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We consider turn sequences used to allocate of a set of indivisible items between
two players who take turns choosing their most desired element of the set, with the
goal of minimizing the advantage of the first player. Balanced alternation, while not
usually optimal, is fairer than alternation. Strategies for seeking the fairest choice
sequence are discussed. We show an unexpected combinatorial connection between
partition dominance and fairness, suggesting a new avenue for future investigations
in this subject, and conjecture a connection to a previously studied optimality
criterion. Several intriguing questions are open at multiple levels of accessibility.

1. Introduction

In the discrete version of the cake-cutting problem [Brams and Taylor 1996], some
number of people take turns selecting from among a set of indivisible items (usually
2n items for two people). Players’ preferences vary (they may not all prefer the same
item most, second-most, et cetera). If preferences are not known to other players
they are usually assumed to vary with uniform probability. Players’ preferences
are normally described by a simple ranking, called Borda scoring, which assigns
values of 1 through 2n to the objects being chosen. An object with value 2n is
most wanted, and gives twice as much satisfaction as the object valued at n, and so
forth. A player assigns a utility to a final distribution of goods at the total of their
valuation of all objects they receive. It is easy to see that the sum of all players’
utilities is by no means constant as preferences or turn orders vary. This has been a
problem of interest for many authors; see [Bouveret and Lang 2011; Hopkins and
Jones 2009; Kalinowski and Narodytska 2013; Rubchinsky 2010], and others.

Some investigators (Hopkins [2010], Hopkins and Jones [2009]) consider strate-
gic play when players’ preferences are known to each other. If preferences are
secret, a player’s only strategic move is to take their most-preferred item remaining,
and instead the question of interest is whether an administrator who also does not
know preferences can vary the policy — the sequence in which turns are allocated —
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to probably maximize some criterion of social interest. Policies have been analyzed
for optimality criteria such as min-max (the worst-off agent is likely to do least
badly) and social welfare or utilitarian optimality (the expected value of the sum
of agents’ utilities is as high as possible). For instance, Bouveret and Lang [2011]
conjectured that simply taking turns is utilitarian-optimal under uniform distribution
of preferences, and Kalinowski and Narodytska [2013] proved this. Data from
[Bouveret and Lang 2011] show that alternating turns is not min-max optimal,
although it is asymptotically so.

In this paper we define a new optimality criterion, fairness: the expected differ-
ence between players’ total utilities is minimized. We restrict ourselves to conditions
common in the literature (see for instance [Bouveret and Lang 2011; Kalinowski and
Narodytska 2013]): Borda scoring, as above, and uniformly distributed preferences.
Socially, the criterion is useful when players are intolerant of large inequalities
among their outcomes. Such players must also be willing to sacrifice some overall
social welfare in order to reduce this, because under the given conditions maximal
total utility is known [Kalinowski and Narodytska 2013] to be realized by the simple
policy of taking turns: but this obviously advantages the first player. Empirically,
fair policies never seem to be too far from utilitarian-optimal policies, but there does
not seem to be a strong mathematical connection between the two criteria. However,
we were surprised to conjecture from data generated to date that the min-max
optimal policy is the fairest among policies that only differ from alternation in
which player goes first in a “round”. Finally, the fairness criterion also turns out to
have a surprising combinatorial property connected with the theory of partitions.
This connection is partially proved herein but is still open in general. Thus we think
there is significant mathematical interest to be explored here.

We prove a number of results for fairer policies. Our theorems range from
the intuitively obvious, to a fascinating combinatorial relationship between the
dominance order on partitions and fairness of choice sequences associated to
partitions in a natural way. This association is a tool not previously used in the
literature, which may yield fruitful lines of analysis for other questions. Stating our
main theorems accessibly, deferring technical definitions to the next section, we
show the following:

Lemma 1. Inverting the choice sequence negates advantage.

Theorem 2. Moving a player’s choices later strictly decreases their advantage.

Theorem 3. Altering a four-turn sequence from L R RL to RL L R strictly increases
player L’s advantage, if all turn pairs in positions 2k+1 and 2k+2 are L R or RL.

In other words, heuristically, players like earlier choices — but, other things being
equal, they would like their earlier choices later. The first part of this theorem is
obvious — the second, we think, quite surprising. This is the dominance connection
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we mentioned earlier, and we conjecture but were unable to prove that in fact a
stronger connection to partition dominance holds.

In the following section we provide the definitions that a reader will need, includ-
ing definitions specific to this subject and some background from disparate areas,
intending to make the article as self-contained as possible. In Section 3 we describe
and prove our theorems on the fairness-of-choice sequences in various relations. In
Section 4 we give some numerical, nonrecursive formulas for players’ expected
values using tools from combinatorics. In the last section we give our collected
data to date, and suggest remaining open problems and interesting questions our
work raises. Interested investigators will find material for computational projects
for students, as well as challenging questions in combinatorial distributions.

For nonmathematical readers only skimming the article to find a “fairest” choice
sequence, while not perfect, we recommend the following for players L and R: the
“reverse-and-repeat” sequence

L R RL RL L R RL L R L R RL RL L R L R RL L R RL RL L R RL L R . . . .

Known as balanced alternation [Brams and Taylor 2000], this is well-defined
only if the number of turns is a power of 2, but it is easy to then simply take an
initial segment of a sufficiently long sequence.

2. Definitions

Two agents, Luis and Rita, each rank a set of 2n indivisible items in order of prefer-
ence; without loss of generality we assume Luis’s preference from most-preferred
to least is labeled (2n, 2n−1, . . . , 1), and consider Rita’s preferences a permutation
π of Luis’s. We describe Rita’s preference order by π−1(2n), . . . , π−1(1). Reading
left to right, we obtain Rita’s ranking of the items from most to least preferred. From
here on, by “item i” we mean Luis’s label for the item, and specify “Rita’s item i”
if required. Neither player knows the other’s preference; we assume preferences
are uniformly distributed.

Each agent takes an equal number of turns on which they select their most
preferred (highest-labeled) item of those remaining to be chosen; e.g., if Luis goes
first, he will choose the item labeled 2n. This ends when each person has exactly
half of the items. Following Kalinowski, Narodytska and Walsh [Kalinowski and
Narodytska 2013], we refer to an order S in which players are allowed to choose
items as a policy.

A policy is a word in L and R of length 2n containing n Ls and n Rs. A
policy signifies turns at which Luis or Rita chooses from among the remaining
set of objects their most preferred item, receiving that item and deleting it from
the remaining choices. The set of positions {`1, . . . , `n} at which L appears, or R
respectively, is the set of choice positions for that player.
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In a choice of four items in which Rita prefers items at 1432, and the policy is
L RL R, items in Luis’s labeling will be taken in the order 4, 1, 3, 2. We refer to
this order as the path associated to this policy and preference.

Given a set of preferences and a policy, players will receive some collection of
items, which they value as the sum of their valuations for each item received: label
these sums L(S) or (S) for a given policy S. Luis’s advantage is his value minus
Rita’s.

The alternating policy in which Luis goes first, L RL R . . . L R, advantages Luis,
since he chooses first in every “round” of a choice for each player. For instance, if
Luis and Rita agree on their ranking of the items, Luis will get his 1st, 3rd, 5th, etc.
choices, while Rita will get her 2nd, 4th, etc.

For four items, we might argue that L R RL is fairer than L RL R; for instance,
in the case of agreement, Luis will get items he values at 4 and 1 while Rita gets 3
and 2. We call a policy S1 fairer than policy S2 if the two players’ expected totals
(averaging over all possible Rita preference orders) differ by less in absolute value.
Equivalently, we may compare their total values over all permutations, L tot(S) and
Rtot(S). Define Ladv(S)= L tot(S)− Rtot(S). The goal of this article is to seek the
fairest policy, minimizing |Ladv(S)|.

Remark. Utilitarian-optimality is the usual criterion in the literature. We choose
to investigate fairness both for the inherent mathematical interest described above,
such as connections to other criteria and mathematical objects further afield, and for
the use of cases in which inequality is a phenomenon players accord some negative
utility. One could quantize the difference between the social welfare of the fairest
and the utilitarian-optimal policies by giving a function to weight the amount by
which players disapprove of inequality. Doing so makes all prior criteria instances
of a general continuum! If players add to social welfare a “disapproval subtraction”
equal to advantage, the resulting optimality criterion is precisely min-max, whereas
if they subtract nothing, the criterion is utilitarian-optimality. Our criterion is
equivalent to a “disapproval subtraction” of some large multiple of inequality. Study
of this generalized criterion could be an interesting route to rigorize the investigation
of tradeoffs between various criteria.

Before including a few definitions from other areas of mathematics that will later
be useful to us, we state a lemma from [Kalinowski and Narodytska 2013], a very
useful recursion that gives the expected value ūi (S) of player i for a policy S. Say
that a policy S has length p, and denote by S̃ the policy S with the first choice
removed — note that this lemma applies to policies of any length, and not necessarily
having the same number of places L and R.

Lemma 4 [Kalinowski and Narodytska 2013, Lemma 1]. Let S be a policy of
length p. Denote by ū1(S) the expected value of the player choosing first in S, and
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by ū2(S) the expected value of the other player. We have

ū1(S)= p+ ū1(S̃), ū2(S)=
p+1

p
ū2(S̃).

A partially ordered set (poset for short) is a set A with a reflexive, transitive,
antisymmetric relation a≤b. If a≤b, a 6=b, and no element c satisfies a≤c≤b, we
say that b covers a. If for any two elements c1, ck ∈ A all chains c1 ≤ c2 ≤ · · · ≤ ck

have equal length when ci+1 covers ci for all i , then the poset is ranked; if there is
a unique element c ≤ x for all x ∈ A the rank of x may be taken to be the length of
any such chain between c and x .

A partition of n is a weakly decreasing sequence λ= (λ1, . . . , λM) of nonnegative
integers that sum to n. (Typically a partition is defined with positive integers, but it
is convenient in this article to speak of a finite number of size 0 parts.) A partition
in the N ×M box is one with at most M parts of size at most N ; in this article N
will always equal M , and we will refer to a box of size N . The “box” language
comes from the Ferrers diagram of a partition, which is a collection of squares
justified to the axes in the fourth quadrant in which the i-th row has λi squares.

Example 5. The Ferrers diagrams of the partitions (3, 2, 2, 1), (3, 3, 2, 1), and
(2, 2, 1, 0) in the 4× 4 box are illustrated below.

The profile of a partition is the set of E −W and N − S segments that form the
outer boundary of its Ferrers diagram, possibly including any desired number of
segments along the axes. A partition λ dominates another partition π if it holds that∑k

i=1 λi ≥
∑k

i=1 πi for all k, assuming an infinite set of trailing zero parts in each.
Dominance is a partial order. For instance, (4, 4, 2, 1, 1) dominates (4, 3, 3, 1, 1)
but not (4, 3, 3, 2), nor does (4, 3, 3, 2) dominate (4, 4, 2, 1, 1).

A partition λ= (λ1, . . . , λn) contains another partition σ = (σ1, . . . , σn) if we
have λi ≥ σi for all i . Containment is a partial order relation which makes partitions
into a ranked poset, where the rank of a partition is just the number that it partitions.
Thus the set of partitions in the N×M box ordered by containment is a finite, ranked
poset with minimal element (0, 0, . . . , 0). Containment implies dominance, which
means that the containment poset on partitions in the M×N box can be constructed
by removing some comparabilities from the dominance poset. In particular, no
two partitions of n contain each other, while dominance can be used as a partial
order on the set of partitions of n in a given box. Unless we refer to dominance
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for a particular theorem, in this paper we mean containment when we speak of the
partition poset or the word poset.

We define dominance and covering on words by associating them to partitions.
We associate a word of length 2n with n each of L and R to a profile in the n× n
box by starting from the upper right corner and drawing an E−W step for an L , and
a N − S step for an R. Thus, the partitions in the example above are associated to
the sequences L RL R RL RL , L R RL RL RL , and L L R RL RL R respectively. We
say that a word in L and R dominates (resp. covers) another if the associated
partition of the first dominates (resp. covers) that of the second. In the figure above,
(3, 3, 2, 1) dominates both of the other partitions, and covers (3, 2, 2, 1). These
two figures are relevant to an example we give in the next section.

Of particular interest to us is the set of words that lie between the alternating
sequences in the word poset which are restricted to consecutive pairs L R or RL
for every two (2k−1)-th and 2k-th positions, which we refer to as the Boolean set.
These words are associated to the 2n partitions whose Ferrers diagrams differ only
by either containing, or not containing, the squares on the diagonal of the box. The
first two partitions in the example are in this set.

3. Effects of changes on the fairness of policies

The policy associated to the minimal element (0, 0, . . . , 0) in the box of size N
is L L . . . R R, which among all policies with n Ls and n Rs is obviously the
best possible policy for Luis (highest L tot and Ladv). We can move through the
policy poset by adding one square at a time, exchanging a consecutive pair L R
in the sequence for an RL . We should expect that this will always worsen Luis’s
position, and our first theorem shows this. Slightly less obviously, for any given
Rita preference permutation the change happens in a specific way, by the exchange
of one pair of items between the two players’ outcomes.

Theorem 6. Let two policies S and S′ be such that S = s1 . . . sksk+1 . . . s2n where
sk = L and sk+1 = R, and S′ = s1 . . . sk+1sk . . . s2n . Then L(S′) ≤ L(S) and
R(S′)≥ R(S), by exchange of one item between the players’ outcomes for any given
Rita preference π .

Proof. The magnitude clause is extremely intuitive and, with Lemma 4, is nearly
trivial: Luis’s expected value in L Rσ with σ any following policy of length p−2 is
p+ p/(p− 1) ūL(σ ), while for RLσ it is (p+ 1)/p (p− 1+ ūL(σ )). The former
is larger than the latter, and Lemma 4 tells us that passage through any prefix to
such a word yields an expected value which is some increasing linear function of
the input, so the final expected value is larger.

However, by examining the situation in more detail we can say more about the
actual change made to the players’ outcomes.
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Figure 1. Left: choice procedure for policy S. Right: choice
procedure for policy S′. Note that white circles denote items Rita
obtains and black circles denote Luis’ items.

Let Luis’s outcome be outL(S)= {l1, l2, . . . , ln} and Rita’s outcome outR(S)=
{r1, r2, . . . , rn}. The first k − 1 turns with S′ will yield the same results for both
players as with S. On turn k, using S, Luis takes some item li , and then on turn
k+ 1 Rita takes some item r j . For S′, turn k is Rita’s turn instead of Luis’s. She
will either take r j as she did using S or she will take li . If she takes r j , then on the
next turn, Luis will take li , for he preferred this to all remaining items. Then for
the remainder of the items, at any given choice both players will face the same set
of remaining items in S′ as they did in S, and will make the same choices with S′

as they did with S. Thus outL(S)= outL(S′) and outR(S)= outR(S′).
If, instead, Rita takes li , then Luis will later take at least one item rm belonging to

Rita’s previous outcome outR(S) such that both Luis and Rita prefer li to rm . This
worsens his outcome and betters hers. We claim that this exchange of li for rm is
the only difference in outcomes for S and S′, so L(S′) < L(S), and R(S′) > R(S).

For example, suppose that S = L RL R RL RL , S′ = L R RL RL RL . Observe
that their associated partitions are the first two we illustrated in the example of
the previous section, so that the policy (and the associated partition of S′ covers
and dominates S. We have moved up one step in the word poset, from (3, 2, 2, 1)
partitioning 8, to (3, 3, 2, 1) partitioning 9.

Let Rita’s preference be given by π = 28741563. We illustrate the choice
procedure for S in Figure 1, left, with white circles denoting items Rita obtains and
black circles denoting Luis’s items.

Using choice sequence S′, Luis still takes 8 and Rita still takes 2. The third turn
is now Rita’s instead of Luis’s, and since they agree on the best item at that time,
Rita takes l2 = 7. On his second turn, Luis takes his l3 = 6. On Rita’s third turn,
she takes her r2 = 4. On Luis’s third turn, he could take his l4 = 3, but he now has
access to r3 = 5, so he takes that instead. Now since Rita cannot take her r3, she
takes r4 = 1 on her fourth turn. On Luis’s fourth turn, he also takes his l4 = 3; see
Figure 1, right.
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In general, if Rita takes li , it must follow that she prefers li to r j , her previous
choice using S. On each of her subsequent turns g, she will take her rg−1 if it is
available, or rg if it is not. Why?

If Luis has not yet taken any item rg, then on his turns he was taking items he
had previously chosen one turn later. In this case, on any of Rita’s turns after the
change, the items taken so far will consist of items Luis had previously chosen
prior to that turn, plus one item Luis had chosen later than her current turn, plus the
items Rita had previously taken, except for the item she previously took on the turn
before the current turn. Rita preferred that item to all remaining of Luis’s items
and all remaining of her own, and so she will take it.

In other words, Rita has basically delayed taking items she previously chose
because a better item is now available.

On turn k+ 1, since li is no longer available, Luis will either take li+1 or r j . On
each of his subsequent turns h, he will take his lh if it is available, or either lh+1

or rm , Rita’s next choice, if it is not.
On some turn t , Luis must take one of Rita’s items rm because, since Rita took li ,

she can no longer collect all n of the items r1, r2, . . . , rn she collected with choice
sequence S. Suppose that turn t is the earliest place this happens. At this point, the
items previously chosen constitute the same set as the items that had been chosen
at this point in the previous choice sequence; Luis has filled the delay in Rita’s
choices.

Thus the rest of each player’s choices will follow the same with S′ as with S, so
Luis’s and Rita’s outcomes using S′ will be identical to those for S, with the single
exception that Rita now gets li and Luis gets rm . Since Luis chose li over rm using
sequence S and Rita chose li over rm using S′, we know li is more valuable to both
Luis and Rita than rm . Therefore L(S′) < L(S) and R(S′) > R(S). �

The inequalities become strict for L tot and Rtot, since there will be at least one
strict difference, when Rita’s preference permutation is the identity.

Corollary 7. Let S and S′ be choice sequences as before, with S′ covering S. Then
L tot(S′) < L tot(S) and Rtot(S′) > Rtot(S), and hence Ladv(S′) < Ladv(S).

Proof. Since we know for any given permutation π that L(S′)≥ L(S) and R(S′)≤
R(S), it is clear that L tot(S′)≥ L tot(S) and Rtot(S′)≤ Rtot(S). For Rita’s preference
(2n, . . . , 1), the items will be chosen in reverse order. Exchanging sk and sk+1

exchanges items 2n− k+ 1 and 2n− k. Other choices will be the same for both
players. Hence R(S)+ 1 = R(S′) and L(S) = L(S′)+ 1, so L(S′) < L(S) and
R(S′)> R(S) for this preference. Thus L tot(S′)< L tot(S) and Rtot(S′)> Rtot(S). �

Clearly L L . . . R R has the highest advantage for Luis and R R . . . L L for Rita.
We now know that increasing rank for choice sequences improves Rita’s outcome
and has the opposite effect on Luis’s outcome. While it is not always the case that
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an incomparable sequence with higher rank has lower Ladv, or even L tot, we can
guarantee that this will happen in a limited case: consider any policy S and call
its inverse S−1 the sequence for which occurrences of L and R are reversed. For
example, if S = L L R RL R, then S−1

= R RL L RL . It is true that if S and S−1 are
sequences such that a series of L R→ RL moves from S can result in S−1, then any
sequence S′ constructed from S by some of the same moves will be fairer than S.

Theorem 8. Consider a policy S such that S−1 can be reached by a series of n
L R→ RL moves from S. Construct policy S′ by a series of m of the same moves,
with 0 < m < n, so that S′ is contained on a path between S and S−1. Then S′ is
necessarily fairer than S.

For example,

L L R RL R, LRLRL R, RLL RL R, RLRLL R, RRLL L R, R RL LRL

is such a sequence from a word to its inverse, where we have bolded the elements
moved. Our theorem says that any word within this sequence will be fairer than a
word on the ends of the sequence.

Proof. Recall Lemma 1: formally, Ladv(S) = Radv(S−1). Inverting the positions
of each player simply swaps their role in procedure, so the truth of this lemma is
straightforward.

We now have Ladv(S−1) = −Ladv(S). Since S−1 can be reached from S by a
series of L R→ RL moves, we know that Ladv(S−1) < Ladv(S). Since S′ can be
reached from S and S−1 can be reached from S′ by a series of such moves, it must
hold that Ladv(S−1) < Ladv(S′) < Ladv(S). Then since Ladv(S−1)=−Ladv(S), we
have |Ladv(S′)|< |Ladv(S)|, meaning S′ is a fairer policy. �

Because the two alternating sequences are the inversions of each other and can
be reached by exchanging every two positions, any sequence on the poset paths
between them will be fairer than either. Thus we have the following:

Corollary 9. Any choice sequence lying in the sequence poset strictly between
L RL R . . . L R and RL RL . . . RL is fairer than either of these.

We now know that a policy which covers another is better for Rita than the latter,
and as we would expect, this is generally the case for sequences of higher ranks
which are not comparable in the poset. (It does fail occasionally; that is, if λ is of
higher rank than σ but does not cover σ , it is possible for Rtot to be smaller, though
this is not usually the case. For example, this happens with L L R R RL (associated
partition (3, 3, 0)) and L R RL RL (associated partition (2, 2, 1)), and this is the
only such pair in the 3× 3 box.) What about policies of equal rank?
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We have much numerical evidence for an intriguing conjecture we were unable
to prove in full generality: that Ladv could be associated easily to the dominance
order among partitions in a rank.

Conjecture 10. Among choice sequences σi of the same rank, if S1 dominates S2,
then S1 has higher average advantage for Luis than S2.

This has been verified computationally for all ranks of all posets in boxes of
sizes up to 10×10, but not proven generally. We have, however, been able to prove
this for a restricted case:

Theorem 11. If two choice sequences in the Boolean set consist of a prefix α and
a suffix β connected by L R RL and RL L R respectively, i.e., σ1 = αL R RLβ and
σ2 = αRL L Rβ, then Luis’s advantage is strictly greater for σ2 than for σ1.

Thus, a partition in the Boolean set that dominates another by dominance moves
of adjacent, nonoverlapping pairs — in the partition, by moves of one square at a
time in the Ferrers board to the next part up in the partition — is better for Luis
than the latter. A major difficulty in initially establishing this theorem was that it
is not the case that Luis’s position always worsens going from the former to the
latter! Rather, even if Luis’s position betters, Rita’s does also, and by more.

Proof. The values expected to be obtained by each player as the policy progresses
through β do not change; denote these by B1 and B2 respectively. Say that β has
length r ; it is a straightforward application of Lemma 4 to obtain the expected
values of Luis and Rita before and after the change in the connecting word:

ūL(L R RLβ)= r + 4+ r+4
r+3

(r+3
r+2

(r + 1+ B1)
)

ūL(RL L Rβ)= r+5
r+4

(
2r + 5+ r+2

r+1
B1

)
ū R(L R RLβ)= r+5

r+4

(
2r + 5+ r+2

r+1
B2

)
ū R(RL L Rβ)= r + 4+ r+4

r+3

(r+3
r+2

(r + 1+ B2)
)

Observe that, given an expected value x that holds as one enters a segment α,
Lemma 4 gives that the expected value after exiting α will be some linear function
of x . This function will be different for players 1 and 2: say that Luis experiences
function Ax + B when passing through α, and Rita experiences Cx + D.

Thus we have(
ūL(αL R RLβ)− ū R(αL R RLβ)

)
−
(
ūL(αRL L Rβ)− ū R(αRL L Rβ)

)
= (A+C) r−2

(r+2)(r+4)
+ (AB1+C B2)

−4
(r+2)(r+4)(r+1)

.
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Multiplying through by (r + 4)(r + 2), we find that we wish to show that

AB1+C B2

A+C
> 1

4(r − 2)(r + 1).

This statement will be true if the stronger inequality holds:

AB1+C B2

A+C
≥

1
4r2.

Since we specified that the policy being studied was in the Boolean set, an L R RL
can only occur with an even number of places remaining, in which each player has
at least one choice in every two adjacent places, and so the minimum possible value
of either B1 or B2 is

1+ 3+ 5+ · · ·+
(
2
(1

2r
)
− 1

)
=
( 1

2r
)2
.

Thus, the ratio (AB1+C B2)/(A+C) would be reduced by taking the greater of
B1 and B2 and reducing it to the lesser, giving a ratio above the threshold required.
Hence, an adjacent dominance move L R RL→ RL L R on a choice sequence in
the Boolean set improves Luis’s advantage. �

We may observe that this theorem completely characterizes relative relations
within ranks in the Boolean set, since any two Boolean set choice sequences with the
same rank can be related by adjacent dominance moves. A more general conjecture,
which might make a useful intermediate step toward the full conjecture, would be
to establish Luis’s advantage improvement for dominance by exchange of exactly
one position at any distance, regardless of whether a partition was in the Boolean
set. This would cover policies S = αL RβRLγ and S′ = αRLβL Rγ . The method
of proof applied above appears to be insufficient to establish the full conjecture
without further insight. We remain interested in the question and invite interested
readers to attempt the proof.

Remark. We could certainly have shown Theorem 2 using Lemma 4, but this
would have given no information about the exchange made. A similar analysis here
shows that for a dominance move, Luis and Rita will either exchange two pairs
of items in two nonoverlapping intervals, or a single pair of items. The problem
with using this to prove the dominance theorem is that the single exchange may
leave Luis worse off. For instance, if Rita’s preference is 4312, then in L R RL Luis
receives 42, but in RL L R Luis receives 32. So unlike in our previous theorems,
there exist some cases in which Luis suffers the opposite of the general effect. Thus,
establishing the theorem by these methods would oblige us to estimate the relative
frequency of various sizes of exchange — a task we found to be quite difficult.
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3.1. Search strategies and heuristics. We can now make a reasonable suggestion
for a fair sequence. Due to Theorem 8, one would suspect that a policy near the
middle rank would be close to Ladv(S) = 0: one suggestion would be the policy
known as balanced alternation, or the Thue–Morse sequence, which is an initial
segment of

L R RL RL L R RL L R L R RL RL L R L R RL L R RL RL L R RL L R . . . .

This will certainly be fairer than either alternating sequence. By rank it lies
halfway between the two, and it is near midway between the two extremes of its
rank in dominance order, so by our theorems it would reasonably be expected to
have Ladv close to 0.

Ideally, if our only priority is finding the fairest possible choice sequence, we
would like to be able to take as input the length 2n of the item set and with a short
algorithm place Luis’s choices {`1, . . . , `n}. We are very far from achieving this,
but with the help of the above theorems we can reduce the work considerably from
examining all possible choice sequences.

(1) The poset of partitions in the box of size N has either 1 or 2 middle ranks,
depending on whether N is even or odd. Calculate Ladv for one such rank; the
higher, if N is odd.

(2) Move up one rank, ignoring choice sequences associated to partitions that
cover any that already have negative Ladv, and calculate again.

(3) Repeat until all Ladv are nonpositive or an Ladv = 0 is found.

(4) At this point, stop and select the choice sequence with lowest |Ladv|. This
sequence and its inverse will be the fairest choice sequences for 2n items.

If the dominance conjecture were completely true, then a binary search could be
run in each rank for the fairest sequence, reducing the work by a factor of log2 n; if
only a sequence in the Boolean set is desired, this can definitely be done.

4. Formulas for expected values

Recall that an outcome for Luis is a set of items he receives, and a path associated
to a given policy and Rita’s preference is the order in which items are taken by both
players, as labeled by Luis. Our first theorem in this section gives us a formula,
given a particular choice sequence and Luis’s outcome, for the number of paths
which yield this outcome, or equivalently, the number of possible sequences of
Luis-labeled items that Rita might take under the given conditions. It uses the
falling factorial notation

(x) j = x(x − 1) . . . (x − ( j − 1)).
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Theorem 12. The number of paths in which Luis has choice positions {`1, . . . , `n}

and takes values {v1, . . . , vn} is given by

(`1− 1)`1−1

( n∏
j=2

(` j + v j−1− 2n− 2)` j−` j−1−1

)
(vn − 1)2n−`n .

Proof. The problem reduces to a question of counting the number of ways to fill
each column and row exactly once, in a Ferrers board given by Luis’s choices.
Consider, for example, the case of length 2n= 10 in which Luis chooses at positions
{2, 5, 6, 8, 9} and takes values {9, 8, 5, 3, 2}:

10 ◦ � � � �
9 •

8 •

7 ◦ ◦ ◦ � �
6 ◦ ◦ ◦ � �
5 •

4 ◦ ◦ ◦ ◦ �
3 •

2 •

1 ◦ ◦ ◦ ◦ ◦

1 2 3 4 5 6 7 8 9 10

Here black circles represent Luis’s definite choices, white circles Rita’s possibili-
ties, and black squares places forbidden by Luis’s choices. Of course, Rita may not
choose an item later and higher-valued than a choice of Luis’s, else he would have
taken this item on an earlier turn in preference to one he selected. It is also easy
to observe that Rita must have chosen, say, item 10 at place 1 because Luis chose
item 9 at place 2, but our placement of circles is not that keen yet: we merely take
all rows and columns not occupied by a Luis choice which are not later and higher
than a Luis choice.

Thus, among rows and columns that Luis does not occupy, Rita can take any
collection of objects that includes exactly one item in each row and column in the
open positions left of and below Luis’s choices. Since she may have any preference
among the items so chosen, these may come in any order so long as they satisfy the
previous conditions.

Such a problem is referred to as counting full rook placements within the Ferrers
board of shape consisting of the spaces below and left of Luis’s choices, in the
columns and rows that they do not occupy. This is a standard counting problem, the
method for which may be found on page 74 of Stanley’s Enumerative Combinatorics,
Volume 1 [Stanley 1997]. We state here a theorem from that volume for reference:
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Theorem 13 [Stanley 1997, Theorem 2.4.1]. Let
∑m

k=0 rk xk be the rook polynomial
of the Ferrers board B of shape (b1, . . . , bm). Set si = bi − i + 1. Then

m∑
k=0

rk(x)m−k =

m∏
i=1

(x + si ).

The constant term of this polynomial,
∏

si , is precisely rm , the number of ways
to place m nonattacking rooks on the board. This is the number we desire.

Our Ferrers board has n parts b1 through bn . In order to use the formula of
[Stanley 1997], we name parts in ascending order of size, hence the reverse order
of their appearance in the choice sequence.

We observe that we have:

• `1− 1 parts of size 2n− n = n (2n values, n occupied),

• `2− `1− 1 parts of size v1− 1− (n− 1)= v1− n,

• `3− `2− 1 parts of size v2− 1− (n− 2)= v2− n+ 1,
...

• `n − `n−1− 1 parts of size vn−1− 1− (1)= vn−1− 2,

• 2n− `n parts of size vn − 1.

Thus among the si are 2n−`n values vn−1, vn−2, vn−3, . . . , vn−(2n−`n−1).
The product of these is the falling factorial (vn − 1)2n−`n .

The next si start with s2n−`n+1. The associated bi are all vn−1− 2, and there are
`n − `n−1 of them. The si thus produced are

vn−1− 2− (2n− `n + 1)+ 1= `n + vn−1− 2n− 2,

vn−1− 2− (2n− `n + 2)+ 1= `n + vn−1− 2n− 3,
...

vn−1− 2− (2n− `n + `n − `n−1− 1)+ 1= `n−1− vn−1− 2n.

The product of these si is the falling factorial (`n + vn−1− 2n− 2)`n−`n−1−1.
The other falling factorials in the product arise similarly. �

Rita may have multiple preferences that give rise to a particular path. For a
simple example, in the choice sequence L R, it does not matter whether Rita’s
preferences are 12 or 21; items will be taken in the sequence 2, 1. The number of
Rita preferences that give rise to any path is a constant that depends only on the
position of the choices in the sequence, and not on the specific path:

Theorem 14. Consider a choice sequence S where Luis’s choice positions are
{`1, . . . , `n}, and a specific path through S given by s = s1, s2, . . . , s2n . Then the
number of possible preference permutations for Rita resulting in path s through S is∏n

j=1(2n− ` j + 1).
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Proof. Take any S and any path s through S, and construct π by placing into it
the items as they occur in s. On each of Rita’s turns i , the item ri she selected
must always be placed in the leftmost available position in π since ri was her most
preferred item of those remaining. On each of Luis’s turns j , the item l j he chose
may be placed in any of the remaining positions in π since, regardless of its value
to Rita, she will not have a chance to take the item after Luis has already taken it.
The number of available positions on Luis’s turn j is equal to 2n− ` j + 1, where
` j refers to the position of Luis’s turn j in the original sequence S. Thus the total
number of permutations for a given path s through S is

∏n
j=1(2n− ` j + 1). �

Since the number of preference permutations associated with a given path through
a sequence S is dependent only on S, and thus is constant across all paths through S,
we can count outcomes by grouping them according to the resulting path.

Suppose Luis’s positions are (`1, . . . , `n). Take each possible Luis outcome, in
which his values (v1, . . . , vn) can range from a maximum of 2n+1− i for vi (Rita
took no higher-ranked items than his most-preferred) to a minimum of 2n+ 1− `i

(Rita always took Luis’s next-preferred item at her choices). To each outcome we
can calculate the number of paths and the number of Rita preferences that give
that path. We total Luis’s value and sum over all possible outcomes for this choice
sequence to get L tot.

Thus, combining Theorems 12 and 14, we have a formula for the total value of
Luis’s outcomes over the set of all Rita preferences, using a given choice sequence S:

L tot =

( n∏
j=1

2n− ` j + 1
) ∑

(v1,v2,...,vn)
min(2n+1−i,vi−1−1)≥vi≥2n+1−`i

(∑
vn

)

×(`1− 1)`1−1

( n∏
j=2

(` j + v j−1− 2n− 2)` j−` j−1−1

)
(vn − 1)2n−`n . (1)

Dividing by (2n)! gives Luis’s expected value.
A second approach to counting outcomes involves making a tree diagram for the

possible outcomes with the assumption that Rita’s choices are made randomly.
To do this, we let Rita’s preferences be arbitrary. Since all possible preferences

are considered equally likely, it is also the case that on any of her turns, Rita is
equally likely to take any one of the available items, and it is valid to imagine that
on each turn she chooses one item at random. Then we can represent the problem
using a tree, the nodes of which will contain all possible actions for a turn.

Theorem 15. The total number of Rita preferences that result in a particular
outcome {v1, . . . , vn} for Luis is (2n)! P , where 2n is the number of items and P ,
the probability that the outcome occurs, is equal to the number of paths giving a
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particular outcome for Luis divided by the total number of paths, or

(`1− 1)`1−1
(∏n

j=2(` j + v j−1− 2n− 2)` j−` j−1−1
)
(vn − 1)2n−`n∏n

i=1 2n− ri + 1
,

where ri is the position of Rita’s i-th turn in the overall sequence.

Proof. Considering the problem as a tree with Rita’s preferences unknown, we know
that on each of his turns, Luis will always take the highest-numbered item, and on
Rita’s turns, she will take any one of the remaining items with equal probability of
each. Thus none of Luis’s turns will generate additional branches, but on each of
Rita’s turns, a branch is necessary for each of the remaining items. The number
of the remaining items at Rita’s turn i is 2n− ri + 1. The total number of paths in
the tree is then the product of this value over all of her turns,

∏n
i=1(2n− ri + 1).

From Theorem 12, we know that the number of paths giving a particular outcome
is (`1− 1)`1−1

(∏n
j=2(` j + v j−1− 2n− 2)` j−` j−1−1

)
(vn − 1)2n−`n . Dividing them

gives P , the probability the outcome occurs.
Multiplying with P the total number of possible preferences for Rita, (2n)!,

yields the number of Rita preferences that result in a given outcome. �

5. Conjectures and open problems

There are a number of open questions that interested researchers from student to
faculty might be able to consider for this problem.

Data is often a good start. We begin with the collection of known, guaranteed
fairest choice sequences; see Table 1. We list sequences with the Luis-first version;
where this gives Luis a negative Ladv, the sequence is marked with an asterisk. If
the fairest known sequence is not one of those that lies between the alternating
sequences, the fairest of those in the Boolean set is given.

length fairest known fairest between alternating

2 L R
4 L R RL∗

6 L RL R RL
8 L L R R RL RL L R RL RL L R

10 L R RL L RL R RL
12 L L R R R RL L RL L R∗ L RL RL RL R RL RL∗

14 L L L R R R RL L R R RL L L R RL L R RL L RL R RL
16 L RL L L L R R R R R R RL L L L R RL RL RL RL RL L RL R∗

18 L L RL L R R R R RL RL RL L L R L R RL L R RL L R RL L RL R RL

Table 1. The collection of known and guaranteed fairest choice sequences.
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Let us pause for a few remarks on Table 1.
The fairest choice sequences seem to be rather generally not within the Boolean

set — instead, they seem to be close to L L . . . R R R R . . . L L , with half the L’s at
the front and back of the sequence. That seems quite surprising and counterintuitive.
After all, the simple alternating sequence L RL R . . . maximizes social welfare,
and balanced alternation L R RL RL L R . . . has good heuristic arguments for being
a relatively fair sequence. Both distribute L and R relatively evenly throughout
the sequence. A sequence that “chunks” the players significantly would be very
different from these.

Actually using such a choice sequence to divide items would severely strain the
assumptions that Luis’s and Rita’s preferences are independent, and that valuations
are linear: Luis would be collecting a quarter of the items before Rita gets a chance
to take any of her most preferred items. We assumed no correlation of preferences
and items valued in even intervals, but if there is any agreement between Luis and
Rita on a small subset of highly valuable items, Luis would be able to seize these
immediately. On the other hand, if there is agreement on a small subset of highly
undesirable items Luis would also be left with these, so perhaps the distribution
would work out. From a strictly mathematical viewpoint, however, it is certainly of
intrinsic interest to know if such a sequence is the “typical” fairest sequence.

As mentioned earlier, it is of interest to determine how dominance interacts
with other conditions studied in this area, such as the min-max and social welfare
conditions described in the introduction. From [Bouveret and Lang 2011] we have
a most interesting datum. Bouveret and Lang study policies under min-max (which
they refer to as egalitarian), i.e., the policy for which the worse-off player’s expected
value is highest. In [Bouveret and Lang 2011, Table 1], they list the optimal policies
for even lengths up to twelve items. The min-max optimal policy for an even
number of items in their listing turns out to be within the Boolean set. It is not
always the fairest, but rather, the following appears to be the case:

Conjecture 16. The fairest policy among those in the Boolean set is the min-max
optimal policy.

It is plausible that a policy where the disadvantaged player does well is a relatively
fair policy, and Bouveret and Lang establish that an alternating policy tends toward
egalitarian optimality as length grows, so there seems to be multiple pieces of
evidence that this conjecture is reasonable. It would be interesting if it turned out
to hold.

As a perhaps trivial but astonishing note, we find that for length 14, the fairest
choice sequence has Ladv exactly 0! Compare this to the alternating sequence,
which for length 14 has Ladv ≈ 3.95, or Luis being advantaged by more than half
the number of items each player takes.
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An interested investigator might be able to improve (1) by converting the falling
factorials into binomial coefficients, and repeatedly applying Abel-type summation
identities which sum shifts of binomials. The recurrence of Kalinowski, Narodytska
and Walsh is far more useful than this formula, but a closed form might reverse the
situation.

Finally, we recall our conjecture on dominance, which in its full generality
remains open and which we consider a most intriguing question regarding the
fairness condition:

Conjecture 10. Among choice sequences σi of the same rank, if σ1 dominates σ2,
then σ1 has higher average advantage for Luis than σ2.

Partial approaches might include extending the theorem to dominance moves
L R . . . R . . . RL→ RL . . . R . . . L R, with bounds on the difference in number of
L and R before and after the changing segment.
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