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We provide a cyclic permutation analogue of the Erdős–Szekeres theorem. In
particular, we show that every cyclic permutation of length (k− 1)(`− 1)+ 2 has
either an increasing cyclic subpermutation of length k+ 1 or a decreasing cyclic
subpermutation of length `+1, and we show that the result is tight. We also charac-
terize all maximum-length cyclic permutations that do not have an increasing cyclic
subpermutation of length k+1 or a decreasing cyclic subpermutation of length `+1.

1. Introduction

The study of the longest monotone subsequence of a finite sequence of numbers has
inspired a body of research in mathematics, bioinformatics, and computer science.
Erdős and Szekeres [1935] showed in their namesake theorem that any permutation
of {1, 2, . . . , k`+ 1} has an increasing subsequence of length k+ 1 or a decreasing
subsequence of length `+ 1. As a sequence [a1, . . . , an] can be represented by a
set of n points of the form (i, ai ) in the plane, the Erdős–Szekeres theorem can
be interpreted geometrically in the following way: for any set of k`+ 1 points
in the plane, no two of which are on the same horizontal or vertical line, there
exists a polygonal path of either k positive-slope edges or ` negative-slope edges.
It follows immediately from the Erdős–Szekeres theorem that the expected length
of a longest increasing subsequence in a random permutation of length n is at
least 1

2
√

n. Moreover, the computation of longest increasing subsequences is also
used in MUMmer systems for aligning whole genomes [Delcher et al. 1999]. A
natural extension of the well-known Erdős–Szekeres theorem is to consider its
analogue to cyclic subpermutations.

Definition 1. A cyclic subpermutation τ of a cyclic permutation σ is the restriction
of σ on τ , i.e., remove all elements not in τ from σ .
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For example, (1, 3, 5) is a cyclic subpermutation of the cyclic permutation
(1, 2, 3, 4, 5).

Definition 2. A cyclic permutation is increasing if it can be written in the form
( j1, j2, . . . , jn)with j1< j2< · · ·< jn . Similarly, a cyclic permutation is decreasing
if it can be written in the form ( j1, j2, . . . , jn) with j1 > j2 > · · ·> jn .

For example, (6, 1, 4, 2, 7, 3, 5) is a cyclic permutation whose longest increas-
ing cyclic subpermutation is (1, 2, 3, 5, 6) and whose longest decreasing cyclic
subpermutations are (7, 5, 4, 2) and (7, 6, 4, 2).

Cyclic permutations can be viewed as circular lists, which arise naturally in
the field of phylogenetics since the genomes of bacteria are considered to be
circular. Geometrically, an increasing/decreasing cyclic subsequence of a circular
list corresponds to a polygonal path of positive/negative-slope edges when the
points are drawn on the side of a cylinder. Albert et al. [2007] gave a Monte Carlo
algorithm to compute the longest increasing circular subsequence with worst case
run-time O(n3/2 log n) and also showed that the expected length µ(n) of the longest
increasing circular subsequence satisfies limn→∞ µ(n)/(2

√
n)= 1. We extend the

Erdős–Szekeres theorem to cyclic permutations and examine the structures of the
extremal constructions achieving the lower bound for our theorem.

Definition 3. Given positive integers k and `, let α(k, `) be the smallest positive
integer n such that for any cyclic permutation of length n, there exists either an in-
creasing cyclic subpermutation of length k+1, or a decreasing cyclic subpermutation
of length `+ 1.

We show in Section 2 that:

Theorem 4. For k, `≥ 1,

α(k, `)= (k− 1)(`− 1)+ 2.

Definition 5. Given positive integers k and `, let Ck,` be the set of cyclic permuta-
tions of length (k− 1)(`− 1)+ 1 that contain no increasing cyclic subpermutations
of length k + 1, or decreasing cyclic subpermutations of length `+ 1. Let Sk,`

be the set of linear permutations of length k` that contain no increasing linear
subpermutations of length k + 1, or decreasing linear subpermutations of length
`+ 1, and let Y`,k be the set of standard Young tableaux on an `× k rectangular
diagram, i.e., the set of `× k matrices where the set of entries is {1, 2, . . . , k`} and
each row and column forms an increasing sequence.

It was observed by Knuth [1998, Exercise 5.1.4.9], see also [Stanley 1999,
Example 7.23.19(b)], that the permutations in Sk,` are in bijection with Y`,k ×Y`,k

via the Robinson–Schensted correspondence. The hook-length formula [Frame et al.
1954] expresses the number of standard Young tableaux and allows us to directly
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compute |Sk,`|, which increases rapidly as k, ` increase (see sequence A060854
in the On-Line Encyclopedia of Integer Sequences). In particular, without loss of
generality, assuming k ≤ l (since |Sk,`| = |S`,k |), we have

|Sk,`| =

(
(`k)!

1122 · · · kk(k+ 1)k · · · `k(`+ 1)k−1 · · · (k+ `− 1)

)2

.

Although the Robinson–Schensted correspondence establishes the bijection be-
tween Sk,l and Y`,k ×Y`,k , it is an algorithmic procedure which can be difficult
to analyze. Romik [2006] gave a simple description of the mapping from pairs of
square Young tableaux to elements of Sk,k . Before we state the theorem, let us
introduce a few definitions.

Definition 6. The grid-function of Ea = [a1, . . . , ak`] ∈Sk,` is γ Ea : [k`]→ [`]×[k],
defined by γ Ea(t)= (i, j), where i is the length of the longest decreasing subsequence
of Ea ending at at and j is the length of the longest increasing subsequence of Ea
ending at at .

Definition 7. The grid-ranking REa = (ri j ) and grid-valuation VEa = (vi j ) are `× k
matrices defined by ri j = γ

−1
Ea (i, j), and vi j = aγ−1(`+1−i, j).

Note that the Erdős–Szekeres theorem implies that for a linear permutation
Ea ∈Sk,`, the longest increasing subsequence has length k and the longest decreasing
subsequence has length ` (as both k(`− 1)+ 1 and (k − 1)`+ 1 are at most k`),
which means that γ Ea indeed defines a function.

Working towards our characterization of Ck,`, Section 3 reproves the following
result of [Romik 2006], partially for the sake of self-containment and partially for
its use in the proof of Theorem 9.

Theorem 8. For positive integers k, `, the set Sk,` is isomorphic to Y`,k ×Y`,k . In
particular, φ : Sk,`→ Y`,k ×Y`,k defined by φ(Ea)= (REa, VEa) is a bijection.

In contrast to the exponential size of Sk,l , the set Ck,l has at most two elements
and we can characterize them precisely. In particular, in Section 4, we show the
following theorem:

Theorem 9. For k, ` ≥ 1, let Ck,` denote the set of cyclic permutations of length
(k−1)(`−1)+1 that contain no increasing cyclic subpermutations of length k+1,
or decreasing cyclic subpermutations of length `+ 1. Then we have:

(1) If min(k, `)≤ 2 then |Ck,`| = 1 and the single element of Ck,` is the decreasing
cyclic permutation when k ≤ 2 and the increasing cyclic permutation when k ≥ 3.

(2) If min(k, `) ≥ 3 then |Ck,`| = 2, and (1, a1, . . . , a(k−1)(`−1)) ∈ Ck,` precisely
when the sequence satisfies one of the following:
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Figure 1. Extremal examples for k = 4 and `= 5.

(i) For each (i, j) ∈ [`− 1]× [k− 1],

a( j−1)(`−1)+i = (`− 1− i)(k− 1)+ j + 1.

(ii) For each (i, j) ∈ [`− 1]× [k− 1],

a(i−1)(k−1)+ j = ( j − 1)(`− 1)+ (`− i)+ 1.

Note that when min(k, `)=2, the structures described in parts (2i) and (2ii) are the
same and coincide with the single structure described in part (1). Figure 1 illustrates
the structures in parts (2i) and (2ii) for k = 4 and `= 5. The two extremal examples
are (1,11,8,5,2,12,9,6,3,13,10,7,4) and (1,5,9,13,4,8,12,3,7,11,2,6,10)
respectively.

2. Proof of Theorem 4

In this section, we determine α(k, `) exactly.

Lemma 10. For k, `≥ 1,

α(k, `)≤ (k− 1)(`− 1)+ 2.

Proof. The statement is obviously true when min(k, `)= 1, so assume min(k, `)≥ 2.
Without loss of generality π = (1, a1, a2, . . . , a(k−1)(`−1)+1). Consider the sequence
[a1, a2, . . . , a(k−1)(`−1)+1]. By the Erdős–Szekeres theorem, it has either an increas-
ing subsequence of length k or a decreasing subsequence of length `. If there
is an increasing subsequence [ai1, ai2, . . . , aik ], then (1, ai1, ai2, . . . , aik ) forms
an increasing cyclic subpermutation of π of length k + 1. Otherwise, if there
is a decreasing subsequence [ai1, ai2, . . . , ai`], then (ai1, ai2, . . . , ai`, 1) forms a
decreasing cyclic subpermutation of π of length `+ 1. �

Lemma 11. For k, `≥ 1,

α(k, `) > (k− 1)(`− 1)+ 1.
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In particular, if min(k, `)≥2 and π= (1,a1, . . . ,a(k−1)(`−1)), where the sequence ai

is given by one of the formulas in Theorem 9 part (2i) or (2ii), then π does not
have an increasing cyclic subpermutation of length k + 1 or a decreasing cyclic
subpermutation of length `+ 1.

Proof. The lemma is trivial when min(k, `)= 1. Assume min(k, `) ≥ 2 and π =
(1, a1 . . . , a(k−1)(`−1)), where [a1, . . . , a(k−1)(`−1)] is given by Theorem 9 part (2i);
i.e., for each (i, j)∈[`−1]×[k−1], we have a( j−1)(`−1)+i = (`−1−i)(k−1)+ j+1.
(The example given in Figure 1 for k= 4 and `= 5 is π = (1, 11, 8, 5, 2, 12, 9, 6, 3,
13, 10, 7, 4).) The other case can be handled analogously.

We claim π does not have an increasing cyclic subpermutation of length k+ 1
nor does it have a cyclic subpermutation of length `+ 1. Starting from a1, we can
partition the sequence A= [a1, . . . , a(k−1)(`−1)] into k−1 decreasing subsequences
D1, . . . , Dk−1, each consisting of `− 1 consecutive elements of the original se-
quence. In particular, Di = [at , at+1, . . . , at+`−2], where t = (i − 1)(`− 1)+ 1. In
Figure 1, this partition corresponds to [11, 8, 5, 2], [12, 9, 6, 3], [13, 10, 7, 4]. Let L
be the longest increasing cyclic subpermutation of π . Suppose L= (ai1, ai2, . . . , ait ),
where ai1 < ai2 < · · ·< ait . L and Di have at most two common elements for each i ,
as the elements in Di are decreasing in A. If ai1 = 1, then L can contain at most
one element from each of the Di . Since there are at most k− 1 Di ’s, it follows that
L has length at most k. If ai1 6= 1, then ai1 ∈ D j for some j ∈ [k− 1]. In this case,
1 /∈ L . Furthermore, L can have at most two elements from Dj , and at most one
element from Di for each i ∈ [k− 1]\{ j}. Thus L has length at most k.

We can also partition A into `−1 increasing subsequences C1, . . . ,C`−1 of length
k−1. In particular, let Ci =[ci , ci+1, . . . , ci+k−2], where ci =2+(i−1)(k−1). In
the example above, C1, C2, C3, C4 would correspond to [2, 3, 4], [5, 6, 7], [8, 9, 10],
[11, 12, 13]. Similar to the analysis above, let L be the longest decreasing cyclic
subpermutation of π . Suppose L = (ai1, ai2, . . . , ait ), where ai1 > ai2 > · · ·> ait .
As before, L can have at most two common elements with each Ci . If ait = 1, then
L can contain at most one element from each of the Ci . Since there are at most `−1
Ci ’s, it follows that L has length at most `. If ait 6= 1, observe that if for some j
L and C j have two common elements, then every other Ci (i 6= j) can contain at
most one element from L since numbers in Ct are strictly larger than all numbers
in Cs for s < t . Thus L has length at most `. �

Theorem 4 follows from Lemma 10 and 11.

3. The structure of the extremal examples in
the linear Erdős–Szekeres problem

We will first consider the linear problem; i.e., subpermutations will be linear sub-
permutations. We will emphasize this by using the vector notation Ea = [a1, . . . , an]
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when talking about linear permutations. Recall the definitions of γ Ea, REa, VEa in
Definitions 6 and 7. It is easy to see that γ Ea is an injective (and therefore bijective)
function, since for t1 < t2 we have at1 6= at2 and either every increasing sequence
ending at at1 can be extended to an increasing sequence ending at at2 , or every
decreasing sequence ending at at1 can be extended to a decreasing sequence ending
at at2 . The following are immediate from the definitions and prior statements in the
lemma:

Lemma 12. Let Ea ∈ Sk,`. The following are true:

(1) Let t1, t2 ∈ [k`] such that t1 < t2, and define i1, i2, j1, j2 by γ Ea(tq) = (iq , jq)
for q ∈ [2]. If at1 < at2 then j1 < j2 and if at1 > at2 then i1 < i2.

(2) Let i2 ≤ i1, j2 ≤ j1 and γ Ea(tq)= (iq , jq), where q ∈ [2]. Then t2 ≤ t1.

(3) REa ∈ Y`,k .

(4) For any i ∈ [`], j ∈ [k], the sequence [aγ−1
Ea (i,1), . . . , aγ−1

Ea (i,k)] is an increasing
subsequence of Ea and the sequence [aγ−1

Ea (1, j), . . . , aγ−1
Ea (`, j)] is a decreasing

subsequence of Ea.

(5) VEa ∈ Y`,k .

(6) φ : Sk,`→ Y`,k ×Y`,k defined by φ(Ea)= (REa, VEa) is an injective function

Proof. Part (1) follows from the fact that if at1<at2 (at1>at2) then any increasing (de-
creasing) subsequence of Ea ending at at1 can be extended to a longer increasing (de-
creasing) subsequence ending at at2 . This in turn implies (2), which gives (3). Part (2)
implies that for any i ∈[`], j ∈[k] the sequences [γ−1(i,1),γ−1(i,2), . . . ,γ−1(i,k)]
and [γ−1(1, j), γ−1(2, j), . . . , γ−1(`, j)] are increasing, and this together with (1)
gives (4). Part (5) follows from (4). Parts (3) and (5) give that φ is a well-defined
function, and it follows from the definitions that φ must be injective, so (6) is
true. �

The proof of Theorem 8 is finished by showing:

Lemma 13. Let R= (ri j ), V = (vi j )∈Y`,k and define the sequence Ea=[a1, . . . ,ak`]

by at = vi j if and only if t = r`+1−i, j . Then Ea ∈ Sk,`, R = REa and V = VEa .
Consequently, the function φ defined in Lemma 12 is a bijection.

Proof. From the fact that the entries of V (and also the entries of R) are unique, it
follows that Ea is a well-defined permutation of [k`]. To show Ea ∈Sk,`, it is enough to
show that Ea does not have an increasing subsequence of length k+1 or a decreasing
subsequence of length `+ 1. Assume to the contrary that [at1, . . . , atk+1] is an
increasing subsequence of length k+1 of Ea. For each q ∈ [k+1] define (iq , jq) by
atq = viq jq . By the pigeonhole principle there is a q1 < q2 such that jq1 = jq2 . Since
V ∈ Y`,k , tq1 < tq2 and at1 < at2 , this implies iq1 < iq2 , so `+ 1− iq1 > `+ 1− iq2 ,
which together with R ∈ Yk,` gives tq1 > tq2 , a contradiction. The statement that
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Figure 2. Two examples of extremal sequences for the linear
Erdős–Szekeres theorem for k = 4 and ` = 5 with distorted grid
representation. They have the same valuation but different ranking.

Ea does not have a decreasing subsequence of length `+ 1 follows similarly, so
Ea ∈ Sk,`. Fix an i ∈ [`] and define the sequence Et = [t1, . . . , tk] by tq = ri,q . Since
R ∈ Y`,k , we know Et is an increasing sequence. Moreover, since atq = v`+1−i,q

and V ∈ Y`,k , we know [at1, . . . , atk ] is an increasing subsequence of Ea. Similarly
for any j ∈ [k] define Ew = [w1, . . . , w`] by wq = rq, j ; then Ew is increasing and
[aw1, . . . , aw`] is a decreasing subsequence of Ea. This implies that for each i ∈ [`]
and j ∈ [k], we have γ Ea(ri, j ) = (i ′, j ′), where i ′ ≥ i and j ′ ≥ j . Since both γ Ea
and γ are bijections from [k`] to [`] × [k], we get that γ Ea(ri, j ) = (i, j) and so
ri j = γ

−1
Ea (i, j). Thus we obtain R= REa . Since for VEa = (v?i j ) we have by definition

v?i j = aγ−1
Ea
(`+ 1− i, j) = ar`+1−i, j = vi j , we obtain V = VEa . So φ(Ea) = (R, V );

therefore φ is surjective, which together with Lemma 12 part (6) gives that φ is a
bijection. �

We remark that similar ideas appear in [Aube et al. 2007] to find the longest
increasing subsequence of a sequence. Fix k, `≥ 1 and set n = k`. Note that the
results above imply that if we represent the sequence Ea = [a1, . . . , an] as the set of
n points (t, at) and connect two points (t1, at1) and (t2, at2) precisely when γ Ea(t1)
and γ Ea(t1) agree in one of the coordinates and differ by 1 on the other, then we
get a (potentially somewhat distorted) `× k grid where the slope of the line from
t1 to t2 is positive exactly when γ Ea(t2) agrees with γ Ea(t1) on the first coordinate,
and negative otherwise. The grid may be distorted in the sense that it is formed by
quadrangles that are not necessarily rectangles and are not necessarily isomorphic,
and the grid “balances on one of its corners”; in fact it balances on the grid-point
indexed by (`+1, 1) with sequence value 1. Indeed, any sequence [a1, . . . , an] that
is a permutation of [n] is in Sk,` precisely when such a grid can be fit on its n-point
representation in the plane (where the corner on which the distorted grid balances
is the grid-point (`+ 1, 1) and has height 1). See Figure 2 for an illustration.
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4. The structure of the extremal examples in
the circular Erdős–Szekeres problem

We devote this section to the proof of Theorem 9. The statement is obvious when
min(k, `) = 1, so we assume that min(k, `) ≥ 2. For this case we have shown in
Lemma 11 that the structures described in Theorem 9 are all in Ck,`; the proof of
Theorem 9 is finished by showing that these structures are the only elements of Ck,`.
Moreover, since any cyclic permutation of length at least 3 that is not the increasing
(decreasing) permutation contains a decreasing (increasing) subpermutation of
length at least 3, the statement follows when min(k, `)= 2. So it is enough to focus
on the case when min(k, `)≥ 3.

We will define C?k,` as the set of those sequences in Sk−1,`−1 that, taken as cyclic
permutations have no increasing cyclic subpermutation of length k + 1, and no
decreasing cyclic subpermutations of length `+1. For the ease of reference, given a
sequence Eρ ∈C?k,` we will use ρ to denote the cyclic permutation corresponding to Eρ.

As an increasing (decreasing) cyclic subpermutation of a cyclic permutation
either starts (ends) with 1 or does not contain 1, the following is obvious:

Lemma 14. Let k, ` ∈ Z with min(k, `) ≥ 2. Then (1, a1, . . . , a(k−1)(`−1)) ∈ Ck,`

if and only if [a1− 1, a2− 1, . . . , a(k−1)(`−1)− 1] ∈ C?k,`.

By the above lemma, to characterize the extremal examples in the cyclic Erdős–
Szekeres theorem it is enough to determine C?k,`. The proof of Theorem 9 is
concluded by showing:

Lemma 15. Let k, ` ∈ Z with min(k, `) ≥ 3 and Eρ = [a1, . . . , a(k−1)(`−1)] ∈ C?k,`.
Then we have one of the following:

(1) For i ∈ [`− 1] and j ∈ [k− 1], we have a( j−1)(`−1)+i = (`− 1− i)(k− 1)+ j .

(2) For i ∈ [`−1] and j ∈ [k−1], we have a(i−1)(k−1)+ j = ( j−1)(`−1)+(`− i).

Proof. Let Eρ = [a1, . . . , a(k−1)(`−1)] ∈ C?k,` ⊆ Sk−1,`−1. For shortness, we will
use γ for γ Eρ . For each i ∈ [`− 1], define the sequence Ci = [ci,1, . . . , ci,k−1] by
ci, j = aγ−1(i, j) and for each j ∈ [k − 1], let Dj = [c1, j , c2, j , . . . , c`−1, j ]. Clearly,
C1, . . . ,C`−1 and D1, . . . , Dk−1 partition the elements of Eρ. By Lemma 12 part (4)
the Ci are increasing and the Dj are decreasing subsequences of Eρ. As Eρ ∈ C?k,`,
the cyclic permutation ρ does not have an increasing cyclic subpermutation of
length k + 1 or decreasing cyclic subpermutation of length `+ 1. We have two
possibilities.

Case 1: γ−1(`− 1, 1) < γ−1(1, k− 1).
As for each j ∈ [k− 1], Dj is an decreasing subsequence of Eρ we get

aγ−1(1, j) > aγ−1(2, j) > · · ·> aγ−1(`−1, j).
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Using this for j ∈ {1, k− 1}, we have that for each i ∈ [`− 2]

(c1,k−1, c2,k−1, . . . , c`−i,k−1, c`−i−1,1, c`−i,1, . . . , ck−1,1)

is a cyclic subpermutation of length `+ 1 of the cyclic permutation ρ. Since this
cannot be a decreasing subpermutation, we must have c`−i,k−1 < c`−i−1,1. Let
i? ∈ [`− i −1] and j ∈ [k−1]. As D1 is decreasing and Ci? is increasing, we have
c`−i,k−1 < c`−i−1,1 ≤ ci?,1 ≤ ci?, j and consequently c`−i,k−1 ≤ (k− 1)i . Using that
C`−i is increasing, induction on i gives that c`−i, j = aγ−1(`−i, j)= (i−1)(k−1)+ j .

Since C1 and C`−1 are both increasing subsequences of Eρ and C`−1 contains the
smallest k− 1 elements of [(k− 1)(`− 1)], we must have for each j ∈ [k− 2] that
γ−1(1, j + 1) > γ−1(`− 1, j); otherwise

(c`−1, j , c`−1, j+1, . . . , c`−1,k−1, c1,1, c1,2, . . . , c1, j+1)

would form an increasing cyclic subpermutation of length k + 1 of ρ. Using the
fact that Dj is a subpermutation and induction on j , for each j ∈ [k − 1] we get
γ−1(`− i, j)= ( j − 1)(`− 1)+ `− i .

Combining these we must have for i ∈ [`−1] and j ∈ [k−1] that a( j−1)(`−1)+i =

(`− 1− i)(k− 1)+ j , giving case (1) of this lemma.

Case 2: γ−1(l − 1, 1) > γ−1(1, k− 1).
As before, we get that for each j ∈ [k− 2] the sequence

(cl−1,1, cl−1,2, . . . , cl−1,k− j , c1,k− j−1, c1,k− j , . . . , c1,k−1)

is a cyclic subpermutation of length k+ 1 of ρ, and as it cannot be increasing, we
have cl−1,k− j > c1,k− j−1. Using the same logic as in Case 1 we obtain for each
j ∈ [k− 1] and i ∈ [`− 1] that aγ−1(i, j) = ( j − 1)(`− 1)+ (`− i).

Again, for each i ∈ [`− 1] we have γ−1(i + 1, 1) > γ−1(i, k− 1); otherwise

(ci,k−1, ci+1,k−1, . . . , c`−1,k−1, c1,1, c2,1, . . . , ci+1,1)

forms a decreasing cyclic subpermutation of length `+ 1 of ρ. We obtain that
γ−1(i, j)= (i−1)(k−1)+ j . Combining these we must have for i ∈ [`−1] and j ∈
[k−1] that a(i−1)(`−1)+ j = ( j−1)(`−1)+(`−i), giving case (2) of this lemma. �

For k, `≥ 2, set n= (k−1)(`−1) and consider the sequence Eρ=[1, a1, . . . , an];
i.e., use the sequence representation of the cyclic permutation of ρ that starts with 1.
It is worth noting that ρ ∈ Ck,` precisely when taking the n+ 1 points representing
Eρ in the plane and putting in the grid lines corresponding to [a1− 1, . . . , an − 1]
described in the end of the previous section to the n points of the form (i, ai ), they
form a nondistorted grid, i.e., a grid with rectangles (and not just quadrangles)
that are of the same size (in fact, the ratio of the side length of each rectangle is
(k − 1)/(`− 1)), and the point (1, 1) lies on either the first or the last line with
positive slope, as in Figure 1.
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