\bullet
 involve

 a journal of mathematicsSpectrum of the Kohn Laplacian on the Rossi sphere

Tawfik Abbas, Madelyne M. Brown, Ravikumar Ramasami and Yunus E. Zeytuncu

Spectrum of the Kohn Laplacian on the Rossi sphere

Tawfik Abbas, Madelyne M. Brown, Ravikumar Ramasami and Yunus E. Zeytuncu

(Communicated by Stephan Garcia)

We study the spectrum of the Kohn Laplacian \square_{b}^{t} on the Rossi example $\left(\mathbb{S}^{3}, \mathcal{L}_{t}\right)$. In particular we show that 0 is in the essential spectrum of \square_{b}^{t}, which yields another proof of the global nonembeddability of the Rossi example.

1. Introduction

General setting. Let $\mathbb{S}^{3}=\left\{\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}:\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}$ denote the 3-sphere in \mathbb{C}^{2}. The space \mathbb{S}^{3} is a real three-dimensional manifold and it can be viewed as an abstract CR manifold when one chooses a specific complex vector field that determines the complex tangent vectors. It is a general question whether an abstract CR manifold can be realized as a manifold in \mathbb{C}^{N}, for some N, where the complex tangent spaces coincide with the ones induced from the ambient space. One way of addressing this question is studying a second-order differential operator, the so-called Kohn Laplacian, that naturally arises on CR manifolds. Many geometric properties of abstract CR manifolds can be studied by analyzing the properties of this differential operator. In this note we address the embeddability question by studying the spectrum of the Kohn Laplacian on a specific abstract CR manifold. In particular we examine the essential spectrum of the Kohn Laplacian. The essential spectrum of a bounded self-adjoint operator is the subset of the spectrum that contains eigenvalues of infinite multiplicity and the limit points. We refer the readers to [Boggess 1991; Chen and Shaw 2001] for the general theory of CR manifolds and the Kohn Laplacian, and to [Davies 1995] for spectral theory.

[^0]Main problem. Rossi [1965] showed that the CR-manifold ($\mathbb{S}^{3}, \mathcal{L}_{t}$) is not CRembeddable, where

$$
\mathcal{L}_{t}=\bar{z}_{1} \frac{\partial}{\partial z_{2}}-\bar{z}_{2} \frac{\partial}{\partial z_{1}}+\bar{t}\left(z_{1} \frac{\partial}{\partial \bar{z}_{2}}-z_{2} \frac{\partial}{\partial \bar{z}_{1}}\right),
$$

and $|t|<1$. In the case of strictly pseudoconvex CR-manifolds Boutet de Monvel [1975] proved that if the real dimension of the manifold is at least 5, then it can always be globally CR-embedded into \mathbb{C}^{N} for some N. Later Burns [1979] approached this problem in the $\bar{\partial}$ context and showed that if the tangential operator $\bar{\partial}_{b, t}$ has closed range and the Szegő projection is bounded, then the CR-manifold is CRembeddable into \mathbb{C}^{N}. Then Kohn [1985] showed that CR-embeddability is equivalent to showing that the tangential Cauchy-Riemann operator $\bar{\partial}_{b, t}$ has closed range.

In the setting of the Rossi example, as an application of the closed graph theorem, $\bar{\partial}_{b, t}$ has closed range if and only if the Kohn Laplacian

$$
\square_{b}^{t}=-\mathcal{L}_{t} \frac{1+|t|^{2}}{\left(1-|t|^{2}\right)^{2}} \overline{\mathcal{L}}_{t}
$$

has closed range; see [Burns and Epstein 1990, (0.5)]. Furthermore, the closed range property is equivalent to the positivity of the essential spectrum of \square_{b}^{t}; see [Fu 2005] for similar discussion. In this note we tackle the problem of embeddability, from the perspective of spectral analysis. In particular, we show that 0 is in the essential spectrum of \square_{b}^{t}, so the Rossi sphere is not globally CR-embeddable into \mathbb{C}^{N}. This provides a different approach to the results in [Burns 1979; Kohn 1985].

We start our analysis with the spectrum of \square_{b}^{t}. We utilize spherical harmonics to construct finite-dimensional subspaces of $L^{2}\left(\mathbb{S}^{3}\right)$ such that \square_{b}^{t} has tridiagonal matrix representations on these subspaces. We then use these matrices to compute eigenvalues of \square_{b}^{t}. We also present numerical results obtained by Mathematica that motivate most of our theoretical results. We then present an upper bound for small eigenvalues and we exploit this bound to find a sequence of eigenvalues that converge to 0 .

In addition to particular results in this note, our approach can be adopted to study possible other perturbations of the standard CR-structure on the 3-sphere, such as in [Burns and Epstein 1990]. Furthermore, our approach also leads some information on the growth rate of the eigenvalues and possible connections to finite-type (in the sense of commutators) results similar to the ones in [Fu 2008]. We plan to address these issues in future papers.

2. Analysis of \square_{b} on $\mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right)$

Spherical harmonics. We start with a quick overview of spherical harmonics; we refer to [Axler et al. 2001] for a detailed discussion. We will state the relevant
theorems on \mathbb{C}^{2} and $\mathbb{S}^{3} \subseteq \mathbb{C}^{2}$. A polynomial in \mathbb{C}^{2} can be written as

$$
p(z, \bar{z})=\sum_{\alpha, \beta} c_{\alpha, \beta} z^{\alpha} \bar{z}^{\beta}
$$

where $z \in \mathbb{C}^{2}$, each $c_{\alpha, \beta}$ is in \mathbb{C}, and $\alpha, \beta \in \mathbb{N}^{2}$ are multi-indices. That is, $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$, $z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}$, and $|\alpha|=\alpha_{1}+\alpha_{2}$.

We denote the space of all homogeneous polynomials on \mathbb{C}^{2} of degree m by $\mathcal{P}_{m}\left(\mathbb{C}^{2}\right)$, and we let $\mathcal{H}_{m}\left(\mathbb{C}^{2}\right)$ denote the subspace of $\mathcal{P}_{m}\left(\mathbb{C}^{2}\right)$ that consists of all harmonic homogeneous polynomials on \mathbb{C}^{2} of degree m. We use $\mathcal{P}_{m}\left(\mathbb{S}^{3}\right)$ and $\mathcal{H}_{m}\left(\mathbb{S}^{3}\right)$ to denote the restriction of $\mathcal{P}_{m}\left(\mathbb{C}^{2}\right)$ and $\mathcal{H}_{m}\left(\mathbb{C}^{2}\right)$ onto \mathbb{S}^{3}. We denote the space of complex homogeneous polynomials on \mathbb{C}^{2} of bidegree p, q by $\mathcal{P}_{p, q}\left(\mathbb{C}^{2}\right)$, and those polynomials that are homogeneous and harmonic by $\mathcal{H}_{p, q}\left(\mathbb{C}^{2}\right)$. As before, we denote by $\mathcal{P}_{p, q}\left(\mathbb{S}^{3}\right)$ and $\mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right)$ the polynomials of the previous spaces, but restricted to \mathbb{S}^{3}. We recall that on \mathbb{C}^{2}, the Laplacian is defined as

$$
\Delta=4\left(\frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}+\frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{2}}\right) .
$$

As an example, $z_{1} \bar{z}_{2}-2 z_{2} \bar{z}_{1} \in \mathcal{P}_{1,1}\left(\mathbb{C}^{2}\right)$, and $z_{1} \bar{z}_{2}^{2} \in \mathcal{H}_{1,2}\left(\mathbb{C}^{2}\right)$. We take our first step by stating the following decomposition result.
Proposition 2.1 [Axler et al. 2001, Theorem 5.12]. $L^{2}\left(\mathbb{S}^{3}\right)=\bigoplus_{m=0}^{\infty} \mathcal{H}_{m}\left(\mathbb{S}^{3}\right)$.
The spherical harmonics form an orthogonal basis on \mathbb{S}^{3} similar to the Fourier series on the unit circle \mathbb{S}^{1}. They are also the eigenfunctions of the Laplacian on \mathbb{S}^{3}. The summation above is understood as the orthogonal direct sum of Hilbert spaces. This statement is essential to the spectral analysis of \square_{b}^{t} on $L^{2}\left(\mathbb{S}^{3}\right)$ since it decomposes the infinite-dimensional space $L^{2}\left(\mathbb{S}^{3}\right)$ into finite-dimensional pieces, which is necessary for obtaining the matrix representation of \square_{b}^{t} (a special case of the general spectral theory of compact operators). In order to get such a matrix representation, we need a method for obtaining a basis for $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$. Proposition 2.3 presents a method to do so for $\mathcal{H}_{m}\left(\mathbb{C}^{2}\right)$ and Proposition 2.5 presents a method for $\mathcal{H}_{p, q}\left(\mathbb{C}^{2}\right)$. The dimension of the matrix representation on a particular $\mathcal{H}_{m}\left(\mathbb{S}^{3}\right)$ is the dimension of the subspace $\mathcal{H}_{m}\left(\mathbb{S}^{3}\right)$, which is given below and analogously given for $\mathcal{H}_{p, q}\left(\mathbb{C}^{2}\right)$.

Proposition 2.2 [Axler et al. 2001, Proposition 5.8]. For $k, p, q \geq 2$,

$$
\begin{aligned}
\operatorname{dim} \mathcal{P}_{p, q}\left(\mathbb{C}^{2}\right) & =(p+1)(q+1), \\
\operatorname{dim} \mathcal{H}_{p, q}\left(\mathbb{C}^{2}\right) & =p+q+1 \\
\operatorname{dim} \mathcal{H}_{k}\left(\mathbb{C}^{2}\right) & =(k+1)^{2} .
\end{aligned}
$$

Now we present a method to obtain explicit bases of spaces of spherical harmonics. These bases play an essential role in explicit calculations in the next section. Here,
K denotes the Kelvin transform,

$$
K[g](z)=|z|^{-2} g\left(\frac{z}{|z|^{2}}\right) .
$$

For multi-indices $\alpha, \beta \in \mathbb{N}^{2}$, we denote by D^{α} and \bar{D}^{β} the differential operators

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\left(\partial^{\alpha_{1}} z_{1}\right)\left(\partial^{\alpha_{2}} z_{2}\right)} \quad \text { and } \quad \bar{D}^{\beta}=\frac{\partial^{|\beta|}}{\left(\partial^{\beta_{1}} \bar{z}_{1}\right)\left(\partial^{\beta_{2}} \bar{z}_{2}\right)} .
$$

Proposition 2.3 [Axler et al. 2001, Theorem 5.25]. The set

$$
\left\{K\left[D^{\alpha}|z|^{-2}\right]:|\alpha|=m \text { and } \alpha_{1} \leq 1\right\}
$$

is a vector space basis of $\mathcal{H}_{m}\left(\mathbb{C}^{2}\right)$, and the set

$$
\left\{D^{\alpha}|z|^{-2}:|\alpha|=m \text { and } \alpha_{1} \leq 1\right\}
$$

is a vector space basis of $\mathcal{H}_{m}\left(\mathbb{S}^{3}\right)$.
Homogeneous polynomials of degree k can be written as the sum of polynomials of bidegree p, q such that $p+q=k$.

Proposition 2.4.

$$
\mathcal{P}_{k}\left(\mathbb{C}^{2}\right)=\bigoplus_{p+q=k} \mathcal{P}_{p, q}\left(\mathbb{C}^{2}\right) .
$$

Analogous to the version in Proposition 2.3, we use the following method to construct orthogonal bases for $\mathcal{H}_{p, q}\left(\mathbb{C}^{2}\right)$ and $\mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right)$. The proof pretty much follows the proof of [Axler et al. 2001, Theorem 5.25], with changes from single index to double index.

Proposition 2.5. The set

$$
\left\{K\left[\bar{D}^{\alpha} D^{\beta}|z|^{-2}\right]:|\alpha|=p,|\beta|=q, \alpha_{1}=0 \text { or } \beta_{1}=0\right\}
$$

is a basis for $\mathcal{H}_{p, q}\left(\mathbb{C}^{2}\right)$, and the set

$$
\left\{\bar{D}^{\alpha} D^{\beta}|z|^{-2}:|\alpha|=p,|\beta|=q, \alpha_{1}=0 \text { or } \beta_{1}=0\right\}
$$

is an orthogonal basis for $\mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right)$.
\square_{b} on $\mathcal{H}_{p, \boldsymbol{q}}\left(\mathbb{S}^{\mathbf{3}}\right)$. Before we study the operator \square_{b}^{t}, we first need some background on a simpler operator we call \square_{b}. It arises from the CR-manifold ($\mathbb{S}^{3}, \mathcal{L}$), and is defined as

$$
\square_{b}=-\mathcal{L} \overline{\mathcal{L}} .
$$

Here, $\mathcal{L}=\mathcal{L}_{0}=\bar{z}_{1}\left(\partial / \partial z_{2}\right)-\bar{z}_{2}\left(\partial / \partial z_{1}\right)$, the standard $(1,0)$ vector field from the ambient space. We note that this CR -structure is induced from \mathbb{C}^{2} and this manifold is naturally embedded. By the machinery above we can compute the eigenvalues of \square_{b}; see also [Folland 1972] for a more general discussion.

Theorem 2.6. Suppose $f \in \mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right)$. Then

$$
\square_{b} f=(p q+q) f
$$

Proof. Expanding the definition, we get

$$
\begin{aligned}
\square_{b} & =-\left(\bar{z}_{2} \frac{\partial}{\partial z_{1}}-\bar{z}_{1} \frac{\partial}{\partial z_{2}}\right)\left(z_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial \bar{z}_{2}}\right) \\
& =-\bar{z}_{2} \frac{\partial}{\partial z_{1}}\left(z_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial \bar{z}_{2}}\right)+\bar{z}_{1} \frac{\partial}{\partial z_{2}}\left(z_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial \bar{z}_{2}}\right) \\
& =-z_{2} \bar{z}_{2} \frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}+\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}+z_{1} \bar{z}_{2} \frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{2}}-z_{1} \bar{z}_{1} \frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{2}}+\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+z_{2} \bar{z}_{1} \frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{1}}
\end{aligned}
$$

Now, let $f \in \mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right)$. Since f is harmonic, we know that

$$
\frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}=-\frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{2}} .
$$

Substituting, we get

$$
\square_{b}=z_{2} \bar{z}_{2} \frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{2}}+\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}+z_{1} \bar{z}_{2} \frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{2}}+z_{1} \bar{z}_{1} \frac{\partial^{2}}{\partial z_{1} \partial \bar{z}_{1}}+\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}+z_{2} \bar{z}_{1} \frac{\partial^{2}}{\partial z_{2} \partial \bar{z}_{1}}
$$

Since f is a polynomial and \square_{b} is linear, it suffices to show that if $f=z^{\alpha} \bar{z}^{\beta}=$ $z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}} \bar{z}_{1}^{\beta_{1}} \bar{z}_{2}^{\beta_{2}}$, where $\alpha_{1}+\alpha_{2}=p$ and $\beta_{1}+\beta_{2}=q$, then the claim holds. Using the expansion above, each derivative simply becomes a multiple of f, and we have

$$
\begin{aligned}
\square_{b} f & =\left(\alpha_{2} \beta_{2}+\beta_{2}+\alpha_{1} \beta_{2}+\alpha_{1} \beta_{1}+\beta_{1}+\alpha_{2} \beta_{1}\right) f \\
& =\left(\left(\alpha_{1}+\alpha_{2}\right)\left(\beta_{1}+\beta_{2}\right)+\left(\beta_{1}+\beta_{2}\right)\right) f \\
& =(p q+q) f .
\end{aligned}
$$

In a similar manner, we can show that $-\overline{\mathcal{L}} \mathcal{L} f=(p q+p) f$. For \square_{b}, we actually have $\operatorname{spec}\left(\square_{b}\right)=\{p q+q: p, q \in \mathbb{N}\}$; therefore $0 \notin \operatorname{essspec}\left(\square_{b}\right)$ since it is not an accumulation point of the set above.

3. Experimental results in Mathematica

Using the symbolic computation environment provided by Mathematica, we are able to write a program to streamline our calculations ${ }^{1}$. We implement the algorithm provided in Proposition 2.5 to construct the vector space basis of $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$ for a

[^1]specified k. As an example, our code produces the following basis of $\mathcal{H}_{3}\left(\mathbb{S}^{3}\right)$:
\[

$$
\begin{aligned}
& \left\{-6 \bar{z}_{2}^{3},-6 \bar{z}_{1} \bar{z}_{2}^{2},-6 \bar{z}_{1}^{2} \bar{z}_{2},-6 \bar{z}_{1}^{3}, 4 z_{1} \bar{z}_{1} \bar{z}_{2}-2 z_{2} \bar{z}_{2}^{2}, 2 z_{1} \bar{z}_{1}^{2}-4 z_{2} \bar{z}_{1} \bar{z}_{2},-6 z_{2} \bar{z}_{1}^{2},-6 z_{1} \bar{z}_{2}^{2}\right. \\
& \left.\quad z_{1} z_{2} z_{1}-2 z_{2}^{2} \bar{z}_{2},-6 z_{2}^{2} \bar{z}_{1}, 2 z_{1}^{2} \bar{z}_{1}-4 z_{1} z_{2} \bar{z}_{2},-6 z_{1}^{2} \bar{z}_{2},-6 z_{2}^{3},-6 z_{1} z_{2}^{2},-6 z_{1}^{2} z_{2},-6 z_{1}^{3}\right\} .
\end{aligned}
$$
\]

Now, with the basis for $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$, the matrix representation of \square_{b}^{t} on $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$ can be computed for each k. In particular, we use this program to construct the matrix representations for $1 \leq k \leq 12$. For a specific k, the code applies \square_{b}^{t} to each basis element of $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$ obtained by the results in the previous sections. Then, using the inner product defined by

$$
\langle f, g\rangle=\int_{\mathbb{S}^{3}} f \bar{g} d \sigma,
$$

where σ is the standard surface-area measure, the software computes $\left\langle\square_{b}^{t} f_{i}, f_{j}\right\rangle$, where f_{i}, f_{j} are basis vectors for $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$. With these results, Mathematica yields the matrix representation for the imputed value of k. For example, for $k=3$ the program produces the matrix representation
$h\left(\begin{array}{cccccccccccccccc}3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -6 \bar{t} & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 6 \bar{t} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & -6 \bar{t} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & -6 \bar{t} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \boldsymbol{A} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \bar{t} & 0 \\ 0 & 0 & 0 & 0 & 0 & \boldsymbol{A} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 \bar{t} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \boldsymbol{A} & 0 & 0 & 0 & 0 & 0 & -2 \bar{t} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \boldsymbol{A} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 \bar{t} \\ 0 & 0 & -2 t & 0 & 0 & 0 & 0 & 0 & \boldsymbol{B} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -2 t & 0 & 0 & 0 & 0 & 0 & \boldsymbol{B} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 t & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \boldsymbol{B} & 0 & 0 & 0 & 0 & 0 \\ -2 t & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \boldsymbol{B} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -6 t & 0 & 0 & 0 & 0 & 0 & 3|t|^{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 6 t & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3|t|^{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & -6 t & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \left.3|t|\right|^{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -6 t & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3|t|^{2}\end{array}\right)$,
where $\boldsymbol{A}=4+3|t|^{2}$ and $\boldsymbol{B}=3+4|t|^{2}$. Since each entry has a common normalization factor,

$$
h=\frac{1+|t|^{2}}{\left(1-|t|^{2}\right)^{2}},
$$

this constant has been factored out.
With Mathematica's Eigenvalue function, the eigenvalues are then calculated for these matrix representations. Our numerical results suggest that the smallest nonzero eigenvalue of \square_{b}^{t} on $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$ decreases as k increases. Conversely, the smallest nonzero eigenvalue of \square_{b}^{t} on $\mathcal{H}_{2 k}\left(\mathbb{S}^{3}\right)$ increases with k. The smallest

Figure 1. Smallest nonzero eigenvalues for $k=1,3,5,7,9$.
eigenvalue of $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$ is plotted for $1 \leq k \leq 5$ and $0<|t|<1$ in Figure 1. It is apparent that $\lambda_{\min , 1} \leq \lambda_{\min , 3} \leq \lambda_{\min , 5} \leq \lambda_{\min , 7} \leq \lambda_{\min , 9}$, where $\lambda_{\text {min }, k}$ denotes the smallest nonzero eigenvalue of \square_{b}^{t} on $\mathcal{H}_{k}\left(\mathbb{S}^{3}\right)$. These initial numerical results suggest that $\lim _{k \rightarrow \infty} \lambda_{\min , 2 k-1}=0$ for $0<|t|<1$, which agrees with our final result.

4. Invariant subspaces of $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$ under \square_{b}^{t}

In this section we fix $k \geq 1$ and work on $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$. As we have seen, \square_{b}^{t} can be expanded in the following way:

$$
\begin{align*}
\square_{b}^{t} & =-(\mathcal{L}+\bar{t} \overline{\mathcal{L}}) \frac{1+|t|^{2}}{\left(1-|t|^{2}\right)^{2}}(\overline{\mathcal{L}}+t \mathcal{L}) \\
& =-h\left(\mathcal{L} \overline{\mathcal{L}}+|t|^{2} \overline{\mathcal{L}} \mathcal{L}+t \mathcal{L}^{2}+\bar{t} \overline{\mathcal{L}}^{2}\right) \tag{1}
\end{align*}
$$

This is because of the linearity of \mathcal{L} and $\overline{\mathcal{L}}$. Now, we need the following property.
Lemma 4.1. If $\left\langle f_{i}, f_{j}\right\rangle=0$ and $f_{i}, f_{j} \in \mathcal{H}_{0,2 k-1}\left(\mathbb{S}^{3}\right)$, then $\left\langle\overline{\mathcal{L}}^{\sigma} f_{i}, \overline{\mathcal{L}}^{\sigma} f_{j}\right\rangle=0$ for $0 \leq \sigma \leq 2 k-1$.
Proof. Choose f_{i} and f_{j} in $\mathcal{H}_{0,2 k-1}\left(\mathbb{S}^{3}\right)$ and $\left\langle f_{i}, f_{j}\right\rangle=0$. We show that $\overline{\mathcal{L}}^{\sigma} f_{i}$ and $\overline{\mathcal{L}}^{\sigma} f_{j}$ are orthogonal for $0 \leq \sigma \leq 2 k-1$. To do this we use induction on σ. Suppose $\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i}, \overline{\mathcal{L}}^{\sigma-1} f_{j}\right\rangle=0$, and we show that $\left\langle\overline{\mathcal{L}}^{\sigma} f_{i}, \overline{\mathcal{L}}^{\sigma} f_{j}\right\rangle=0$. Note that, the adjoint of $\overline{\mathcal{L}}$ is $-\mathcal{L}$ and

$$
\begin{aligned}
\left\langle\overline{\mathcal{L}}^{\sigma} f_{i}, \overline{\mathcal{L}}^{\sigma} f_{j}\right\rangle & =\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i},-\mathcal{L} \overline{\mathcal{L}}^{\sigma} f_{j}\right\rangle \\
& =\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i},-(\mathcal{L} \overline{\mathcal{L}}) \overline{\mathcal{L}}^{\sigma-1} f_{j}\right\rangle \\
& =\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i},-\square_{b} \overline{\mathcal{L}}^{\sigma-1} f_{j}\right\rangle .
\end{aligned}
$$

However, ${ }^{2}$ since $\overline{\mathcal{L}}^{\sigma-1} f_{j} \in \mathcal{H}_{\sigma-1,2 k-1-\sigma+1}\left(\mathbb{S}^{3}\right)$, we know that

$$
\square_{b} \overline{\mathcal{L}}^{\sigma-1} f_{j}=(\sigma)(2 k-\sigma-2) \overline{\mathcal{L}}^{\sigma-1} f_{j} .
$$

${ }^{2}$ For $f \in \mathcal{H}_{i, j}\left(\mathbb{S}^{3}\right)$, by counting degrees, we notice $\overline{\mathcal{L}} f \in \mathcal{H}_{i-1, j+1}\left(\mathbb{S}^{3}\right)$.

Therefore,

$$
\begin{aligned}
\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i},-\square_{b} \overline{\mathcal{L}}^{\sigma-1} f_{j}\right\rangle & =\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i},-(\sigma)(2 k-\sigma-2) \overline{\mathcal{L}}^{\sigma-1} f_{j}\right\rangle \\
& =-(\sigma)(2 k-\sigma-2)\left\langle\overline{\mathcal{L}}^{\sigma-1} f_{i}, \overline{\mathcal{L}}^{\sigma-1} f_{j}\right\rangle=0
\end{aligned}
$$

by our induction hypothesis as desired.
With this, we note that if $\left\{f_{0}, \ldots, f_{2 k-1}\right\}$ is an orthogonal basis for $\mathcal{H}_{0,2 k-1}\left(\mathbb{S}^{3}\right)$, then $\left\{\overline{\mathcal{L}}^{\sigma} f_{0}, \ldots, \overline{\mathcal{L}}^{\sigma} f_{2 k-1}\right\}$ is an orthogonal basis for $\mathcal{H}_{\sigma, 2 k-1-\sigma}\left(\mathbb{S}^{3}\right)$. Now, we define the following subspaces of $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$.

Definition 4.2. Suppose $\left\{f_{0}, \ldots, f_{2 k-1}\right\}$ is an orthogonal basis for $\mathcal{H}_{0,2 k-1}\left(\mathbb{S}^{3}\right)$. Then we define

$$
\begin{aligned}
V_{i} & =\operatorname{span}\left\{f_{i}, \overline{\mathcal{L}}^{2} f_{i}, \ldots, \overline{\mathcal{L}}^{2 j-2} f_{i}, \ldots, \overline{\mathcal{L}}^{2 k-2} f_{i}\right\}, \\
W_{i} & =\operatorname{span}\left\{\overline{\mathcal{L}} f_{i}, \overline{\mathcal{L}}^{3} f_{i}, \ldots, \overline{\mathcal{L}}^{2 j-1} f_{i}, \ldots, \overline{\mathcal{L}}^{2 k-1} f_{i}\right\} .
\end{aligned}
$$

Denote the basis elements for V_{i} by $v_{i, 1}, \ldots, v_{i, k}$ and for W_{i} by $w_{i, 1}, \ldots, w_{i, k}$. Since each bidegree space $\mathcal{H}_{p, q}\left(\mathbb{S}^{3}\right) \subseteq \mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$ has $2 k$ elements, we have $2 k V_{i}$ spaces and $2 k W_{i}$ spaces. We now note the following fact.

Theorem 4.3.

$$
\bigoplus_{i=0}^{2 k-1} V_{i} \oplus W_{i}=\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right) .
$$

Proof. By Proposition 2.4 and Lemma 4.1, we have

$$
\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)=\bigoplus_{i=0}^{2 k-1} \mathcal{H}_{i, 2 k-1-i}\left(\mathbb{S}^{3}\right)=\bigoplus_{i=0}^{2 k-1} \overline{\mathcal{L}}^{i} f_{0} \oplus \cdots \oplus \overline{\mathcal{L}}^{i} f_{2 k-1}
$$

Manipulating this, we have

$$
\begin{aligned}
\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right) & =\bigoplus_{i=0}^{2 k-1} f_{i} \oplus \overline{\mathcal{L}} f_{i} \cdots \oplus \overline{\mathcal{L}}^{2 k-1} f_{i} \\
& =\bigoplus_{i=0}^{2 k-1} f_{i} \oplus \overline{\mathcal{L}}^{2} f_{i} \oplus \cdots \oplus \overline{\mathcal{L}}^{2 k-2} f_{i} \oplus \overline{\mathcal{L}} f_{i} \oplus \overline{\mathcal{L}}^{3} f_{i} \oplus \cdots \oplus \overline{\mathcal{L}}^{2 k-1} f_{i} \\
& =\bigoplus_{i=0}^{2 k-1} V_{i} \oplus W_{i}
\end{aligned}
$$

which is our goal.
The advantage of constructing these spaces in the first place is due to the following fact.

Theorem 4.4. For $0 \leq i \leq 2 k-1$, the subspaces V_{i} and W_{i} are invariant under \square_{b}^{t}.

Proof. By (1), we have

$$
\square_{b}^{t}=-h\left(\mathcal{L} \overline{\mathcal{L}}+|t|^{2} \overline{\mathcal{L}} \mathcal{L}+t \mathcal{L}^{2}+\bar{t} \overline{\mathcal{L}}^{2}\right) .
$$

Since the fraction in front is a constant, we can ignore it and only consider the expression in the parentheses. Let $f \in \mathcal{H}_{0,2 k-1}\left(\mathbb{S}^{3}\right)$, and define $v_{\sigma}=\overline{\mathcal{L}}^{\sigma} f$ to be a basis element of either V_{i} or W_{i}, since they have the same form. We first note that $v_{\sigma} \in \mathcal{H}_{\sigma, 2 k-1-\sigma}\left(\mathbb{S}^{3}\right)$. Then by our expansion we have

$$
\square_{b}^{t} v_{\sigma}=-h\left(\mathcal{L} \overline{\mathcal{L}} v_{\sigma}+|t|^{2} \overline{\mathcal{L}} \mathcal{L} v_{\sigma}+t \mathcal{L}^{2} v_{\sigma}+\bar{t} \overline{\mathcal{L}}^{2} v_{\sigma}\right) .
$$

We already know $\mathcal{L} \overline{\mathcal{L}} v_{\sigma}$ and $\overline{\mathcal{L}} \mathcal{L} v_{\sigma}$ will simply be multiples of v_{σ}, so we consider $\mathcal{L}^{2} v_{\sigma}$ and $\overline{\mathcal{L}}^{2} v_{\sigma}$:

$$
\begin{align*}
\mathcal{L}^{2} v_{\sigma} & =\mathcal{L}^{2} \overline{\mathcal{L}}^{\sigma} f=\mathcal{L}\left[\mathcal{L} \overline{\mathcal{L}}\left[\overline{\mathcal{L}}^{\sigma-1} f\right]\right] \\
& =-(\sigma)(2 k-\sigma) \mathcal{L} \overline{\mathcal{L}}\left[\overline{\mathcal{L}}^{\sigma-2} f\right] \\
& =(\sigma)(\sigma-1)(2 k+1-\sigma)(2 k-\sigma) \overline{\mathcal{L}}^{\sigma-2} f \\
& =(\sigma)(\sigma-1)(2 k+1-\sigma)(2 k-\sigma) v_{\sigma-2}, \tag{2a}\\
\overline{\mathcal{L}}^{2} v_{\sigma} & =\overline{\mathcal{L}}^{2}\left[\overline{\mathcal{L}}^{\sigma} f\right]=\overline{\mathcal{L}}^{\sigma+2} f=v_{\sigma+2}, \tag{2b}
\end{align*}
$$

so we get multiples of $v_{\sigma-2}$ and $v_{\sigma+2}$. Relating this back to V_{i} and W_{i}, we see that if $\sigma=2 j-2$, then $\mathcal{L}^{2} v_{i, j}$ is a multiple of $v_{i, j-1}$, and $\overline{\mathcal{L}}^{2} v_{i, j}$ is a multiple of $v_{i, j+1}$. If $\sigma=2 j-1$, we get a similar result for $w_{i, j}$. So we indeed have that both subspaces V_{i} and W_{i} are invariant under \square_{b}^{t}, and we are done.

In light of this fact, we can consider \square_{b}^{t} not on the whole space $L^{2}\left(\mathbb{S}^{3}\right)$ or $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$, but rather on these V_{i} and W_{i} spaces. In fact, we actually have a representation of \square_{b}^{t} on these spaces with respect to the orthogonal bases for V_{i} and W_{i} as in Definition 4.2.

Theorem 4.5. The matrix representation of \square_{b}^{t} on V_{i} and W_{i} is tridiagonal. That is,

$$
m\left(\square_{b}^{t}\right)=h\left(\begin{array}{ccccc}
d_{1} & u_{1} & & & \\
-\bar{t} & d_{2} & u_{2} & & \\
& -\bar{t} & d_{3} & \ddots & \\
& & \ddots & \ddots & u_{k-1} \\
& & & -\bar{t} & d_{k}
\end{array}\right),
$$

where on V_{i}

$$
\begin{aligned}
& u_{j}=-t \cdot(2 j)(2 j-1)(2 k-2 j)(2 k-1-2 j), \\
& d_{j}=(2 j-1)(2 k+1-2 j)+|t|^{2} \cdot(2 j-2)(2 k+2-2 j),
\end{aligned}
$$

and on W_{i}

$$
\begin{aligned}
u_{j} & =-t \cdot(2 j+1)(2 j)(2 k-2 j)(2 k-1-2 j), \\
d_{j} & =(2 j)(2 k-2 j)+|t|^{2} \cdot(2 j-1)(2 k+1-2 j) .
\end{aligned}
$$

We note that the above definitions don't depend on i; in other words, each of these matrices are the same on V_{i} and W_{i}, regardless of the choice of i.

Proof. Using (2a) and (2b), along with Theorem 2.6, we can entirely describe the action of each piece of \square_{b}^{t} on a basis element $v_{i, j}$ or $w_{i, j}$:

$$
\begin{aligned}
-\mathcal{L} \overline{\mathcal{L}} v_{i, j} & =(2 j-1)(2 k+1-2 j) v_{i, j}, \\
-\mathcal{L} \mathcal{L} w_{i, j} & =(2 j)(2 k-2 j) w_{i, j}, \\
-\overline{\mathcal{L}} \mathcal{L} v_{i, j} & =(2 j-2)(2 k+2-2 j) v_{i, j}, \\
-\overline{\mathcal{L}} w_{i, j} & =(2 j-1)(2 k+1-2 j) w_{i, j}, \\
-\mathcal{L}^{2} v_{i, j} & =-(2 j-2)(2 j-3)(2 k+3-2 j)(2 k+2-2 j) v_{i, j-1}, \\
-\mathcal{L}^{2} w_{i, j} & =-(2 j-1)(2 j-2)(2 k+2-2 j)(2 k+1-2 j) w_{i, j-1}, \\
-\overline{\mathcal{L}}^{2} v_{i, j} & =-v_{i, j+1}, \\
-\overline{\mathcal{L}}^{2} w_{i, j} & =-w_{i, j+1} .
\end{aligned}
$$

By looking at it this way, we notice the tridiagonal structure. So with these observations, we can state that

$$
\begin{aligned}
& \square_{b}^{t} v_{i, j}=h(-t \cdot(2 j-2)(2 j-3)(2 k+3-2 j)(2 k+2-2 j) v_{i, j-1} \\
&\left.\quad+\left((2 j-1)(2 k+1-2 j)+|t|^{2} \cdot(2 j-2)(2 k+2-2 j)\right) v_{i, j}-\bar{t} \cdot v_{i, j+1}\right), \\
& \square_{b}^{t} w_{i, j}=h(-t t(2 j-1)(2 j-2)(2 k+2-2 j)(2 k+1-2 j) w_{i, j-1} \\
&\left.\quad+\left((2 j)(2 k-2 j)+|t|^{2} \cdot(2 j-1)(2 k-1-2 j)\right) w_{i, j}-\bar{t} \cdot w_{i, j+1}\right) .
\end{aligned}
$$

Now that we have this formula, we can find $m\left(\square_{b}^{t}\right)$ on V_{i} and W_{i} by computing their effect on the basis vectors $v_{i, j}$ and $w_{i, j}$: When we do this for V_{i}, we get

$$
\begin{aligned}
d_{j} & =(2 j-1)(2 k+1-2 j)+|t|^{2} \cdot(2 j-2)(2 k+2-2 j), \\
u_{j-1} & =-t \cdot(2 j-2)(2 j-3)(2 k+3-2 j)(2 k+2-2 j) ;
\end{aligned}
$$

hence

$$
u_{j}=-t \cdot(2 j)(2 j-1)(2 k-2 j)(2 k-1-2 j) .
$$

For W_{i}, we get

$$
\begin{aligned}
d_{j} & =(2 j)(2 k-2 j)+|t|^{2} \cdot(2 j-1)(2 k-1-2 j), \\
u_{j-1} & =-t \cdot(2 j-1)(2 j-2)(2 k+2-2 j)(2 k+1-2 j) ;
\end{aligned}
$$

hence

$$
u_{j}=-t \cdot(2 j+1)(2 j)(2 k-2 j)(2 k-1-2 j) .
$$

Finally, by factoring out h and simply substituting in each portion, we obtain the matrix representations above.

An immediate consequence of this is that each V_{i} subspace contributes the same set of eigenvalues to the spectrum of \square_{b}^{t}, and similarly for each W_{i}. Furthermore, we note that the matrices are of rank k (by the tridiagonal structure it is at least of rank $k-1$ and by Proposition 5.6 the determinant is nonzero, hence rank k). Since the choice of i does not change $m\left(\square \square_{b}^{t}\right)$ on these spaces, we will fix an arbitrary i and call the spaces V and W instead.

5. Bottom of the spectrum of \square_{b}^{t}

Now that we have a matrix representation for \square_{b}^{t} on these V and W spaces inside $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$, we can begin to analyze their eigenvalues as k varies. First, we go over some facts about tridiagonal matrices.

Proposition 5.1. Suppose A is a tridiagonal matrix,

$$
A=\left(\begin{array}{ccccc}
d_{1} & u_{1} & & & \\
l_{1} & d_{2} & u_{2} & & \\
& l_{2} & d_{3} & \ddots & \\
& & \ddots & \ddots & u_{k-1} \\
& & & l_{k-1} & d_{k}
\end{array}\right)
$$

and $u_{i} l_{i}>0$ for $1 \leq i<k$. Then A is similar to a symmetric tridiagonal matrix.
Proof. One can verify that if

$$
S=\left(\begin{array}{lllll}
1 & & & & \\
& \sqrt{u_{1} / l_{1}} & & & \\
& & \sqrt{u_{1} u_{2} /\left(l_{1} l_{2}\right)} & & \\
& & & \ddots & \\
& & & & \sqrt{u_{1} \ldots u_{k-1} /\left(l_{1} \ldots l_{k-1}\right)}
\end{array}\right)
$$

then $A=S^{-1} B S$, where

$$
B=\left(\begin{array}{ccccc}
d_{1} & \sqrt{u_{1} l_{1}} & & & \\
\sqrt{u_{1} l_{1}} & d_{2} & \sqrt{u_{2} l_{2}} & & \\
& \sqrt{u_{2} l_{2}} & d_{3} & \ddots & \\
& & \ddots & \ddots & \sqrt{u_{k-1} l_{k-1}} \\
& & & \sqrt{u_{k-1} l_{k-1}} & d_{k}
\end{array}\right) .
$$

Therefore, A is similar to a symmetric tridiagonal matrix.
Another special property of tridiagonal matrices is the continuant.
Definition 5.2. Let A be a tridiagonal matrix, like the above. Then we define the continuant of A to be a recursive sequence: $f_{1}=d_{1}$, and $f_{i}=d_{i} f_{i-1}-u_{i-1} l_{i-1} f_{i-2}$, where $f_{0}=1$.

The reason we define this is because $\operatorname{det}(A)=f_{k}$. In addition, if we define A_{i} to mean the square submatrix of A formed by the first i rows and i columns, then $\operatorname{det}\left(A_{i}\right)=f_{i}$.

With this background, we will now start analyzing \square_{b}^{t} on W.
To get bounds on the eigenvalues, we will invoke the Cauchy interlacing theorem; see [Hwang 2004].

Theorem 5.3 (Cauchy interlacing theorem). Suppose E is an $n \times n$ Hermitian matrix of rank n, and F is an $(n-1) \times(n-1)$ matrix minor of E. If the eigenvalues of E are $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and the eigenvalues of F are $\nu_{1} \leq \cdots \leq v_{n-1}$, then the eigenvalues of E and F interlace:

$$
0<\lambda_{1} \leq \nu_{1} \leq \lambda_{2} \leq \nu_{2} \leq \cdots \leq \lambda_{n-1} \leq v_{n-1} \leq \lambda_{n} .
$$

Now, we can get an intermediate bound on the smallest eigenvalue.
Theorem 5.4. Suppose A is the Hermitian matrix of rank k, like the above, and $\lambda_{1} \leq \cdots \leq \lambda_{k}$ are its eigenvalues. Then

$$
\lambda_{1} \leq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k-1}\right)},
$$

where A_{k-1} is A without the last row and column.
Proof. Since A_{k-1} is a $(k-1) \times(k-1)$ matrix minor of A, we can apply the Cauchy interlacing theorem. If the eigenvalues of A_{k-1} are $\nu_{1} \leq \cdots \leq v_{k-1}$, then

$$
\lambda_{1} \leq \nu_{1} \leq \lambda_{2} \leq \nu_{2} \leq \cdots \leq \lambda_{n-1} \leq \nu_{n-1} \leq \lambda_{n} .
$$

Now, we claim that

$$
\lambda_{1} \operatorname{det}\left(A_{k-1}\right) \leq \operatorname{det}(A) .
$$

To see why this is true, first observe that the determinant of a matrix is simply the product of all its eigenvalues. In particular,

$$
\lambda_{1} \operatorname{det}\left(A_{k-1}\right)=\lambda_{1} \nu_{1} \ldots v_{k-1} .
$$

But we can simply apply the Cauchy interlacing theorem: since $\nu_{1} \leq \lambda_{2}, \nu_{2} \leq \lambda_{3}$, and so on, we get

$$
\lambda_{1} v_{1} \ldots v_{k-1} \leq \lambda_{1} \lambda_{2} \ldots \lambda_{k}=\operatorname{det}(A) .
$$

Now, dividing both sides by $\operatorname{det} A_{k-1}$,

$$
\lambda_{1} \leq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k-1}\right)},
$$

as desired.

Since $m\left(\square_{b}^{t}\right)$ on W satisfies the conditions of Proposition 5.1, we find it is similar to the Hermitian tridiagonal matrix

$$
A=\left(\begin{array}{ccccc}
a_{1}+b_{1}|t|^{2} & c_{1}|t| & & & \tag{3}\\
c_{1}|t| & a_{2}+b_{2}|t|^{2} & c_{2}|t| & & \\
& c_{2}|t| & a_{3}+b_{3}|t|^{2} & \ddots & \\
& & \ddots & \ddots & c_{k-1}|t| \\
& & & c_{k-1}|t| & a_{k}+b_{k}|t|^{2}
\end{array}\right)
$$

where

$$
\begin{align*}
a_{i} & =(2 i)(2 k-2 i), \\
b_{i} & =(2 i-1)(2 k+1-2 i) \tag{4}\\
c_{i} & =\sqrt{(2 i+1)(2 i)(2 k-2 i)(2 k-1-2 i)}
\end{align*}
$$

Note that we are ignoring the constant h for now, which we will add back later. If we can find $\operatorname{det}\left(A_{i}\right)$, then by Theorem 5.4 we can get a closed form for the bound on the smallest eigenvalue. With the following lemma, this is possible:

Lemma 5.5.

$$
a_{i} b_{i+1}=c_{i}^{2}
$$

Proof. This is easily verified using the formulas for a_{i}, b_{i+1} and $c_{i}: a_{i}=(2 i)(2 k-2 i)$, $b_{i+1}=(2 i+1)(2 k-1-2 i)$, and $c_{i}^{2}=(2 i+1)(2 i)(2 k-2 i)(2 k-1-2 i)$.

Proposition 5.6. The determinant of A_{i} is

$$
\begin{aligned}
\operatorname{det}\left(A_{i}\right) & =a_{1} a_{2} \ldots a_{i-1} a_{i} \\
& +b_{1} a_{2} \ldots a_{i-1} a_{i}|t|^{2} \\
& \vdots \\
& +b_{1} b_{2} \ldots b_{i-1} a_{i}|t|^{2 i-2} \\
& +b_{1} b_{2} \ldots b_{i-1} b_{i}|t|^{2 i} .
\end{aligned}
$$

In each row, we replace a particular a_{j} with b_{j}, and multiply by $|t|^{2}$. Note that if $i=k$, then $a_{k}=0$ and all terms but the last term are 0 .

Proof. We will prove this using strong induction on i. We start with the base case $i=1$, where $\operatorname{det}\left(A_{1}\right)=a_{1}+b_{1}|t|^{2}$, which does indeed match up with our formula. Next we consider the case $i=2$, where $\operatorname{det}\left(A_{2}\right)=\left(a_{1}+b_{1}|t|^{2}\right)\left(a_{2}+b_{2}|t|^{2}\right)-c_{1}^{2}|t|^{2}$. By Lemma 5.5 we obtain the desired formula.

Now, assume the formula works for A_{i-1} and A_{i}. We need to show that the formula works for A_{i+1}. Using the formula for the continuant, we get

$$
\operatorname{det}\left(A_{i+1}\right)=\left(a_{i+1}+b_{i+1}|t|^{2}\right) \operatorname{det}\left(A_{i}\right)-c_{i}^{2}|t|^{2} \operatorname{det}\left(A_{i-1}\right) .
$$

By Lemma 5.5,

$$
\operatorname{det}\left(A_{i+1}\right)=\left(a_{i+1}+b_{i+1}|t|^{2}\right) \operatorname{det}\left(A_{i}\right)-a_{i} b_{i+1}|t|^{2} \operatorname{det}\left(A_{i-1}\right) .
$$

Now, using our induction hypothesis,

$$
\begin{aligned}
\operatorname{det} & \left(A_{i+1}\right) \\
= & \left(a_{i+1}+b_{i+1}|t|^{2}\right)\left(a_{1} a_{2} \cdots a_{i}+b_{1} a_{2} \cdots a_{i}|t|^{2}+\cdots+b_{1} b_{2} \cdots b_{i}|t|^{2 i}\right) \\
& -a_{i} b_{i+1}|t|^{2}\left(a_{1} a_{2} \cdots a_{i-1}+b_{1} a_{2} \cdots a_{i-1}|t|^{2}+\cdots+b_{1} b_{2} \cdots b_{i-1}|t|^{2 i-2}\right) \\
= & a_{1} a_{2} \cdots a_{i+1}+b_{1} a_{2} \cdots a_{i+1}|t|^{2}+\cdots+b_{1} b_{2} \cdots b_{i} a_{i+1}|t|^{2 i}+a_{1} a_{2} \cdots a_{i} b_{i+1}|t|^{2} \\
& +b_{1} a_{2} \cdots a_{i} b_{i+1}|t|^{4}+\cdots+b_{1} b_{2} \cdots b_{i-1} a_{i} b_{i+1}|t|^{2 i+2}+\left.b_{1} b_{2} \cdots b_{i+1}|t|\right|^{2 i+2} \\
& \quad-a_{1} a_{2} \cdots a_{i} b_{i+1}|t|^{2}-b_{1} a_{2} \cdots a_{i} b_{i+1}|t|^{4}-\cdots-b_{1} b_{2} \cdots b_{i-1} a_{i} b_{i+1}|t|^{2 i+2} \\
= & a_{1} a_{2} \cdots a_{i+1}+b_{1} a_{2} \cdots a_{i+1}|t|^{2}+\cdots+b_{1} b_{2} \cdots b_{i} a_{i+1}|t|^{2 i}+b_{1} b_{2} \cdots b_{i+1}|t|^{2 i+2},
\end{aligned}
$$

which is the formula for A_{i+1}, and we are done.
With this knowledge, we are finally able to prove our main result.

Theorem 5.7. $\quad 0 \in \operatorname{essspec}\left(\square{ }_{b}^{t}\right)$.

Proof. By Proposition 5.1, we have that on W in $\mathcal{H}_{2 k-1}\left(\mathbb{S}^{3}\right)$ the matrix $m\left(\square \square_{b}^{t}\right)$ is similar to the matrix A given in (3)-(4). Now, by Theorem 5.4 we know

$$
\lambda_{\min } \leq \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k-1}\right)} .
$$

Recall that A_{k-1} denotes the submatrix formed by deleting the last row and column of the $k \times k$ matrix A. To show $0 \in \operatorname{essspec}\left(\square_{b}^{t}\right)$, we want to show that $\operatorname{det}(A) / \operatorname{det}\left(A_{k-1}\right) \rightarrow 0$ as $k \rightarrow \infty$. For this purpose we find an upper bound for $\operatorname{det}(A) / \operatorname{det}\left(A_{k-1}\right)$ and show that this converges to 0 . Notice that Proposition 5.6 implies

$$
\begin{align*}
& \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k-1}\right)} \\
& =h \frac{b_{1} b_{2} \cdots b_{k-1} b_{k}|t|^{2 k}}{a_{1} a_{2} \cdots a_{k-1}+b_{1} a_{2} \cdots a_{k-1}|t|^{2}+b_{1} b_{2} \cdots a_{k-1}|t|^{4}+\cdots+b_{1} b_{2} \cdots b_{k-1}|t|^{2 k-2}} \\
& \leq h \frac{b_{1} b_{2} \cdots b_{k-1} b_{k}|t|^{2 k}}{a_{1} a_{2} \cdots a_{k-1}} \tag{5}
\end{align*}
$$

since, a_{j}, b_{j}, and $|t|>0$. Now using the formulas for a_{j} and b_{j}, notice that (5) can be written as

$$
h(2 k-1)|t|^{2 k} \prod_{j=1}^{k-1} \frac{(2 j+1)(2 k-2 j-1)}{(2 j)(2 k-2 j)} .
$$

However, we know that for all k and $1 \leq j \leq k-1$,

$$
\frac{(2 k-2 j-1)}{(2 k-2 j)}<1,
$$

and so,

$$
\begin{aligned}
h(2 k-1)|t|^{2 k} \prod_{j=1}^{k-1} \frac{(2 j+1)(2 k-2 j-1)}{(2 j)(2 k-2 j)} & \leq h(2 k-1)|t|^{2 k} \prod_{j=1}^{k-1} \frac{(2 j+1)}{(2 j)} \\
& =h(2 k-1)|t|^{2 k} \prod_{j=1}^{k-1} 1+\frac{1}{2 j}
\end{aligned}
$$

Furthermore, we have

$$
h(2 k-1)|t|^{2 k} \prod_{j=1}^{k-1} 1+\frac{1}{2 j} \leq h(2 k-1)|t|^{2 k} \exp \left(\sum_{j=1}^{k-1} \frac{1}{2 j}\right) .
$$

Note that

$$
\sum_{j=1}^{k-1} \frac{1}{2 j} \leq \frac{1}{2} \ln k+1
$$

so our expression becomes

$$
\frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k-1}\right)} \leq h(2 k-1)|t|^{2 k} \exp \left(1+\frac{1}{2} \ln k\right)=e h(2 k-1) \sqrt{k}|t|^{2 k}
$$

and our problem reduces to showing that $\lim _{k \rightarrow \infty} e h(2 k-1) \sqrt{k}|t|^{2 k}=0$. We note that h is a constant and $|t|<1$; therefore, by L'Hospital's rule the last expression indeed goes to 0 .

Finally, we have,

$$
0 \leq \lim _{k \rightarrow \infty} \lambda_{\min } \leq \lim _{k \rightarrow \infty} \frac{\operatorname{det}(A)}{\operatorname{det}\left(A_{k-1}\right)} \leq \lim _{k \rightarrow \infty} \operatorname{eh}(2 k-1) \sqrt{k}|t|^{2 k}=0,
$$

and so $\lambda_{\text {min }} \rightarrow 0$. Hence $0 \in \operatorname{essspec}\left(\square_{b}^{t}\right)$.
We note that by the discussion in the introduction, this means that the CRmanifold $\left(\mathcal{L}_{t}, \mathbb{S}^{3}\right)$ is not embeddable into any \mathbb{C}^{N}.

Acknowledgements

This research was conducted at the NSF REU Site (DMS-1659203) in Mathematical Analysis and Applications at the University of Michigan-Dearborn. We would like to thank the National Science Foundation, the College of Arts, Sciences, and Letters, the Department of Mathematics and Statistics at the University of MichiganDearborn, and Al Turfe for their support. We would also like to thank John Clifford, Hyejin Kim, and the other participants of the REU program for fruitful conversations on this topic. We also thank the anonymous referees for constructive comments.

References

[Axler et al. 2001] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, 2nd ed., Graduate Texts in Mathematics 137, Springer, 2001. MR Zbl
[Boggess 1991] A. Boggess, CR manifolds and the tangential Cauchy-Riemann complex, CRC Press, Boca Raton, FL, 1991. MR Zbl
[Boutet de Monvel 1975] L. Boutet de Monvel, "Intégration des équations de Cauchy-Riemann induites formelles", exposé 9 in Séminaire Goulaouic-Lions-Schwartz 1974-1975; équations aux derivées partielles linéaires et non linéaires, Centre Math., École Polytech., Paris, 1975. MR Zbl
[Burns 1979] D. M. Burns, Jr., "Global behavior of some tangential Cauchy-Riemann equations", pp. 51-56 in Partial differential equations and geometry (Park City, Utah, 1977), edited by C. I. Byrnes, Lecture Notes in Pure and Appl. Math. 48, Dekker, New York, 1979. MR Zbl
[Burns and Epstein 1990] D. M. Burns and C. L. Epstein, "Embeddability for three-dimensional CR-manifolds", J. Amer. Math. Soc. 3:4 (1990), 809-841. MR Zbl
[Chen and Shaw 2001] S.-C. Chen and M.-C. Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics 19, American Mathematical Society, Providence, RI, 2001. MR Zbl
[Davies 1995] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics 42, Cambridge University Press, 1995. MR Zbl
[Folland 1972] G. B. Folland, "The tangential Cauchy-Riemann complex on spheres", Trans. Amer. Math. Soc. 171 (1972), 83-133. MR Zbl
[Fu 2005] S. Fu, "Hearing pseudoconvexity with the Kohn Laplacian", Math. Ann. 331:2 (2005), 475-485. MR Zbl
[Fu 2008] S. Fu, "Hearing the type of a domain in \mathbb{C}^{2} with the $\bar{\partial}$-Neumann Laplacian", Adv. Math. 219:2 (2008), 568-603. MR Zbl
[Hwang 2004] S.-G. Hwang, "Cauchy's interlace theorem for eigenvalues of Hermitian matrices", Amer. Math. Monthly 111:2 (2004), 157-159. MR Zbl
[Kohn 1985] J. J. Kohn, "Estimates for $\bar{\partial}_{b}$ on pseudoconvex CR manifolds", pp. 207-217 in Pseudodifferential operators and applications (Notre Dame, IN, 1984), edited by F. Trèves, Proc. Sympos. Pure Math. 43, Amer. Math. Soc., Providence, RI, 1985. MR Zbl
[Rossi 1965] H. Rossi, "Attaching analytic spaces to an analytic space along a pseudoconcave boundary", pp. 242-256 in Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, 1965. MR Zbl

Received: 2017-08-22
abbastaw@msu.edu
mmb021@bucknell.edu
rramasam@umich.edu
zeytuncu@umich.edu

Revised: 2017-12-02 Accepted: 2017-12-30
Department of Mathematics, Michigan State University, East Lansing, MI, United States

Department of Mathematics, Bucknell University, Lewisburg, PA, United States

Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States

Department of Mathematics and Statistics, University of Michigan-Dearborn, Dearborn, MI, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Suzanne Lenhart	University of Tennessee, USA
John V. Baxley	Wake Forest University, NC, USA	Chi-Kwong Li	College of William and Mary, USA
Arthur T. Benjamin	Harvey Mudd College, USA	Robert B. Lund	Clemson University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Gaven J. Martin	Massey University, New Zealand
Nigel Boston	University of Wisconsin, USA	Mary Meyer	Colorado State University, USA
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA	Emil Minchev	Ruse, Bulgaria
Pietro Cerone	La Trobe University, Australia	Frank Morgan	Williams College, USA
Scott Chapman	Sam Houston State University, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Joshua N. Cooper	University of South Carolina, USA	Zuhair Nashed	University of Central Florida, USA
Jem N. Corcoran	University of Colorado, USA	Ken Ono	Emory University, USA
Toka Diagana	Howard University, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Michael Dorff	Brigham Young University, USA	Joseph O'Rourke	Smith College, USA
Sever S. Dragomir	Victoria University, Australia	Yuval Peres	Microsoft Research, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Y.-F. S. Pétermann	Université de Genève, Switzerland
Joel Foisy	SUNY Potsdam, USA	Robert J. Plemmons	Wake Forest University, USA
Errin W. Fulp	Wake Forest University, USA	Carl B. Pomerance	Dartmouth College, USA
Joseph Gallian	University of Minnesota Duluth, USA	Vadim Ponomarenko	San Diego State University, USA
Stephan R. Garcia	Pomona College, USA	Bjorn Poonen	UC Berkeley, USA
Anant Godbole	East Tennessee State University, USA	James Propp	U Mass Lowell, USA
Ron Gould	Emory University, USA	Józeph H. Przytycki	George Washington University, USA
Andrew Granville	Université Montréal, Canada	Richard Rebarber	University of Nebraska, USA
Jerrold Griggs	University of South Carolina, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Jim Haglund	University of Pennsylvania, USA	James A. Sellers	Penn State University, USA
Johnny Henderson	Baylor University, USA	Andrew J. Sterge	Honorary Editor
Jim Hoste	Pitzer College, USA	Ann Trenk	Wellesley College, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Ravi Vakil	Stanford University, USA
Glenn H. Hurlbert	Arizona State University,USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
Charles R. Johnson	College of William and Mary, USA	Ram U. Verma	University of Toledo, USA
K. B. Kulasekera	Clemson University, USA	John C. Wierman	Johns Hopkins University, USA
Gerry Ladas	University of Rhode Island, USA	Michael E. Zieve	University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ / y$ year for the electronic version, and \$/year ($+\$$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2019 vol. 12 no. 1

Optimal transportation with constant constraint 1Wyatt Boyer, Bryan Brown, Alyssa Loving and Sarah Tammen
Fair choice sequences 13
William J. Keith and Sean Grindatti
Intersecting geodesics and centrality in graphs 31
Emily Carter, Bryan Ek, Danielle Gonzalez, Rigoberto Flórez and Darren A. Narayan
The length spectrum of the sub-Riemannian three-sphere 45
David Klapheck and Michael VanValkenburgh
Statistics for fixed points of the self-power map 63
Matthew Friedrichsen and Joshua Holden
Analytical solution of a one-dimensional thermistor problem with Robin boundary 79
conditionVolodymyr Hrynkiv and Alice Turchaninova
On the covering number of S_{14} 89
Ryan Oppenheim and Eric Swartz
Upper and lower bounds on the speed of a one-dimensional excited random walk 97
Erin Madden, Brian Kidd, Owen Levin, Jonathon Peterson,Jacob Smith and Kevin M. Stangl
Classifying linear operators over the octonions 117
Alex Putnam and Tevian Dray
Spectrum of the Kohn Laplacian on the Rossi sphere 125
Tawfik Abbas, Madelyne M. Brown, Ravikumar Ramasami and Yunus E. Zeytuncu
On the complexity of detecting positive eigenvectors of nonlinear cone maps 141
Bas Lemmens and Lewis White
Antiderivatives and linear differential equations using matrices 151
Yotsanan Meemark and Songpon Sriwongsa
Patterns in colored circular permutations 157
Daniel Gray, Charles Lanning and Hua Wang
Solutions of boundary value problems at resonance with periodic and antiperiodic 171
boundary conditions
Aldo E. Garcia and Jeffrey T. Neugebauer

[^0]: MSC2010: primary 32 V 30 ; secondary 32 V 05 .
 Keywords: Kohn Laplacian, spherical harmonics, global embeddability of CR manifolds.
 This work is supported by NSF (DMS-1659203). Zeytuncu is also partially supported by a grant from the Simons Foundation (\#353525).

[^1]: ${ }^{1}$ Our code for this and the other symbolic computations described below is available in the online supplement.

