{2}x \right) \cos x + \left( \frac{1}{2} - \frac{1}{2}x \right) \sin x \right).$$

## 3. Acknowledgments

This work grew out of an independent project while Sriwongsa was an undergraduate student at Chulalongkorn University. The project was funded by the Human Resource Development in Science Project (Science Achievement Scholarship of Thailand, SAST).

### References

[Matlak et al. 2014] D. Matlak, J. Matlak, D. Slota, and R. Witula, "Differentiation and integration by using matrix inversion", *J. Appl. Math. Comput. Mech.* **13**:2 (2014), 63–71.

[Meemark and Leela-apiradee 2011] Y. Meemark and W. Leela-apiradee, "A change of basis matrix and integrals of power of cosine", *J. Statist. Plann. Inference* **141**:3 (2011), 1319–1324. MR Zbl

[Rogers 1997] J. W. Rogers, Jr., "Applications of linear algebra in calculus", *Amer. Math. Monthly* **104**:1 (1997), 20–26. MR Zbl

Received: 2017-09-03 Revised: 2017-10-26 Accepted: 2017-12-14

yzm101@yahoo.com Department of Mathematics and Computer Science, Faculty

of Science, Chulalongkorn University, Bangkok, Thailand

songpon@uwm.edu Department of Mathematical Sciences, University of

Wisconsin-Milwaukee, Milwaukee, WI, United States





#### INVOLVE YOUR STUDENTS IN RESEARCH

*Involve* showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, *Involve* provides a venue to mathematicians wishing to encourage the creative involvement of students.

#### MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA

### **BOARD OF EDITORS**

| Colin Adams                    | Williams College, USA                 | Suzanne Lenhart        | University of Tennessee, USA              |  |
|--------------------------------|---------------------------------------|------------------------|-------------------------------------------|--|
| John V. Baxley                 | Wake Forest University, NC, USA       | Chi-Kwong Li           | College of William and Mary, USA          |  |
| Arthur T. Benjamin             | Harvey Mudd College, USA              | Robert B. Lund         | Clemson University, USA                   |  |
| Martin Bohner                  | Missouri U of Science and Technology, | USA Gaven J. Martin    | Massey University, New Zealand            |  |
| Nigel Boston                   | University of Wisconsin, USA          | Mary Meyer             | Colorado State University, USA            |  |
| Amarjit S. Budhiraja           | U of North Carolina, Chapel Hill, USA | Emil Minchev           | Ruse, Bulgaria                            |  |
| Pietro Cerone                  | La Trobe University, Australia        | Frank Morgan           | Williams College, USA                     |  |
| Scott Chapman                  | Sam Houston State University, USA     | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran      |  |
| Joshua N. Cooper               | University of South Carolina, USA     | Zuhair Nashed          | University of Central Florida, USA        |  |
| Jem N. Corcoran                | University of Colorado, USA           | Ken Ono                | Emory University, USA                     |  |
| Toka Diagana                   | Howard University, USA                | Timothy E. O'Brien     | Loyola University Chicago, USA            |  |
| Michael Dorff                  | Brigham Young University, USA         | Joseph O'Rourke        | Smith College, USA                        |  |
| Sever S. Dragomir              | Victoria University, Australia        | Yuval Peres            | Microsoft Research, USA                   |  |
| Behrouz Emamizadeh             | The Petroleum Institute, UAE          | YF. S. Pétermann       | Université de Genève, Switzerland         |  |
| Joel Foisy                     | SUNY Potsdam, USA                     | Robert J. Plemmons     | Wake Forest University, USA               |  |
| Errin W. Fulp                  | Wake Forest University, USA           | Carl B. Pomerance      | Dartmouth College, USA                    |  |
| Joseph Gallian                 | University of Minnesota Duluth, USA   | Vadim Ponomarenko      | San Diego State University, USA           |  |
| Stephan R. Garcia              | Pomona College, USA                   | Bjorn Poonen           | UC Berkeley, USA                          |  |
| Anant Godbole                  | East Tennessee State University, USA  | James Propp            | U Mass Lowell, USA                        |  |
| Ron Gould                      | Emory University, USA                 | Józeph H. Przytycki    | George Washington University, USA         |  |
| Andrew Granville               | Université Montréal, Canada           | Richard Rebarber       | University of Nebraska, USA               |  |
| Jerrold Griggs                 | University of South Carolina, USA     | Robert W. Robinson     | University of Georgia, USA                |  |
| Sat Gupta                      | U of North Carolina, Greensboro, USA  | Filip Saidak           | U of North Carolina, Greensboro, USA      |  |
| Jim Haglund                    | University of Pennsylvania, USA       | James A. Sellers       | Penn State University, USA                |  |
| Johnny Henderson               | Baylor University, USA                | Andrew J. Sterge       | Honorary Editor                           |  |
| Jim Hoste                      | Pitzer College, USA                   | Ann Trenk              | Wellesley College, USA                    |  |
| Natalia Hritonenko             | Prairie View A&M University, USA      | Ravi Vakil             | Stanford University, USA                  |  |
| Glenn H. Hurlbert              | Arizona State University, USA         | Antonia Vecchio        | Consiglio Nazionale delle Ricerche, Italy |  |
| Charles R. Johnson             | College of William and Mary, USA      | Ram U. Verma           | University of Toledo, USA                 |  |
| K. B. Kulasekera               | Clemson University, USA               | John C. Wierman        | Johns Hopkins University, USA             |  |
| Gerry Ladas                    | University of Rhode Island, USA       | Michael E. Zieve       | University of Michigan, USA               |  |
| PRODUCTION                     |                                       |                        |                                           |  |
| Silvio Levy, Scientific Editor |                                       |                        |                                           |  |

Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US \$/year for the electronic version, and \$/year (+\$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.



mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/

© 2019 Mathematical Sciences Publishers

| Optimal transportation with constant constraint                                  | 1   |  |
|----------------------------------------------------------------------------------|-----|--|
| WYATT BOYER, BRYAN BROWN, ALYSSA LOVING AND SARAH TAMMEN                         |     |  |
| Fair choice sequences                                                            | 13  |  |
| William J. Keith and Sean Grindatti                                              |     |  |
| Intersecting geodesics and centrality in graphs                                  | 31  |  |
| Emily Carter, Bryan Ek, Danielle Gonzalez, Rigoberto Flórez                      |     |  |
| and Darren A. Narayan                                                            |     |  |
| The length spectrum of the sub-Riemannian three-sphere                           | 45  |  |
| DAVID KLAPHECK AND MICHAEL VANVALKENBURGH                                        |     |  |
| Statistics for fixed points of the self-power map                                | 63  |  |
| MATTHEW FRIEDRICHSEN AND JOSHUA HOLDEN                                           |     |  |
| Analytical solution of a one-dimensional thermistor problem with Robin boundary  | 79  |  |
| condition                                                                        |     |  |
| VOLODYMYR HRYNKIV AND ALICE TURCHANINOVA                                         |     |  |
| On the covering number of $S_{14}$                                               | 89  |  |
| RYAN OPPENHEIM AND ERIC SWARTZ                                                   |     |  |
| Upper and lower bounds on the speed of a one-dimensional excited random walk     |     |  |
| Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson,                          |     |  |
| JACOB SMITH AND KEVIN M. STANGL                                                  |     |  |
| Classifying linear operators over the octonions                                  | 117 |  |
| ALEX PUTNAM AND TEVIAN DRAY                                                      |     |  |
| Spectrum of the Kohn Laplacian on the Rossi sphere                               | 125 |  |
| TAWFIK ABBAS, MADELYNE M. BROWN, RAVIKUMAR RAMASAMI AND                          |     |  |
| Yunus E. Zeytuncu                                                                |     |  |
| On the complexity of detecting positive eigenvectors of nonlinear cone maps      | 141 |  |
| BAS LEMMENS AND LEWIS WHITE                                                      |     |  |
| Antiderivatives and linear differential equations using matrices                 | 151 |  |
| YOTSANAN MEEMARK AND SONGPON SRIWONGSA                                           |     |  |
| Patterns in colored circular permutations                                        | 157 |  |
| DANIEL GRAY, CHARLES LANNING AND HUA WANG                                        |     |  |
| Solutions of boundary value problems at resonance with periodic and antiperiodic | 171 |  |
| boundary conditions                                                              |     |  |
| ALDO E. GARCIA AND JEFFREY T. NEUGEBAUER                                         |     |  |