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In a graph, vertices that are more central are often placed at the intersection of
geodesics between other pairs of vertices. This model can be applied to orga-
nizational networks, where we assume the flow of information follows shortest
paths of communication and there is a required action (i.e., signature or approval)
by each person located on these paths. The number of actions a person must
perform is linked to both the topology of the network as well as their location
within it. The number of expected actions that a person must perform can be
quantified by betweenness centrality. The betweenness centrality of a vertex v is
the ratio of shortest paths between all other pairs of vertices u and w in which v
appears to the total number of shortest paths from u to w. We precisely compute
the betweenness centrality for vertices in several families of graphs motivated by
different organizational networks.

1. Introduction

In a graph, vertices with higher centrality are often placed at the intersection of
geodesics between other pairs of vertices. This model can be applied to organi-
zational and social networks, where we assume the flow of information follows
shortest paths of communication and there is a required action (i.e., signature or
approval) by each person located on these paths.

A simple organizational structure can be designed using a binary tree. An
example is shown in Figure 1.

We consider this structure where the CEO oversees a “left wing” and a “right
wing”. We first note the employees (E1, E2, E3, and E4) do not have to perform any
actions, as they are on the periphery. The CEO will have to perform actions on any
correspondence between people in different wings, for a total of 18 possible actions.
Vice presidents VP1 and VP2 will have to perform actions on the correspondence
between the two employees under them as well as correspondences between their two
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CEO

VP1 VP2

E1 E2 E3 E4

Figure 1. A binary tree organizational structure.

employees and anyone else in the company. This is a total of 2(1×1)+2(2×4)= 18
actions. Ironically, in this model, which would appear at first to distribute the work
according to rank, the VPs actually have to perform as many actions as the CEO.

We next consider a ternary tree model where each person (except for the employ-
ees) oversees three people; see Figure 2. This slight change puts the most amount
of work in the hands of the CEO. The CEO has to perform 96 actions, while each
of the VPs perform 60 actions, and again the employees are not responsible for any
actions.

The determination of the number actions is more complicated if the network
contains cycles, since there can be multiple shortest paths, which can be used with
equal probability. For our next example we will use the organizational network
shown in Figure 3.

Consider the number of actions that B must make. Person B acts on communica-
tion between persons A and D and D and A. However A and D could choose to
route their correspondence through person C rather than B. So B will only appear
on half of the four shortest paths between A and D and D and A. (We will consider
these paths to be equally likely to be followed.) Thus the total number of expected

CEO

VP1 VP2

E1 E2 E3 E4 E5 E6 E7 E9E8

VP3

Figure 2. A ternary tree model.
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A

B

C

D

Figure 3. A network with a cycle.

actions by person B is 2, which is the same, by symmetry, for persons A, C, and D.
This creates a balance of actions over every employee.

The expected number of actions can be quantified by betweenness centrality.
This concept was introduced in [Freeman 1977] in the context of social networks.
This concept has appeared frequently in both network and neuroscience literature
[Brandes et al. 2016; Bullmore and Sporns 2009; Freeman et al. 1991; Guye et al.
2010; Pandit et al. 2013; White and Borgatti 1994]. The betweenness centrality of
graphs was computed for various families of graphs including complete bipartite
graphs, Cartesian products, wheel graphs, cocktail party graphs, ladder graphs, and
cycles [Kumar and Balakrishnan 2016; Kumar et al. 2014].

In this paper, we determine the betweenness centrality for several other families
of graphs motivated by organizational networks.

We first give some background with some elementary results.

Definition 1. The betweenness centrality of a vertex v, denoted bc(v), measures the
frequency at which v appears on a shortest path between two other distinct vertices
x and y. Let σxy be the number of shortest paths between distinct vertices x and y,
and let σxy(v) be the number of shortest paths between x and y that contain v. Then

bc(v)=
∑
x,y

σxy(v)

σxy

(for all distinct vertices x and y).

In our first lemma, we restate an elementary result on the lower and upper bounds
of the betweenness centrality of a vertex. This was found by Gago et al. [2012] and
Grassi et al. [2009].

Lemma 2. For a given graph G with n vertices, 0≤ bc(v)≤ (n− 1)(n− 2) for all
vertices v in G. Furthermore these bounds are tight.



34 E. CARTER, B. EK, D. GONZALEZ, R. FLÓREZ AND D. A. NARAYAN

It is clear that if a vertex has a betweenness centrality of zero, it means that the
vertex is likely to be less vital to the network than a vertex with a higher betweenness
centrality. Gago et al. [2012] and Grassi et al. [2009] provided a classification for
vertices to have a betweenness centrality of zero. We restate this as our next lemma.
We recall that the closed neighborhood of a vertex is the subgraph induced by a
vertex and its neighbors.

Lemma 3. Given a vertex v, we have bc(v)= 0 if and only if the closed neighbor-
hood of v forms a complete subgraph.

2. Betweenness centrality

We now investigate the betweenness centralities of vertices in several families of
graphs, including star-like graphs, k-ary trees, complete multipartite graphs, and
powers of paths and cycles. The following lemma can be implicitly found in [White
and Borgatti 1994].

Lemma 4. Let Pn be a path on vertices v1, v2, . . . , vn . Then bc(vi )=2(i−1)(n−i).

Next we investigate complete multipartite graphs, making a small extension of
known results for complete bipartite graphs [Kumar et al. 2014]. The complete
multipartite graph Kn1,n2,...,nt for t ≥2 is the graph where the vertex set is partitioned
into t partite sets V1, V2, . . . , Vt such that |Vi | = ni for each 1≤ i ≤ t and uv is an
edge if and only if u and v belong to different partite sets.

In an application with personnel, people are divided into different groups where
there are no direct connections among people in the same group, but there are direct
connections between each pair of people in different groups. We give an example
of a graph in Figure 4 where there are three vertices in one part, four in a second
part, and five in a third part. This graph is denoted by K3,4,5. The vertices with
the highest betweenness centrality will be in the part of size 3 (since there will be
the largest number of shortest paths routed through them) and the vertices with the

Figure 4. The complete multipartite graph K3,4,5. The lines indi-
cate that every vertex in one part is adjacent to every vertex in a
different part.
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lowest betweenness centrality will be in the part of size 5 (since they will have the
smallest number of shortest paths routed through them). We explore this problem
for the general class in our next lemma.

Lemma 5. Let G be the complete multipartite graph Kn1 ,n2 ,...,nt
where the vertices

in part i are vi,1, vi,2, . . . , vi,ni for all 1≤ i ≤ t . Then for all 1≤ j ≤ ni .

bc(vi, j )=

t∑
k=1,k 6=i

(nk
2

)∑t
r=1,r 6=k nr

Proof. We will compute bc(vi, j ). Consider the shortest paths between vertices vx,y

and vx,z . We first determine the total number of shortest paths that contain vi, j . Let
V1, V2, . . . , Vt represent the partite sets Kn1,n2,...,nt . To determine the total number
of shortest paths containing vi, j we count the number of pairs of distinct vertices in
each part Ak where k 6= i , and divide by the number of vertices in V (G)− Ai . �

2.1. Complete and balanced k-ary trees. In a complete and balanced binary trees,
there is a root vertex that is adjacent to exactly two other vertices. These vertices
then have two “children” vertices. Let k ≥ 2. A balanced k-ary with t levels will
have ki vertices at the i-th level for all 0 ≤ i ≤ t − 1. We generalize the class of
trees found in the Introduction to include k-ary trees. Here there is a root vertex that
has k neighbors and each of these k neighbors have k children. In balanced k-ary
trees with t levels there will be ki vertices at the i-th level for all 0≤ i ≤ t − 1.

We next determine the betweenness centrality of vertices in a k-ary tree.

Theorem 6. Let G be a complete and balanced k-ary tree with levels 0, 1, . . . , t−1.
Let vj be a vertex on level j . Then

bc(vj )=−
kt− j−1

− 1
(k− 1)2

(k− kt+1
− kt− j

+ kt− j−1
+ kt− j+1

− 1).

Proof. Consider a complete and balanced k-ary tree with levels 0, 1, . . . , t−1. This
tree will have 1+ k + k2

+ · · · + kt−1
= (kt

− 1)/(k − 1) vertices. We note that
vertices in the same level will have the same betweenness centrality, so we will use
vi to denote a vertex on level i . Note that vertex vj has k sets of (kt− j

−1)/(k−1)
vertices beneath it. The paths that pass through vj will either go between vertices
beneath vj in different subparts, or between any of these vertices and other vertices
in the graph besides vj . Hence

bc(vj )=
(kt−( j+1)

−1
k−1

)
(k− 1)

(kt−( j+1)
−1

k−1

)
+ k

(kt−( j+1)
−1

k−1

)(kt
−1

k−1
− k

(kt−( j+1)
−1

k−1

)
− 1
)

=−
kt− j−1

−1
(k−1)2

(k− kt+1
− kt− j

+ kt− j−1
+ kt− j+1

− 1). �
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v0,0 v1,1 v1,2

v2,1

v2,2

v3,1v3,2

v4,1

v4,2

Figure 5. A star-like graph.

2.2. Star-like graphs. As shown earlier, star graphs include vertices with the
highest and lowest possible betweenness centrality values. We next expand the
investigation to include graphs that are obtained by subdividing the edges of the
star graph K1,n−1. These graphs will have a “center” and “pendant spokes”. This
model appears in a organization where communication moves along different lines
that meet at a central processing person. This model is also found frequently in
airports where concourses (with multiple gates along them) intersect at a common
location. An example of a star-like graph is given in Figure 5.

It is clear that the center v0,0 has the highest betweenness centrality, and the
betweenness centrality of vertices will be less if they are located farther away from
the center. We address the general problem in our next theorem.

Theorem 7. Let G be a subdivided star graph with the center vertex v0,0. Let the
m paths pendant to the center have lengths s1, . . . , sm and let vl,k be the k-th vertex
from v0,0 on the l-th pendant path. Then

bc(v0,0)= 2
m∑

j=2

sj

j−1∑
i=1

si and bc(vl,k)= 2(sl − k)
(∑

i 6=l

si + k
)
.

Proof. The center vertex will lie on optimal paths between two vertices if and only
if the path connects vertices on different spokes. Thus it suffices to sum the number
of pairs of vertices between spokes. Vertices on a spoke will lie on an optimal path
if and only if the path is between a vertex further along the same spoke (sl − k
vertices) and a vertex closer to the center or on a different spoke yielding k+

∑
i 6=l si

vertices. Finally we double the product to account for paths in either direction. �

Theorem 8. Let G be a triangle graph with vertices v0,0, v1,0, and v2,0 and pendant
paths of lengths s0, s1, and s2 incident to the three vertices, respectively. If vl,k is
the k-th vertex on the l-th pendant path then

bc(vl,k)= 2(sl − k)
(

k+ 2+
∑
i 6=l

si

)
.
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Proof. The vertex vl,k will be on an optimal path if and only if the path is between a
vertex on the l-th pendant path further from the triangle (sl−k vertices) and a vertex
closer to the triangle or on a different pendant path, giving a total of k+2+

∑
i 6=l si

vertices. Finally, we double this product to account for both directions. �

2.3. Powers of cycles and paths. We next consider cycles that have “redundant”
connections. Consider a network of 20 people where there are direct links between
adjacent people and also links between people that are spaced two apart. We will
explore the betweenness centrality of this class of networks.

Recall that the k-th power of a graph G is denoted by Gk, which is defined as
follows: V (Gk) = V (G) and vivj ∈ E(Gk) if and only if the distance between
vi and vj in G is less than or equal to k. Next, we investigate the betweenness
centrality of vertices in powers of cycles.

Theorem 9. Let G =Cm
n with n> 2m+1 and let d = diam(Cm

n )=d(n−1)/(2m)e.
Then

bc(v)= (d − 1)
(
2
⌈ 1

2(n− 1)
⌉
− d

)
− (n− (n− 1))

(⌈1
2(n− 1)

⌉
− 1

)
= d −

⌈ 1
2 n− 1

2

⌉
− 2

⌈1
2 n− 1

2

⌉
+ 2d

⌈ 1
2 n− 1

2

⌉
− d2
+ 1.

Proof. Let G = Cm
n with n > 2m + 1. Let r ≡ −

⌈1
2(n − 1)

⌉
mod m such that

m > r ≥ 0. Then r = dm −
⌈1

2(n− 1)
⌉
. The maximum number of intermediate

vertices on any path is d − 1. Let Pl be the set of shortest paths of length l where
m+ 1≤ l ≤ d . The number of intermediate vertices in each shortest path is dl/me.
Let s be the number of internal vertices on a shortest path between two vertices
where 1 ≤ s ≤ d − 1. For each path with length l, where s = dl/me− 1 internal
vertices are placed at particular locations, there exist s pair(s) of vertices where
the path includes v. In the betweenness centrality this accounts for s terms equal
to 1/|Pl |. Since we can reverse any of these paths, this number is doubled. Then
counting all paths of length l, the betweenness centrality for v will be

2|Pl | ·
s
|Pl |
= 2s.

Summing over all values of l gives
d(n−1)/2e∑

l=m+1

2
(⌈ l

m

⌉
− 1

)
= (d − 1)

(
2
⌈1

2(n− 1)
⌉
− dm

)
when n is not divisible by m. When n is divisible by m there will be two paths
of the same distance between vertices that are diametrically opposite on the cycle.
Hence the final term in the summation must be divided by 2, which yields

(d − 1)
(
2
⌈1

2(n− 1)
⌉
− dm

)
−

(⌈⌈ 1
2(n− 1)

⌉
m

⌉
− 1

)
.
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The betweenness centrality values for the two cases can be combined into a
single function,

c(v)= (d−1)
(
2
⌈ 1

2(n−1)
⌉
−dm

)
−

(⌈ n
m

⌉
−

⌈n−1
m

⌉)(⌈⌈ 1
2(n− 1)

⌉
m

⌉
−1

)
. �

2.3.1. Powers of paths. The problem of determining the betweenness centrality of
vertices in a power of a path is considerably more difficult than powers of cycles.
In the case of cycles, all of the vertices have the same betweenness centrality, but in
a path the betweenness centrality of a vertex is dependent upon its location in the
path. The m-th power of a path Pn is denoted by Pm

n with vertices v1, v2, . . . , vn

and edges vivj whenever | j− i | ≤m. For simplicity, an edge that joins two vertices
where j − i = t will be referred to as a t-hop.

We first consider P2
n . We begin by defining a piecewise function, which will be

used in the subsequent lemma:

f (i, j, k)=



j−i+1
k−i+1

if k− i ≡ 1 mod 2 and j − i ≡ 1 mod 2,

k− j+1
k−i+1

if k− i ≡ 1 mod 2 and j − i ≡ 0 mod 2,

1 if k− i ≡ 0 mod 2 and j − i ≡ 0 mod 2,

0 if k− i ≡ 0 mod 2 and j − i ≡ 1 mod 2.

Lemma 10. If vj is a vertex of P2
n , then the between centrality of v1 and vn is zero

and if 1< j < n, then the betweenness centrality is

bc(vj )=
∑

1<i< j
j<k<n

f (i, j, k). (1)

Proof. We prove this proposition for the case where n is even. The case where
n is odd is similar. Clearly, bc(v1) = bc(vn) = 0. To calculate the betweenness
centrality of any fixed vj , where 1< j < n, we add all values given by the function
f (i, j, k) over all i and k, which gives (1).

For the first two cases in our piecewise function we note that since k− i is odd,
a shortest path between vi and vk must be composed of one 1-hop and k− i 2-hops.
In the first case we note that the 1-hop must be before the vertex vj is reached. Since
there are j− i+1 possible positions for the 1-hop, bc(vj )= ( j− i+1)/(k− i+1).
In the second case the 1-hop must be after the vertex vj is reached. Since there are
k− j+1 possible positions for the 1-hop, bc(vj )= (k− j+1)/(k− i+1). For the
third and fourth cases since k− i is even, any shortest path between vi and vk must
be composed of 2-hops. When k− j is even then all of these paths will contain vj

and when k− j is odd then none of these paths contain vj . �



INTERSECTING GEODESICS AND CENTRALITY IN GRAPHS 39

We extend this result for P3
n in our next lemma. We notice that there are 32

= 9
cases for this step. First we define the following piecewise function. Let

g(i, j, k)=



1 if k− i ≡ 0 mod 3 and j − i ≡ 0 mod 3,
(k− j + 2)(k− j + 5)
(k− i + 5)(k− i + 2)

if k− i ≡ 1 mod 3 and j − i ≡ 0 mod 3,

( j − i + 2)( j − i + 5)
(k− i + 5)(k− i + 2)

if k− i ≡ 1 mod 3 and j − i ≡ 1 mod 3,

2( j − i + 1)(k− j + 1)
(k− i + 5)(k− i + 2)

if k− i ≡ 1 mod 3 and j − i ≡ 2 mod 3,

k− j + 1
k− i + 1

if k− i ≡ 2 mod 3 and j − i ≡ 0 mod 3,

j − i + 1
k− i + 1

if k− i ≡ 2 mod 3 and j − i ≡ 2 mod 3,

0 otherwise.

Lemma 11. If vj is a vertex of P3
n , then the between centrality of v1 and vn is zero

and if 1< j < n, then
bc(vj )=

∑
1<i< j
j<k<n

g(i, j, k).

Proof. Clearly, bc(v1)= bc(vn)= 0. To calculate the betweenness centrality of any
fixed vj , where 1< j < n, we add all values given by the function f (i, j, k) over
all i and k to obtain

bc(vj )=
∑

1<i< j
j<k<n

f (i, j, k).

We consider a series of different cases.
When k − i ≡ 0 mod 3, the shortest path between vi and vk must consist of

3-hops. Hence these shortest paths will contain vj if and only if j − i ≡ 0 mod 3.
When k − i ≡ 2 mod 3 the shortest path between vi and vk must consist of a

single 2-hop and the rest 3-hops. If j − i ≡ 1 mod 3 then vj will never appear on a
shortest path between vi and vk . If j − i ≡ 0 mod 3 then there will only be 3-hops
between vi and vj and a single 2-hop and the rest 3-hops between vj and vk . There
are 1

3(k− j + 1) positions in which to place the 2-hop so that vj lies on a shortest
path between vi and vk . The total number of shortest paths between vi and vk is
1
3(k − i + 1). Hence the ratio is (k − j + 1)/(k − i + 1). The case where j − i
≡ 2 mod 3 is done similarly.

The case where k− i ≡ 1 mod 3 is more complicated as a shortest path between
vi and vk where k− i ≥ 4 can have two different forms. The first is a composition
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of a single 1-hop and the rest 3-hops. The second is a composition of two 2-hops
and the rest 3-hops. Hence from the 1

3(k− i + 2) positions we must either choose
a spot for the single 1-hop or choose two spaces for the two 2-hops. Hence the
denominator will be ( 1

3(k− i + 2)
2

)
+

1
3(k− i + 2).

Simplifying we obtain that( 1
3(k− i + 2)

2

)
+

1
3(k− pi + 2)= 1

18(k− i + 2)(k− i + 5).

When j − i ≡ 0 mod 3, we know vj will be on a shortest path between vi and vk if
and only if there are only 3 -hops between vi and vj . Hence the numerator will be

1
3(k− j + 2)+

(1
3(k− j + 2)

2

)
.

Simplifying we obtain that

1
3(k− j + 2)+

(1
3(k− j + 2)

2

)
=

1
18(k− j + 2)(k− j + 5).

The case where j − i ≡ 1 mod 3 is similar. When j − i ≡ 2 mod 3 then there will
be a single 2-hop and the rest 3-hops between vi and vj , and the same for between
vj and vk . Hence the numerator will be

(1
3( j − i + 1)

)(1
3(k− j + 1)

)
. �

We next investigate higher powers of paths and obtain a complete result for path
powers with diameter 2.

We first give an example that shows a connection to the triangular numbers.

Example. Let G = P7
15. We note that bc(vj )= bc(v16− j ).

Clearly bc(v1) = 0. We next compute bc(vj ) and consider all shortest paths
containing vj with the form vx − vj − vy , where 1≤ x < j < y ≤ 15. We note that
d(G)= 2.

bc(v2): We first note that any shortest path containing v2 must start with v1 and end
with v9.

Of the paths of length 2 that connect v1 and v9, there are seven possible interme-
diate vertices v2, v3, . . . , v8.

Since v2 is one of these seven possibilities, bc(v2)=
1
7 .

bc(v3): We first note that any shortest path containing v3 must have one of the
following three forms:

v1−v9: Of the shortest paths connecting v1 and v9, there are six possible intermediate
vertices v3, . . . , v8.
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v2 − v10: Of the shortest paths connecting v2 and v10, there are seven possible
intermediate vertices v3, . . . , v9.
v1− v10: Of the shortest paths connecting v1 and v10, there are seven possible

intermediate vertices v3, . . . , v9.
Hence bc(v3)= 2

( 1
7

)
+

1
6 =

19
42 .

bc(v4): We first note that any shortest path containing v4 must have one of the
following six forms:

v1− v9: Of the shortest paths connecting v1 and v9, there are five possible interme-
diate vertices v4, . . . , v8.

v2− v10: Of the shortest paths connecting v2 and v10, there are six possible inter-
mediate vertices v4, . . . , v9.

v3 − v11: Of the shortest paths connecting v3 and v11, there are seven possible
intermediate vertices v4, . . . , v10.

v1− v10: Of the shortest paths connecting v1 and v10, there are six possible inter-
mediate vertices v4, . . . , v9.

v2 − v11: Of the shortest paths connecting v2 and v11, there are seven possible
intermediate vertices v4, . . . , v10.

v1 − v11: Of the shortest paths connecting v1 and v11, there are seven possible
intermediate vertices v4, . . . , v10.

Hence bc(v4)= 3
( 1

7

)
+ 2

( 1
6

)
+

1
5 =

101
105 .

For the sake of brevity we note that this pattern continues with the following
observations.

bc(v5): Any shortest path containing v5 is one of 10 forms where d(vx , vy) are
8, 9, 10, or 11.

Hence bc(v5)= 4
( 1

7

)
+ 3

( 1
6

)
+ 2

(1
5

)
+

1
4 =

241
140 .

bc(v6): Any shortest path containing v6 is one of 15 forms where d(vx , vy) are
8, 9, 10, 11, or 12.

Hence bc(v6)= 5
( 1

7

)
+ 4

( 1
6

)
+ 3

(1
5

)
+ 2

( 1
4

)
+

1
3 =

197
70 .

bc(v7): Any shortest path containing v7 is one of 21 forms where d(vx , vy) are
8, 9, 10, 11, 12, or 13.

Hence bc(v7)= 6
( 1

7

)
+ 5

( 1
6

)
+ 4

(1
5

)
+ 3

( 1
4

)
+ 2

( 1
3

)
+

1
2 =

617
140 .

bc(v8): Any shortest path containing v8 is one of 28 forms where d(vx , vy) are
8, 9, 10, 11, 12, 13, or 14.

Hence bc(v8)= 7
( 1

7

)
+ 6

( 1
6

)
+ 5

(1
5

)
+ 4

( 1
4

)
+ 3

( 1
3

)
+ 2

( 1
2

)
+ 1= 7.

We note that the number of forms in each of these cases are triangular numbers.
This pattern holds in general for G = Pk

n , where n = 2k+ 1. We state this in our
next theorem.
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P7
15

{
0, 1

7 ,
19
42 ,

101
105 ,

241
140 ,

197
70 ,

617
140 , 7, 617

140 ,
197
70 ,

241
140 ,

101
105 ,

19
42 ,

1
7 , 0

}
P7

14

{
0, 1

7 ,
19
42 ,

101
105 ,

241
140 ,

197
70 ,

617
140 ,

617
140 ,

197
70 ,

241
140 ,

101
105 ,

19
42 ,

1
7 , 0

}
P7

13

{
0, 1

7 ,
19
42 ,

101
105 ,

241
140 ,

197
70 ,

197
70 ,

197
70 ,

241
140 ,

101
105 ,

19
42 ,

1
7 , 0

}
P7

12

{
0, 1

7 ,
19
42 ,

101
105 ,

241
140 ,

241
140 ,

241
140 ,

241
140 ,

101
105 ,

19
42 ,

1
7 , 0

}
P7

11

{
0, 1

7 ,
19
42 ,

101
105 ,

101
105 ,

101
105 ,

101
105 ,

19
42 ,

1
7 , 0

}
P7

10

{
0, 1

7 ,
19
42 ,

19
42 ,

19
42 ,

19
42 ,

19
42 ,

19
42 ,

1
7 , 0

}
P7

9

{
0, 1

7 ,
1
7 ,

1
7 ,

1
7 ,

1
7 ,

1
7 , 0

}
P7

8 {0, 0, 0, 0, 0, 0, 0}

Table 1. Path powers with diameter 2. Note the nested nature of
the prefixes ending with 0, 1

7 ,
19
42 ,

101
105 ,

241
140 ,

197
70 ,

617
140 , 7.

Theorem 12. Let G = Pk
n , where n = 2k+ 1. Then

bc(vj )=

j−1∑
i=1

j − i
k+ 1− i

, (2)

where 1≤ j ≤ k and bc(vj )= bc(vn+1− j ).

Proof. When calculating bc(vj ), we note that vj is contained in shortest paths
between vx and vy , where x < j < y ≤ n and y− x = k+ i , where 1≤ i ≤ j − 1.
This will account for j − i pairs where the difference between indices is k+ 1− i .

For each pair of vertices vx and vy where y− x = k+ i there will be j − i sets
of paths. Each of these paths will have k − i + 1 possible intermediaries. This
contributes ( j− i)/(k− i+1) to bc(vj ). Summing these terms for all 1≤ i ≤ j−1
will give the value of bc(vj ). Hence we have (2). �

Next we show how the previous theorem can be extended to cover all other path
powers of diameter 2. We begin with an example.

Example 13. Let G = P7
12. We first note that bc(vj )= bc(v13− j ).

For vj where 1≤ j ≤ 5, the betweenness centrality values are identical to those
in P7

15 and can be computed using the exact same method. However the pattern
used in the example with P7

15 cannot be extended for bc(v6) since vy ≤ 12. As a
result, the paths used in the computation of bc(v5) and bc(v6) are identical. Hence,
bc(v1)= 0; bc(v2)=

1
7 , bc(v3)=

19
42 , bc(v4)=

101
105 , and bc(v5)= bc(v6)=

241
140 .

We observe that the betweenness centrality values in path powers with diameter 2
have a nested pattern (see Table 1).

We formalize this property in our next theorem.
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Theorem 14. Let G = Pk
n , where n < 2k+ 1 and j < k. Then

bc(vj )=

j−1∑
i=1

j − i
k− i + 1

(3)

for all 2≤ j ≤ n− k and bc(vj )= bc(vn+1− j ). For Pk
n , the bc(vj ) are all equal for

all n− k ≤ j ≤
⌈ 1

2 n
⌉

.

Proof. When calculating bc(vj ), we note that vj is contained in shortest paths
between vx and vy where x < j < y ≤ n and y− x = k + i where 1 ≤ i ≤ j − 1.
This will account for j − i pairs where the difference between indices is k+ 1− i .

For each pair of vertices vx and vy where y − x = k + i (where k + i ≤ n),
there will be j − i sets of paths. Each of these paths will have k− i + 1 possible
intermediaries. This contributes ( j− i)/(k− i+1) to bc(vj ). Summing these terms
for all 1 ≤ i ≤ j − 1 will give the value of bc(vj ). Hence we have (3). For Pk

n ,
bc(vj ) is the same as in Pk

2k+1 for the first n− k terms. Then since there are the
same number of pairs of vertices vx and vy where y− x = k+ i (where k+ i ≤ n)
in Pk

n , the bc(vj ) are all the same for n− k ≤ j ≤
⌈1

2 n
⌉

. �

3. Conclusion

For path powers with larger diameter the problem becomes more complex. The
case of Pm

n involves m2 different cases, and as n increases the cases become more
complicated. Hence the problem for general powers of paths is more difficult. We
note that problem is tied to the number of integer partitions with a fixed upper
bound on the size of each part [Ratsaby 2008]. The objective is to minimize the
number of parts.

We pose the following problem.

Problem 15. Determine the betweenness centrality for all vertices in Pm
n .

Acknowledgements

The authors are grateful to an anonymous referee whose careful reading and com-
ments improved the presentation of this paper. This research was supported by
a National Science Foundation Research Experiences for Undergraduates Site
Award Grant (#1062128) with cofunding from the Department of Defense. Darren
Narayan was also supported by NSF Award #1019532. Rigoberto Flórez was
partially supported by The Citadel Foundation.

References

[Brandes et al. 2016] U. Brandes, S. Borgatti, and L. Freeman, “Maintaining the duality of closeness
and betweenness centrality”, Social Networks 44 (2016), 153–159.

http://dx.doi.org/10.1016/j.socnet.2015.08.003
http://dx.doi.org/10.1016/j.socnet.2015.08.003


44 E. CARTER, B. EK, D. GONZALEZ, R. FLÓREZ AND D. A. NARAYAN

[Bullmore and Sporns 2009] E. Bullmore and O. Sporns, “Complex brain networks: graph theoretical
analysis of structural and functional systems”, Nature Rev. Neuroscience 10:3 (2009), 186–198.

[Freeman 1977] L. C. Freeman, “A set of measures of centrality based upon betweenness”, Sociometry
40:1 (1977), 35–41.

[Freeman et al. 1991] L. C. Freeman, S. P. Borgatti, and D. R. White, “Centrality in valued graphs: a
measure of betweenness based on network flow”, Social Networks 13:2 (1991), 141–154. MR

[Gago et al. 2012] S. Gago, J. Hurajová, and T. Madaras, “Notes on the betweenness centrality of a
graph”, Math. Slovaca 62:1 (2012), 1–12. MR Zbl

[Grassi et al. 2009] R. Grassi, R. Scapellato, S. Stefani, and A. Torriero, “Betweenness centrality:
extremal values and structural properties”, pp. 161–175 in Networks, topology and dynamics: theory
and applications to economics and social systems, edited by A. K. Naimzada et al., Lecture Notes in
Economics and Mathematical Systems 613, Springer, 2009. Zbl

[Guye et al. 2010] M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone, “Graph theoretical analysis
of structural and functional connectivity MRI in normal and pathological brain networks”, Magn.
Reson. Mater. Phys. 23:5-6 (2010), 409–421.

[Kumar and Balakrishnan 2016] S. Kumar R. and K. Balakrishnan, “Betweenness centrality of
Cartesian product of graphs”, preprint, 2016. arXiv

[Kumar et al. 2014] S. Kumar Raghavan Unnithan, B. Kannan, and M. Jathavedan, “Betweenness
centrality in some classes of graphs”, Int. J. Comb. 2014 (2014), art. id. 241723. MR Zbl

[Pandit et al. 2013] A. S. Pandit, P. Expert, R. Lambiotte, V. Bonnelle, R. Leech, F. E. Turkheimer,
and D. J. Sharp, “Traumatic brain injury impairs small-world topology”, Neurology 80:20 (2013),
1826–1833.

[Ratsaby 2008] J. Ratsaby, “Estimate of the number of restricted integer-partitions”, Appl. Anal.
Discrete Math. 2:2 (2008), 222–233. MR Zbl

[White and Borgatti 1994] D. R. White and S. P. Borgatti, “Betweenness centrality measures for
directed graphs”, Social Networks 16:4 (1994), 335–346.

Received: 2017-03-04 Revised: 2017-07-26 Accepted: 2018-01-20

emmacarter2014@gmail.com School of Mathematical Sciences, Rochester Institute of
Technology, Rochester, NY, United States

bte14@math.rutgers.edu Department of Mathematics, Rutgers University,
Piscataway, NJ, United States

dng2551@rit.edu Department of Software Engineering, Rochester Institute
of Technology, Rochester, NY, United States

florezr1@citadel.edu Department of Mathematics and Computer Science,
The Citadel, Charleston, SC, United States

dansma@rit.edu School of Mathematical Sciences, Rochester Institute of
Technology, Rochester, NY, United States

mathematical sciences publishers msp

http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.1038/nrn2575
http://dx.doi.org/10.2307/3033542
http://dx.doi.org/10.1016/0378-8733(91)90017-N
http://dx.doi.org/10.1016/0378-8733(91)90017-N
http://msp.org/idx/mr/1135768
http://dx.doi.org/10.2478/s12175-011-0065-7
http://dx.doi.org/10.2478/s12175-011-0065-7
http://msp.org/idx/mr/2886647
http://msp.org/idx/zbl/1274.05158
http://msp.org/idx/zbl/1154.91630
http://dx.doi.org/10.1007/s10334-010-0205-z
http://dx.doi.org/10.1007/s10334-010-0205-z
http://msp.org/idx/arx/1603.04258v1
http://dx.doi.org/10.1155/2014/241723
http://dx.doi.org/10.1155/2014/241723
http://msp.org/idx/mr/3294894
http://msp.org/idx/zbl/1309.05168
http://dx.doi.org/10.1212/WNL.0b013e3182929f38
http://dx.doi.org/10.2298/AADM0802222R
http://msp.org/idx/mr/2445203
http://msp.org/idx/zbl/1274.68268
http://dx.doi.org/10.1016/0378-8733(94)90015-9
http://dx.doi.org/10.1016/0378-8733(94)90015-9
mailto:emmacarter2014@gmail.com
mailto:bte14@math.rutgers.edu
mailto:dng2551@rit.edu
mailto:florezr1@citadel.edu
mailto:dansma@rit.edu
http://msp.org


involve
msp.org/ involve

INVOLVE YOUR STUDENTS IN RESEARCH
Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR
Kenneth S. Berenhaut Wake Forest University, USA

BOARD OF EDITORS
Colin Adams Williams College, USA

John V. Baxley Wake Forest University, NC, USA
Arthur T. Benjamin Harvey Mudd College, USA

Martin Bohner Missouri U of Science and Technology, USA
Nigel Boston University of Wisconsin, USA

Amarjit S. Budhiraja U of North Carolina, Chapel Hill, USA
Pietro Cerone La Trobe University, Australia

Scott Chapman Sam Houston State University, USA
Joshua N. Cooper University of South Carolina, USA
Jem N. Corcoran University of Colorado, USA

Toka Diagana Howard University, USA
Michael Dorff Brigham Young University, USA

Sever S. Dragomir Victoria University, Australia
Behrouz Emamizadeh The Petroleum Institute, UAE

Joel Foisy SUNY Potsdam, USA
Errin W. Fulp Wake Forest University, USA

Joseph Gallian University of Minnesota Duluth, USA
Stephan R. Garcia Pomona College, USA

Anant Godbole East Tennessee State University, USA
Ron Gould Emory University, USA

Andrew Granville Université Montréal, Canada
Jerrold Griggs University of South Carolina, USA

Sat Gupta U of North Carolina, Greensboro, USA
Jim Haglund University of Pennsylvania, USA

Johnny Henderson Baylor University, USA
Jim Hoste Pitzer College, USA

Natalia Hritonenko Prairie View A&M University, USA
Glenn H. Hurlbert Arizona State University,USA

Charles R. Johnson College of William and Mary, USA
K. B. Kulasekera Clemson University, USA

Gerry Ladas University of Rhode Island, USA

Suzanne Lenhart University of Tennessee, USA
Chi-Kwong Li College of William and Mary, USA

Robert B. Lund Clemson University, USA
Gaven J. Martin Massey University, New Zealand

Mary Meyer Colorado State University, USA
Emil Minchev Ruse, Bulgaria
Frank Morgan Williams College, USA

Mohammad Sal Moslehian Ferdowsi University of Mashhad, Iran
Zuhair Nashed University of Central Florida, USA

Ken Ono Emory University, USA
Timothy E. O’Brien Loyola University Chicago, USA

Joseph O’Rourke Smith College, USA
Yuval Peres Microsoft Research, USA

Y.-F. S. Pétermann Université de Genève, Switzerland
Robert J. Plemmons Wake Forest University, USA

Carl B. Pomerance Dartmouth College, USA
Vadim Ponomarenko San Diego State University, USA

Bjorn Poonen UC Berkeley, USA
James Propp U Mass Lowell, USA

Józeph H. Przytycki George Washington University, USA
Richard Rebarber University of Nebraska, USA

Robert W. Robinson University of Georgia, USA
Filip Saidak U of North Carolina, Greensboro, USA

James A. Sellers Penn State University, USA
Andrew J. Sterge Honorary Editor

Ann Trenk Wellesley College, USA
Ravi Vakil Stanford University, USA

Antonia Vecchio Consiglio Nazionale delle Ricerche, Italy
Ram U. Verma University of Toledo, USA

John C. Wierman Johns Hopkins University, USA
Michael E. Zieve University of Michigan, USA

PRODUCTION
Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $/year for the electronic
version, and $/year (+$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional
mailing offices.

Involve peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2019 Mathematical Sciences Publishers

http://msp.org/involve
http://msp.org/involve
http://msp.org/
http://msp.org/


inv lve
a journal of mathematics

involve
2019 vol. 12 no. 1

1Optimal transportation with constant constraint
WYATT BOYER, BRYAN BROWN, ALYSSA LOVING AND SARAH TAMMEN

13Fair choice sequences
WILLIAM J. KEITH AND SEAN GRINDATTI

31Intersecting geodesics and centrality in graphs
EMILY CARTER, BRYAN EK, DANIELLE GONZALEZ, RIGOBERTO FLÓREZ

AND DARREN A. NARAYAN

45The length spectrum of the sub-Riemannian three-sphere
DAVID KLAPHECK AND MICHAEL VANVALKENBURGH

63Statistics for fixed points of the self-power map
MATTHEW FRIEDRICHSEN AND JOSHUA HOLDEN

79Analytical solution of a one-dimensional thermistor problem with Robin boundary
condition

VOLODYMYR HRYNKIV AND ALICE TURCHANINOVA

89On the covering number of S14

RYAN OPPENHEIM AND ERIC SWARTZ

97Upper and lower bounds on the speed of a one-dimensional excited random walk
ERIN MADDEN, BRIAN KIDD, OWEN LEVIN, JONATHON PETERSON,
JACOB SMITH AND KEVIN M. STANGL

117Classifying linear operators over the octonions
ALEX PUTNAM AND TEVIAN DRAY

125Spectrum of the Kohn Laplacian on the Rossi sphere
TAWFIK ABBAS, MADELYNE M. BROWN, RAVIKUMAR RAMASAMI AND

YUNUS E. ZEYTUNCU

141On the complexity of detecting positive eigenvectors of nonlinear cone maps
BAS LEMMENS AND LEWIS WHITE

151Antiderivatives and linear differential equations using matrices
YOTSANAN MEEMARK AND SONGPON SRIWONGSA

157Patterns in colored circular permutations
DANIEL GRAY, CHARLES LANNING AND HUA WANG

171Solutions of boundary value problems at resonance with periodic and antiperiodic
boundary conditions

ALDO E. GARCIA AND JEFFREY T. NEUGEBAUER

involve
2019

vol.12,
no.1

http://dx.doi.org/10.2140/involve.2019.12.1
http://dx.doi.org/10.2140/involve.2019.12.13
http://dx.doi.org/10.2140/involve.2019.12.31
http://dx.doi.org/10.2140/involve.2019.12.45
http://dx.doi.org/10.2140/involve.2019.12.63
http://dx.doi.org/10.2140/involve.2019.12.79
http://dx.doi.org/10.2140/involve.2019.12.79
http://dx.doi.org/10.2140/involve.2019.12.89
http://dx.doi.org/10.2140/involve.2019.12.97
http://dx.doi.org/10.2140/involve.2019.12.117
http://dx.doi.org/10.2140/involve.2019.12.125
http://dx.doi.org/10.2140/involve.2019.12.141
http://dx.doi.org/10.2140/involve.2019.12.151
http://dx.doi.org/10.2140/involve.2019.12.157
http://dx.doi.org/10.2140/involve.2019.12.171
http://dx.doi.org/10.2140/involve.2019.12.171

	1. Introduction
	2. Betweenness centrality
	2.1. Complete and balanced k-ary trees
	2.2. Star-like graphs
	2.3. Powers of cycles and paths
	2.3.1. Powers of paths


	3. Conclusion
	Acknowledgements
	References
	
	

