\bullet
 involve

 a journal of mathematicsQuantum metrics from traces on full matrix algebras

Konrad Aguilar and Samantha Brooker

Quantum metrics from traces on full matrix algebras

Konrad Aguilar and Samantha Brooker
(Communicated by David Royal Larson)

Abstract

We prove that, in the sense of the Gromov-Hausdorff propinquity, certain natural quantum metrics on the algebras of $(n \times n)$-matrices are separated by a positive distance when n is not prime.

1. Introduction and background

Motivated by high energy physics, M. A. Rieffel [1998; 2004] developed the notion of a "noncommutative" or "quantum" compact metric space, and initiated the study of topologies over classes of such quantum metric spaces. The convergence is studied by use of a distance on the classes of these spaces. F. Latrémolière [2015; 2016a] introduced the quantum Gromov-Hausdorff propinquity, see also [Rieffel 2016], as a noncommutative analogue of the Gromov-Hausdorff distance [Burago et al. 2001], adapted to the theory of C^{*}-algebras.

Quantum metric spaces are built by adding some quantum metric to unital C^{*} algebras [Rieffel 2004, pp. 1-65]; see [Latrémolière 2016b] for a survey with many examples and references. C^{*}-algebras are certain norm-closed algebras of bounded linear operators on Hilbert spaces, up to an appropriate notion of $*$-isomorphism [Davidson 1996, Theorem I.9.12]. Thus, it is natural to look to various classes of C^{*}-algebras and study them from the viewpoint of quantum compact metric spaces and the Gromov-Hausdorff propinquity. The first author and F. Latrémolière did just that in [Aguilar and Latrémolière 2015] with a class of C^{*}-algebras called approximately finite-dimensional C^{*}-algebras (AF algebras) [Bratteli 1972]. Their work constructs quantum metrics on AF algebras, which is then used to study the topology induced by the propinquity on various natural sets of AF algebras. In

[^0]particular, these quantum metrics can be restricted to the finite-dimensional C^{*} subalgebras of AF algebras. The present work further studies some of the geometric aspects of this construction on these finite-dimensional algebras when they are full matrix algebras (algebras of complex-valued square matrices). Our focus is to prove that different quantum metrics induced by the first author and Latrémolière's construction on the same full matrix algebras are indeed at positive distance, in the sense of the propinquity. By its nature, it is usually difficult to prove lower bounds on the propinquity, so our work tackles a delicate aspect of this theory. First, we begin by defining many of these objects, from C^{*}-algebras to quantum compact metric spaces, while taking note of some theorems that will prove useful to our efforts. Definitions 1.1-1.10 are contained in [Davidson 1996, Chapter I].

Definition 1.1. An associative algebra over the complex numbers \mathbb{C} is a vector space \mathfrak{A} over \mathbb{C} with an associative multiplication, denoted by concatenation, such that

$$
\begin{gathered}
a(b+c)=a b+a c \quad \text { and } \quad(b+c) a=b a+c a \quad \text { for all } a, b, c \in \mathfrak{A}, \\
\lambda(a b)=(\lambda a) b=a(\lambda b) \quad \text { for all } a, b \in \mathfrak{A}, \lambda \in \mathbb{C} .
\end{gathered}
$$

In other words, the associative multiplication is a bilinear map from $\mathfrak{A} \times \mathfrak{A}$ to \mathfrak{A}.
We say that \mathfrak{A} is unital if there exists a multiplicative identity, denoted by $1_{\mathfrak{A}}$. That is,

$$
1_{\mathfrak{A}} a=a=a 1_{\mathfrak{A}} \quad \text { for all } a \in \mathfrak{A}
$$

Convention 1.2. All algebras are associative algebras over \mathbb{C} unless otherwise specified.

Notation 1.3. When E is a normed vector space, its norm will be denoted by $\|\cdot\|_{E}$ by default.

Definition 1.4. A normed algebra is an algebra \mathfrak{A} with a norm $\|\cdot\|_{\mathfrak{A}}$ such that

$$
\|a b\|_{\mathfrak{A}} \leqslant\|a\|_{\mathfrak{A}}\|b\|_{\mathfrak{A}} \quad \text { for all } a, b \in \mathfrak{A}
$$

\mathfrak{A} is a Banach algebra when \mathfrak{A} is complete with respect to the norm $\|\cdot\|_{\mathfrak{A}}$.
Definition 1.5. A C^{*}-algebra, \mathfrak{A}, is a Banach algebra such that there exists an antimultiplicative conjugate linear involution ${ }^{*}: \mathfrak{A} \rightarrow \mathfrak{A}$, called the adjoint. That is, * satisfies
(1) conjugate linear: $(\lambda(a+b))^{*}=\bar{\lambda}\left(a^{*}+b^{*}\right)$ for all $\lambda \in \mathbb{C}, a, b \in \mathfrak{A}$;
(2) involution: $\left(a^{*}\right)^{*}=a$ for all $a \in \mathfrak{A}$;
(3) antimultiplicative: $(a b)^{*}=b^{*} a^{*}$ for all $a, b \in \mathfrak{A}$.

Furthermore, the norm, multiplication, and adjoint together satisfy the identity

$$
\begin{equation*}
\left\|a a^{*}\right\|_{\mathfrak{A}}=\|a\|_{\mathfrak{A}}^{2} \quad \text { for all } a \in \mathfrak{A} \tag{1-1}
\end{equation*}
$$

called the C^{*}-identity.

The set of self-adjoint elements of a \mathbf{C}^{*}-algebra is the set $\left.\mathfrak{s a (} \mathfrak{A}\right)=\left\{a \in \mathfrak{A}: a=a^{*}\right\}$. An element $u \in \mathfrak{A}$ of a unital C^{*}-algebra is unitary if $u u^{*}=u^{*} u=1_{\mathfrak{A}}$.
We say that $\mathfrak{B} \subseteq \mathfrak{A}$ is a C^{*}-subalgebra of \mathfrak{A} if \mathfrak{B} is a norm-closed subalgebra that is also self-adjoint; i.e., $a \in \mathfrak{B} \Longleftrightarrow a^{*} \in \mathfrak{B}$.

Our main example will be the C^{*}-algebra of $(n \times n)$-matrices over the complex numbers, which we define now.

Example 1.6 [Davidson 1996, Example I.1.1]. Fix $n \in \mathbb{N} \backslash\{0\}$. We let $M_{n}(\mathbb{C})$ denote the C^{*}-algebra of $(n \times n)$-matrices over the complex numbers called a full matrix algebra. The algebra is given by the standard matrix operations and the adjoint is the conjugate transpose. The norm is given by the operator norm

$$
\|a\|_{M_{n}(\mathbb{C})}=\sup \left\{\|a x\|_{2}: x \in \mathbb{C}^{n},\|x\|_{2} \leqslant 1\right\} \quad \text { for all } a \in M_{n}(\mathbb{C})
$$

where $a x$ denotes matrix multiplication of the matrix a and column vector x, and $\|\cdot\|_{2}$ is the standard Euclidean 2-norm on \mathbb{C}^{n}.

Note that if $a \in \mathfrak{s a}\left(M_{n}(\mathbb{C})\right)$, then $\|a\|_{M_{n}(\mathbb{C})}=\max \{|\lambda|: \lambda$ is an eigenvalue of $a\}$ by [Davidson 1996, Corollary I.3.4]. The unit of $M_{n}(\mathbb{C})$ is the identity matrix, which we denote by I_{n}. For $a \in M_{n}(\mathbb{C})$, we denote the i-row, j-column entry by $a_{i, j}$.

Next, we describe morphisms between C^{*}-algebras.
Definition 1.7. Let $\mathfrak{A}, \mathfrak{B}$ be C^{*}-algebras. A *-homomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{B}$ is a *-preserving, linear and multiplicative function:

- π is a *-monomorphism if it is an injective *-homomorphism.
- π is a *-epimorphism if π is a surjective *-homomorphism.
- π is a $*$-isomorphism if π is a bijective $*$-homomorphism.
- \mathfrak{A} is ${ }^{*}$-isomorphic to \mathfrak{D} if there exists a ${ }^{*}$-isomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{D}$, and we then write $\mathfrak{A} \cong \mathfrak{D}$.
- If both $\mathfrak{A}, \mathfrak{D}$ are unital, then we call a *-homomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{D}$ unital if $\pi\left(1_{\mathfrak{A}}\right)=1_{\mathfrak{D}}$.

The next result shows that there are important analytical properties (such as continuity, contractibility, and isometry) associated to these morphisms without further assumptions. Thus, only algebraic conditions are indeed needed to properly define morphisms between C^{*}-algebras in Definition 1.7.

Proposition 1.8 [Davidson 1996, Theorem I.5.5]. Let $\mathfrak{A}, \mathfrak{D}$ be C^{*}-algebras. If $\pi: \mathfrak{A} \rightarrow \mathfrak{D}$ is $a *$-homomorphism, then π is continuous and contractive. That is, its operator norm satisfies

$$
\|\pi\|_{\mathfrak{B}(\mathfrak{A}, \mathfrak{D})}=\sup \left\{\|\pi(a)\|_{\mathfrak{D}}: a \in \mathfrak{A},\|a\|_{\mathfrak{A}}=1\right\} \leqslant 1
$$

or equivalently, for all $a \in \mathfrak{A}$, we have $\|\pi(a)\|_{\mathfrak{D}} \leqslant\|a\|_{\mathfrak{A}}$.

If $\pi: \mathfrak{A} \rightarrow \mathfrak{D}$ is a *-homomorphism, then π is an isometry if and only if π is a *-monomorphism. In particular, *-isomorphisms are isometries.

In the next example, we present some *-isomorphisms related to the C^{*}-algebras $M_{n}(\mathbb{C})$.
Example 1.9 [Davidson 1996, Lemma III.2.1]. A map $\pi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a *-isomorphism if and only if there exists a unitary matrix $U \in M_{n}(\mathbb{C})$ such that

$$
\pi(a)=U a U^{*} \quad \text { for all } a \in M_{n}(\mathbb{C}) .
$$

In order to define quantum compact metric spaces we need to define another structure associated to C^{*}-algebras.
Definition 1.10. Let \mathfrak{A} be a unital C*-algebra. Let \mathfrak{A}^{\prime} denote the set of continuous and linear complex-valued functions on \mathfrak{A}. The state space of \mathfrak{A} is the set

$$
\mathscr{S}(\mathfrak{A})=\left\{\varphi \in \mathfrak{A}^{\prime}: 1=\varphi\left(1_{\mathfrak{A}}\right)=\|\varphi\|_{\mathfrak{R}^{\prime}}\right\},
$$

where $\|\varphi\|_{\mathfrak{A}^{\prime}}=\sup \left\{|\varphi(a)|: a \in \mathfrak{A},\|a\|_{\mathfrak{A}}=1\right\}$ is the operator norm.
A state $\varphi \in \mathscr{S}(\mathfrak{A})$ is called tracial if $\varphi(a b)=\varphi(b a)$ for all $a, b \in \mathfrak{A}$ [Davidson 1996, p. 114].

As an example, we look to $M_{n}(\mathbb{C})$.
Example 1.11. For $a \in M_{n}(\mathbb{C})$, let $\operatorname{Tr}_{n}(a)=\sum_{j=1}^{n} a_{j, j}$ be the trace of a matrix. Define $\operatorname{tr}_{n}=\frac{1}{n} \operatorname{Tr}_{n}$. By [Davidson 1996, Example IV.5.4], the map tr_{n} is the unique tracial state on $M_{n}(\mathbb{C})$.

Rieffel [1998] introduced the notion of a quantum compact metric space by providing a particular metric on the state space of a C^{*}-algebra, which serves as a quantum analogue to the Monge-Kantorovich metric on Borel probability measures of a compact Hausdorff space. This metric lies outside the scope of this paper, so we provide an equivalent definition of a quantum compact metric space that utilizes a quantum analogue to the Lipschitz seminorm on continuous functions.

Definition 1.12 [Rieffel 1998; 1999; Ozawa and Rieffel 2005]. Let \mathfrak{A} be a unital C^{*}-algebra. Let L be a seminorm on $\mathfrak{s a}(\mathfrak{A})$ (possibly taking value $+\infty$). The pair (\mathfrak{A}, L) is a quantum compact metric space if L satisfies the following:
(1) L is lower semicontinuous with respect to $\|\cdot\|_{\mathfrak{A}}$.
(2) The set $\operatorname{dom}(\mathrm{L})=\{a \in \mathfrak{s a}(\mathfrak{A}): \mathrm{L}(a)<\infty\}$ is dense in $\mathfrak{s a}(\mathfrak{A})$.
(3) The kernel of L is $\{a \in \mathfrak{s a}(\mathfrak{A}): \mathrm{L}(a)=0\}=\mathbb{R} 1_{A}=\left\{r 1_{\mathfrak{A}} \in \mathfrak{s a}(\mathfrak{A}): r \in \mathbb{R}\right\}$.
(4) There exists a state $\mu \in \mathscr{S}(\mathfrak{A})$ such that the set

$$
\{a \in \mathfrak{s a}(\mathfrak{A}): \mu(a)=0 \text { and } \mathrm{L}(a) \leqslant 1\}
$$

is totally bounded with respect to $\|\cdot\|_{\mathfrak{A}}$.

The Lipschitz seminorm on continuous functions satisfies a Leibniz rule and we may generalize this in the following way.

Definition 1.13. Fix $C \geqslant 1, D \geqslant 0$. A quantum compact metric space $(\mathfrak{A}, \mathrm{L})$ is a (C, D)-quasi-Leibniz quantum compact metric space if L is a (C, D)-quasi-Leibniz seminorm; i.e., for all $a, b \in \mathfrak{s a}(\mathfrak{A})$

$$
\max \{\mathrm{L}(a \circ b), \mathrm{L}(\{a, b\})\} \leqslant C\left(\|a\|_{\mathfrak{A}} \mathrm{L}(b)+\|b\|_{\mathfrak{A}} \mathrm{L}(a)\right)+D \mathrm{~L}(a) \mathrm{L}(b),
$$

where the Jordan product is $a \circ b=\frac{1}{2}(a b+b a)$ and the Lie product is $\{a, b\}=$ $\frac{1}{2 i}(a b-b a)$.

Latrémolière [2016a] introduced a quantum analogue to the Gromov-Hausdorff distance [Burago et al. 2001], the quantum Gromov-Hausdorff propinquity. Indeed, the quantum Gromov-Hausdorff propinquity is a distance between quasi-Leibniz quantum compact metric spaces that preserves the C^{*}-algebraic and metric structures and recovers the topology of the Gromov-Hausdorff distance, and thus provides an appropriate framework for the study of noncommutative metric geometry. The definition is quite involved, so in the following theorem, we summarize the results that pertain to our work in this paper, while also defining the standard notion of isomorphism between two quasi-Leibniz quantum compact metric spaces, a quantum isometry.

Theorem 1.14 [Latrémolière 2016a; 2017]. The quantum Gromov-Hausdorff propinquity $\wedge\left(\left(\mathfrak{A}, \mathrm{L}_{\mathfrak{L}}\right),\left(\mathfrak{B}, \mathrm{L}_{\mathfrak{B}}\right)\right)$ between two quasi-Leibniz quantum compact metric spaces $\left(\mathfrak{A}, \mathrm{L}_{\mathfrak{2}}\right)$ and $\left(\mathfrak{B}, \mathrm{L}_{\mathfrak{B}}\right)$ is a metric up to quantum isometry; i.e., $\wedge\left(\left(\mathfrak{A}, \mathrm{L}_{\mathfrak{L}}\right),\left(\mathfrak{B}, \mathrm{L}_{\mathfrak{B}}\right)\right)=0$ if and only if there exists a unital ${ }^{*}$-isomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{B}$ with $\mathrm{L}_{\mathfrak{B}} \circ \pi=\mathrm{L}_{\mathfrak{A}}$.

Moreover, \wedge recovers the Gromov-Hausdorff topology on compact metric spaces.

2. Gromov-Hausdorff propinquity between isomorphic full matrix algebras

The first author and Latrémolière [Aguilar and Latrémolière 2015] discovered quasiLeibniz Lip-norms on certain infinite-dimensional C*-algebras called approximately finite-dimensional C*-algebras (AF algebras) with certain tracial states. Now, these AF algebras are built by an inductive sequence of finite-dimensional AF algebras; see [Murphy 1990, Chapter 6]. While it can be the case that two distinct inductive sequences can produce AF algebras that are *-isomorphic, see [Davidson 1996, Example III.2.2], the Lip-norms constructed in [Aguilar and Latrémolière 2015, Theorem 3.5] seem to acknowledge the particular inductive sequence. Therefore, the question arose of whether these Lip-norms can distinguish two *-isomorphic AF algebras with different inductive sequences, where by distinguish, we mean by way of a quantum isometry of Theorem 1.14. This would show that these Lip-norms
are truly adding further structure to the C^{*}-algebraic structure. Yet, showing that two spaces are not quantum isometric is quite a nontrivial task since the condition in Theorem 1.14 has to be checked for every *-isomorphism to provide a negative result. Indeed, two spaces $\left(\mathfrak{A}, L_{\mathfrak{A}}\right)$, $\left(\mathfrak{B}, \mathrm{L}_{\mathfrak{B}}\right)$ are not quantum isometric if and only if for any ${ }^{*}$-isomorphism $\pi: \mathfrak{A} \rightarrow \mathfrak{B}$ (if it exists), we have $L_{\mathfrak{B}} \circ \pi \neq L_{\mathfrak{A}}$. But, in the case of $M_{n}(\mathbb{C})$, we have that the *-isomorphisms are well understood, as seen in Example 1.9. Thus, in this paper, we try to tackle this question of quantum isometry in the case of the finite-dimensional C^{*}-algebras $M_{n}(\mathbb{C})$ with respect to different finite inductive sequences, and we accomplish the task in Theorem 2.11. We begin by defining the particular quantum metric spaces that we will be working with, which requires the following notions.

Definition 2.1. A conditional expectation $P: \mathfrak{A} \rightarrow \mathfrak{B}$ onto \mathfrak{B}, where \mathfrak{A} is a unital C^{*}-algebra and \mathfrak{B} is a unital C^{*}-subalgebra of \mathfrak{A}, is a linear map such that
(1) for all $a \in \mathfrak{A}$ there exists $b \in \mathfrak{B}$ such that $P\left(a a^{*}\right)=b b^{*}$,
(2) for all $a \in \mathfrak{A}$, we have $\|P(a)\|_{\mathfrak{A}} \leqslant\|a\|_{\mathfrak{A}}$,
(3) for all $b, c \in \mathfrak{B}$ and $a \in \mathfrak{A}$, we have $P(b a c)=b P(a) c$, and
(4) $P(b)=b$ for all $b \in \mathfrak{B}$.

Notation 2.2. We write $k \mid n$ to denote that k divides n throughout this paper.
Let $n, k \in \mathbb{N} \backslash\{0\}, n>1$ with $k \mid n$ and $k<n$.
Let $\pi_{k, n}: M_{k}(\mathbb{C}) \mapsto M_{n}(\mathbb{C})$ be the unital *-monomorphism of [Davidson 1996, Lemma III.2.1] determined by

$$
\pi_{k, n}(a)=\left[\begin{array}{ccc}
a & & 0 \\
& \ddots & \\
0 & & a
\end{array}\right]=\operatorname{diag}(a, \ldots, a) \quad \text { for all } a \in M_{k}(\mathbb{C}),
$$

where there are $\frac{n}{k}$ nonoverlapping copies of a filling the block diagonal and 0 's elsewhere. Coordinatewise, the map $\pi_{k, n}$ satisfies
$\pi_{k, n}(a)_{p, q}= \begin{cases}a_{i, j} & \text { if there exists } r \in\left\{0, \ldots, \frac{n}{k}-1\right\} \text { such that } \\ 0 & \quad p=i+r k \text { and } q=j+r k \text { for some } i, j \in\{1, \ldots, k\}, \\ 0 & \text { otherwise }\end{cases}$
for all $a \in M_{k}(\mathbb{C})$ and $p, q \in\{1, \ldots n\}$.
Note that $\pi_{k, n}\left(M_{k}(\mathbb{C})\right)$ is a unital C^{*}-subalgebra of $M_{n}(\mathbb{C})$.
In Lemma 2.4, we will present another coordinatewise description of $\pi_{k, n}$, which allows for direct computation rather than finding the terms and is much more suitable and convenient for the many calculations we will work with in this paper. But, for now, we are prepared to define the quantum metrics on $M_{n}(\mathbb{C})$.

Theorem 2.3. Let $n \in \mathbb{N} \backslash\{0,1\}$ such that there exists $k \in \mathbb{N} \backslash\{0,1\}$ with $k<n$ and $k \mid n$. Recall the definition of the tracial state $\operatorname{tr}_{n}: M_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ of Example 1.11. If $P_{j, n}: M_{n}(\mathbb{C}) \rightarrow \pi_{j, n}\left(M_{j}(\mathbb{C})\right)$ for $j=1, k$ denotes the unique tr_{n}-preserving conditional expectation and we define for all $a \in \mathfrak{s a}\left(M_{n}(\mathbb{C})\right)$ the seminorms

$$
\begin{aligned}
& L_{M_{n}(\mathbb{C}), 1}(a)=\left\|a-P_{1, n}(a)\right\|_{M_{n}(\mathbb{C})}, \\
& L_{M_{n}(\mathbb{C}), k}(a)=\max \left\{\left\|a-P_{1, n}(a)\right\|_{M_{n}(\mathbb{C})}, k \cdot\left\|a-P_{k, n}(a)\right\|_{M_{n}(\mathbb{C})}\right\},
\end{aligned}
$$

then both $\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), 1}\right)$ and $\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), k}\right)$ are (2, 0)-quasi-Leibniz quantum compact metric spaces.

Proof. This is [Aguilar and Latrémolière 2015, Theorem 3.5] and in particular Step 3 of its proof.

Our main goal - realized in Theorem 2.11 - is to show that the two quantum metric spaces for a fixed k, n are not quantum isometric. These spaces are motivated by [Aguilar and Latrémolière 2015, Theorem 4.9], where these spaces do in fact form the finite-dimensional quantum metric spaces used in their construction. Therefore, our work is a legitimate step towards understanding the quantum isometries between the infinite-dimensional C^{*}-algebras presented in [Aguilar and Latrémolière 2015]. Next, our proof of Theorem 2.11 requires a detailed and coordinatewise description of the maps $\pi_{k, n}$ and $P_{k, n}$, which could be easily implemented algorithmically. We begin with $\pi_{k, n}$.

Lemma 2.4. If $k, n \in \mathbb{N} \backslash\{0\}, n>1$ such that $k \mid n$ and $k<n$, then the map $\pi_{k, n}: M_{k}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ of Notation 2.2 satisfies

$$
\pi_{k, n}(a)_{p, q}= \begin{cases}a_{1+(p-1)} \bmod k, 1+(q-1) \bmod k & \text { if }\left\lfloor\frac{p-1}{k}\right\rfloor=\left\lfloor\frac{q-1}{k}\right\rfloor, \\ 0 & \text { otherwise }\end{cases}
$$

for all $a \in M_{k}(\mathbb{C})$ and $p, q \in\{1, \ldots n\}$.
Proof. Let $a \in M_{k}(\mathbb{C})$ and fix $p, q \in\{1, \ldots, n\}$.
Case 1: Assume $\left\lfloor\frac{p-1}{k}\right\rfloor=\left\lfloor\frac{q-1}{k}\right\rfloor$. Now, since $k \mid n$, there exist $r, s \in\left\{0, \ldots, \frac{n}{k}-1\right\}$ and $i, j \in\{1, \ldots, k\}$ such that $p=i+r k$ and $q=j+s k$. Therefore, we have

$$
\left\lfloor\frac{p-1}{k}\right\rfloor=\left\lfloor\frac{i+r k-1}{k}\right\rfloor=\left\lfloor\frac{i-1}{k}+r\right\rfloor=\left\lfloor\frac{i-1}{k}\right\rfloor+r=r
$$

because $0 \leqslant i-1<k$.
Also, we have

$$
\left\lfloor\frac{q-1}{k}\right\rfloor=\left\lfloor\frac{j+s k-1}{k}\right\rfloor=\left\lfloor\frac{j-1}{k}+s\right\rfloor=\left\lfloor\frac{j-1}{k}\right\rfloor+s=s
$$

because $0 \leqslant j-1<k$. Thus $r=s$ by the Case 1 assumption and $\pi_{k, n}(a)_{p, q}=a_{i, j}$ by Notation 2.2. However, by modular arithmetic, since $c \bmod d=c-d\left\lfloor\frac{c}{d}\right\rfloor$,
we gather that $1+p-1-r k=i$ and $1+q-1-r k=j$ imply

$$
\pi_{k, n}(a)_{p, q}=a_{1+(p-1) \bmod k, 1+(q-1) \bmod k} .
$$

Case 2: Assume $\left\lfloor\frac{p-1}{k}\right\rfloor \neq\left\lfloor\frac{q-1}{k}\right\rfloor$. By Notation 2.2, assume by way of contradiction that there exists $r \in\left\{0, \ldots, \frac{n}{k}-1\right\}$ such that $p=i+r k$ and $q=j+r k$ for some $i, j \in\{1, \ldots, k\}$. Then, the argument of Case 1 implies that $r \neq r$, a contradiction. Hence $\pi_{k, n}(a)_{p, q}=0$ by Notation 2.2.

Next, we move to understanding the conditional expectations $P_{k, n}$ in a coordinatewise manner. First, we provide some notation for a standard basis for $M_{n}(\mathbb{C})$.

Notation 2.5. For $n \in \mathbb{N} \backslash\{0\}, j \in\{1, \ldots, n\}, k \in\{1, \ldots, n\}$, let $E_{n, j, k} \in M_{n}(\mathbb{C})$ denote the standard matrix unit, see [Davidson 1996, Section III.1], defined coordinatewise by

$$
\left(E_{n, j, k}\right)_{p, q}= \begin{cases}1, & p=j \text { and } q=k, \\ 0, & \text { otherwise }\end{cases}
$$

for $p, q \in\{1, \ldots, n\}$, and note that the set $\left\{E_{n, j, k} \in M_{n}(\mathbb{C}): j, k \in\{1, \ldots, n\}\right\}$ forms a basis for $M_{n}(\mathbb{C})$.

Assume that $l \in \mathbb{N} \backslash\{0\}$ and $l \mid n$. Let

$$
B_{l, n}=\left\{\pi_{l, n}(a) \in M_{n}(\mathbb{C}): a \text { is a matrix unit of } M_{l}(\mathbb{C})\right\} .
$$

Next, the tracial state tr_{n} induces an inner product on $M_{n}(\mathbb{C})$ via $\langle a, b\rangle=\operatorname{tr}_{n}\left(b^{*} a\right)$. In [Aguilar and Latrémolière 2015], they use this observation and that the matrix units are orthogonal with respect to this inner product to provide a general description of $P_{k, n}$ in terms of the matrix units and $\pi_{k, n}$; see (4.1) of that paper. We will utilize this in Lemma 2.7 to provide an explicit coordinatewise description of $P_{k, n}$. But, first, we prove a lemma about the relationship between the tracial state tr_{n} and the *-monomorphism $\pi_{k, n}$.

Lemma 2.6. If $k, n \in \mathbb{N} \backslash\{0\}$ and $k \mid n$, then $\operatorname{tr}_{n} \circ \pi_{k, n}=\operatorname{tr}_{k}$.
Proof. Let $a \in M_{k}(\mathbb{C})$. Then, by Lemma 2.4

$$
\begin{aligned}
\left(\operatorname{tr}_{n} \circ \pi_{k, n}\right)(a) & =\frac{1}{n} \operatorname{Tr}_{n}\left(\pi_{k, n}(a)\right)=\frac{1}{n} \sum_{i=1}^{n} \pi_{k, n}(a)_{i, i} \\
& =\frac{1}{n} \sum_{i=1}^{n} a_{1+(i-1) \bmod k, 1+(i-1) \bmod k} \\
& =\frac{1}{n} \sum_{i=1}^{n / k} \sum_{j=1}^{k} a_{j, j}=\frac{1}{n} \sum_{i=1}^{n / k} \operatorname{Tr}_{k}(a) \\
& =\frac{1}{n} \cdot \frac{n}{k} \operatorname{Tr}_{k}(a)=\frac{1}{k} \operatorname{Tr}_{k}(a)=\operatorname{tr}_{k}(a)
\end{aligned}
$$

Lemma 2.7. If $n \in \mathbb{N} \backslash\{0\}$ and there exists $k \in \mathbb{N} \backslash\{0\}$ such that $k \mid n$, then using notation from Theorem 2.3 , for all $a \in M_{n}(\mathbb{C})$, we have

$$
P_{k, n}(a)=\frac{k}{n} \sum_{p=1}^{k} \sum_{q=1}^{k}\left(\sum_{l=0}^{n / k-1} a_{p+k l, q+k l}\right) \pi_{k, n}\left(E_{k, p, q}\right),
$$

and coordinatewise, this is

$$
P_{k, n}(a)_{i, j}= \begin{cases}\frac{k}{n} \sum_{l=0}^{n / k-1} a_{p+k l, q+k l} & \text { if }\left\lfloor\frac{i-1}{k}\right\rfloor=\left\lfloor\frac{j-1}{k}\right\rfloor \text { and } p-1=(i-1) \bmod k \\ 0 & \text { otherwise }\end{cases}
$$

for all $i, j \in\{1, \ldots, n\}$.
Furthermore, if $k=1$, then

$$
P_{1, n}(a)=\operatorname{tr}_{n}(a) I_{n} .
$$

Proof. By [Aguilar and Latrémolière 2015, (4.1)], we have

$$
P_{k, n}(a)=\sum_{b \in B_{k, n}} \frac{\operatorname{tr}_{n}\left(b^{*} a\right)}{\operatorname{tr}_{n}\left(b^{*} b\right)} b
$$

for all $a \in M_{n}(\mathbb{C})$, where $B_{k, n}$ was defined in Notation 2.5. Thus, for $b \in B_{k, n}$, we have

$$
b=\pi_{k, n}\left(E_{k, p, q}\right) \quad \text { for some } p, q \in\{1, \ldots, k\},
$$

and thus

$$
b^{*} b=\pi_{k, n}\left(E_{k, q, p}\right) \pi_{k, n}\left(E_{k, p, q}\right)=\pi_{k, n}\left(E_{k, q, p} E_{k, p, q}\right) .
$$

Now

$$
\left(E_{k, q, p} E_{k, p, q}\right)_{i, j}=\sum_{l=1}^{k}\left(E_{k, q, p}\right)_{i, l} \cdot\left(E_{k, p, q}\right)_{l, j}
$$

and

$$
\left(E_{k, q, p}\right)_{i, l} \cdot\left(E_{k, p, q}\right)_{l, j}= \begin{cases}1 & \text { if } i=q \text { and } j=q \text { and } l=p, \\ 0 & \text { otherwise } .\end{cases}
$$

Therefore

$$
E_{k, q, p} E_{k, p, q}=E_{k, q, q} .
$$

Hence, by Lemma 2.6, we gather that

$$
\begin{aligned}
\operatorname{tr}_{n}\left(b^{*} b\right) & =\operatorname{tr}_{n}\left(\pi_{k, n}\left(E_{k, q, p} E_{k, p, q}\right)\right) \\
& =\operatorname{tr}_{k}\left(E_{k, q, p} E_{k, p, q}\right)=\operatorname{tr}_{k}\left(E_{k, q, q}\right) \\
& =\frac{1}{k} \operatorname{Tr}_{k}\left(E_{k, q, q}\right)=\frac{1}{k} \cdot 1=\frac{1}{k}
\end{aligned}
$$

Thus, we now have

$$
\begin{align*}
P_{k, n}(a) & =\sum_{p=1}^{k} \sum_{q=1}^{k} \frac{\operatorname{tr}_{n}\left(\pi_{k, n}\left(E_{k, q, p}\right) a\right)}{1 / k} \pi_{k, n}\left(E_{k, p, q}\right) \\
& =\sum_{p=1}^{k} \sum_{q=1}^{k} k \cdot \operatorname{tr}_{n}\left(\pi_{k, n}\left(E_{k, q, p}\right) a\right) \pi_{k, n}\left(E_{k, p, q}\right) \\
& =\sum_{p=1}^{k} \sum_{q=1}^{k} k \cdot \frac{1}{n} \operatorname{Tr}\left(\pi_{k, n}\left(E_{k, q, p}\right) a\right) \pi_{k, n}\left(E_{k, p, q}\right) \\
& =\frac{k}{n} \sum_{p=1}^{k} \sum_{q=1}^{k} \operatorname{Tr}\left(\pi_{k, n}\left(E_{k, q, p}\right) a\right) \pi_{k, n}\left(E_{k, p, q}\right) \\
& =\frac{k}{n} \sum_{p=1}^{k} \sum_{q=1}^{k}\left(\sum_{i=1}^{n}\left(\pi_{k, n}\left(E_{k, q, p}\right) a\right)_{i, i}\right) \pi_{k, n}\left(E_{k, p, q}\right) . \tag{2-1}
\end{align*}
$$

Next, fix $i \in\{1, \ldots, n\}$. By matrix multiplication

$$
\sum_{i=1}^{n}\left(\pi_{k, n}\left(E_{k, q, p}\right) a\right)_{i, i}=\sum_{i=1}^{n} \sum_{j=1}^{n} \pi_{k, n}\left(E_{k, q, p}\right)_{i, j} \cdot a_{j, i} .
$$

But, for $j \in\{1, \ldots, n\}$, we have
$\pi_{k, n}\left(E_{k, q, p}\right)_{i, j}=\left\{\begin{array}{ll}1 & \text { if there exists } l \in\left\{0, \ldots, \frac{n}{k}-1\right\} \text { such that } \\ 0 & \text { otherwise }\end{array} \quad i=q+k l\right.$ and $j=p+k l$,
and
$\pi_{k, n}\left(E_{k, q, p}\right)_{i, j} \cdot a_{j, i}=\left\{\begin{array}{ll}a_{j, i} & \text { if there exists } l \in\{0, \ldots, \\ 0 & \text { otherwise } .\end{array} \quad j=1\right\}$ such that $\quad j=p+k l$ and $i=q+k l$,
Hence

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \pi\left(E_{k, q, p}\right)_{i, j} \cdot a_{j, i}=\sum_{l=0}^{n / k-1} a_{p+k l, q+k l} .
$$

And, by (2-1), we conclude that

$$
\begin{equation*}
P_{k, n}(a)=\frac{k}{n} \sum_{p=1}^{k} \sum_{q=1}^{k}\left(\sum_{l=0}^{n / k-1} a_{p+k l, q+k l}\right) \pi_{k, n}\left(E_{k, p, q}\right) . \tag{2-2}
\end{equation*}
$$

The coordinatewise expression follows from Lemma 2.4. Indeed: Let $i, j \in$ $\{1, \ldots, n\}$. If $\left\lfloor\frac{i-1}{k}\right\rfloor=\left\lfloor\frac{j-1}{k}\right\rfloor$, then $P_{k, n}(a)_{i, j}$ lies in one of the $(k \times k)$-diagonal blocks of the $(n \times n)$-matrix. So, there exist p, q such that $\pi_{k, n}\left(E_{k, p, q}\right)_{i, j}=1$.

Namely $p=1+(i-1) \bmod k$ and $q=1+(j-1) \bmod k$. However, this pair p, q corresponds to a term in the sum defining $P_{k, n}$ in (2-2); that is, it corresponds to $\frac{k}{n}\left(\sum_{l=0}^{n / k-1} a_{p+k l, q+k l}\right) \pi_{k, n}\left(E_{k, p, q}\right)$. And, since the (i,j)-th entry of $\pi_{k, n}\left(E_{k, p, q}\right)$ is 1 , this gives us

$$
P_{k, n}(a)_{i, j}=\sum_{l=0}^{n / k-1} a_{p+k l, q+k l}
$$

If $\left\lfloor\frac{i-1}{k}\right\rfloor \neq\left\lfloor\frac{j-1}{k}\right\rfloor$, then for all p, q between 1 and k we have $\left(\pi_{k, n}\left(E_{k, p, q}\right)\right)_{i, j}=0$ by the definition of $\pi_{k, n}$, so $\left(P_{k, n}(a)\right)_{i, j}=0$.

The last statement of this lemma follows from this coordinatewise description with $k=1$.

For computational purposes, we present an alternative perspective on the projection map before proceeding.
Proposition 2.8. Let $a \in M_{n}(\mathbb{C})$, and let k be an integer that divides n. Consider the $(k \times k)$-diagonal blocks of a, denoted from top-left diagonal block to bottomright diagonal block by $B_{1}, B_{2}, \ldots, B_{n / k}$. The projection $P_{k, n}(a)$ is the image of the arithmetic mean of these blocks under the map $\pi_{k, n}$. In other words,

$$
P_{k, n}(a)=\pi_{k, n}\left(\frac{k}{n} \cdot \sum_{i=1}^{n / k} B_{i}\right) .
$$

Proof. This follows from Lemma 2.7.
Finally, we are in a position to study the Lip-norms of Theorem 2.3.
Lemma 2.9. Let $n \in \mathbb{N} \backslash\{0,1\}$. Using notation from Theorem 2.3 , if $\pi: M_{n}(\mathbb{C}) \rightarrow$ $M_{n}(\mathbb{C})$ is $a *$-isomorphism, then

$$
L_{M_{n}(\mathbb{C}), 1} \circ \pi(a)=L_{M_{n}(\mathbb{C}), 1}(a) .
$$

Proof. Let $\pi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a ${ }^{*}$-isomorphism. By [Davidson 1996, Lemma III.2.1], there exists a unitary $U \in M_{n}(\mathbb{C})$ such that $\pi(a)=U a U^{*}$ for all $a \in M_{n}(\mathbb{C})$. Also, by Lemma 2.7, we gather $P_{1, n}\left(U a U^{*}\right)=\operatorname{tr}_{n}\left(U a U^{*}\right) I_{n}=$ $\operatorname{tr}_{n}\left(U^{*} U a\right) I_{n}=\operatorname{tr}_{n}(a) I_{n}$ for all $a \in M_{n}(\mathbb{C})$. Now, let $a \in M_{n}(\mathbb{C})$; thus

$$
\begin{aligned}
L_{M_{n}(\mathbb{C}), 1} \circ \pi(a) & =\left\|U a U^{*}-P_{1, n}\left(U a U^{*}\right)\right\|_{M_{n}(\mathbb{C})} \\
& =\left\|U a U^{*}-P_{1, n}\left(U a U^{*}\right)\right\|_{M_{n}(\mathbb{C})} \\
& =\left\|U a U^{*}-\operatorname{tr}_{n}(a) I_{n}\right\|_{M_{n}(\mathbb{C})} \\
& =\left\|U a U^{*}-U\left(\operatorname{tr}_{n}(a) I_{n}\right) U^{*}\right\|_{M_{n}(\mathbb{C})} \\
& =\left\|U\left(a-\operatorname{tr}_{n}(a) I_{n}\right) U^{*}\right\|_{M_{n}(\mathbb{C})} \\
& =\left\|U\left(a-P_{1, n}(a)\right) U^{*}\right\|_{M_{n}(\mathbb{C})} \\
& =\left\|a-P_{1, n}(a)\right\|_{M_{n}(\mathbb{C})}=L_{M_{n}(\mathbb{C}), 1}(a) .
\end{aligned}
$$

Lemma 2.10. If $k, n \in \mathbb{N} \backslash\{0\}, n>2$ such that $k \mid n$ and $1<k<n$, then using notation from Theorem 2.3, we have

$$
L_{M_{n}(\mathbb{C}), 1} \neq L_{M_{n}(\mathbb{C}), k} .
$$

Proof. Consider $a \in M_{n}(\mathbb{C})$:

$$
a=\operatorname{diag}(k, 0, \ldots, 0) .
$$

Now, by Lemma 2.7, we have

$$
P_{1, n}(a)=\operatorname{diag}\left(\frac{k}{n}, \ldots, \frac{k}{n}\right)
$$

and thus

$$
a-P_{1, n}(a)=\operatorname{diag}\left(\frac{k(n-1)}{n},-\frac{k}{n},-\frac{k}{n}, \ldots,-\frac{k}{n}\right) \in \mathfrak{s a}\left(M_{n}(\mathbb{C})\right) .
$$

Therefore by Example 1.6, we have

$$
L_{M_{n}(\mathbb{C}), 1}(a)=\left\|a-P_{1, n}(a)\right\|_{M_{n}(\mathbb{C})}=\frac{k(n-1)}{n}
$$

since $\frac{k}{n}(n-1) \geqslant \frac{k}{n}$.
Now, we consider $P_{k, n}$. By Proposition 2.8, we need only examine the diagonal ($k \times k$)-blocks of a, which are

$$
\operatorname{diag}(k, 0, \ldots, 0), \mathbf{0}, \ldots, \mathbf{0}
$$

where $\mathbf{0}$ is the zero matrix. Summing these $\frac{n}{k}$ matrices, we get

$$
\operatorname{diag}(k, 0, \ldots, 0),
$$

and when we divide by $\frac{n}{k}$ and take the image under $\pi_{k, n}$, we arrive at

$$
P_{k, n}(a)=\pi_{k, n} \operatorname{diag}\left(\frac{k^{2}}{n}, 0, \ldots, 0\right)
$$

by Proposition 2.8. Thus
$a-P_{k, n}(a)=\operatorname{diag}\left(\frac{k(n-k)}{n}, \ldots, 0,-\frac{k^{2}}{n}, \ldots, 0, \ldots,-\frac{k^{2}}{n}, \ldots, 0\right) \in \mathfrak{s a}\left(M_{n}(\mathbb{C})\right)$
by the definition of $\pi_{k, n}$ in Notation 2.2. Since $k \mid n$ and $k<n$, we have $k \leqslant \frac{n}{2}$. This implies $n-k \geqslant k$, and so $k(n-k) \geqslant k^{2}$. Therefore $\frac{k(n-k)}{n} \geqslant \frac{k^{2}}{n}$, which implies

$$
\left\|a-P_{k, n}(a)\right\|_{M_{n}(\mathbb{C})}=\frac{k(n-k)}{n} \quad \text { and } \quad k \cdot\left\|a-P_{k, n}(a)\right\|_{M_{n}(\mathbb{C})}=\frac{k^{2}(n-k)}{n}
$$

by Example 1.6. Next, since $k \leqslant \frac{n}{2}$, we have $n-k \geqslant \frac{n}{2}$ as $k \geqslant 2$. Hence

$$
k(n-k) \geqslant 2 \cdot \frac{n}{2}=n \quad \Rightarrow \quad k(n-k) \geqslant n>n-1,
$$

which means $k^{2}(n-k)>k(n-1)$, and finally we have

$$
\frac{k^{2}(n-k)}{n}>\frac{k(n-1)}{n}
$$

and thus, $k \cdot\left\|a-P_{k, n}(a)\right\|_{M_{n}(\mathbb{C})}>\left\|a-P_{1, n}(a)\right\|_{M_{n}(\mathbb{C})}$. Therefore

$$
L_{M_{n}(\mathbb{C}), k}(a)=\frac{k^{2}(n-k)}{n}
$$

and we conclude that $L_{M_{n}(\mathbb{C}), 1} \neq L_{M_{n}(\mathbb{C}), k}$.
Theorem 2.11. Using notation from Lemma 2.10, if $k, n \in \mathbb{N} \backslash\{0\}, n>2$ such that $k \mid n$ and $1<k<n$, then the quantum compact metric spaces

$$
\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), 1}\right) \quad \text { and } \quad\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), k}\right)
$$

are not quantum isometric, and therefore

$$
\wedge\left(\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), 1}\right),\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), k}\right)\right)>0,
$$

where \wedge is the quantum Gromov-Hausdorff propinquity of Theorem 1.14.
Proof. By Theorem 1.14, we show for all unital ${ }^{*}$-isomorphisms $\pi: M_{n}(\mathbb{C}) \rightarrow$ $M_{n}(\mathbb{C})$ that $L_{M_{n}(\mathbb{C}), 1} \circ \pi \neq L_{M_{n}(\mathbb{C}), k}$. Let $\pi: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$, be a unital $*_{-}$ isomorphism. Therefore $L_{M_{n}(\mathbb{C}), 1} \circ \pi=L_{M_{n}(\mathbb{C}), 1}$ by Lemma 2.9. But, Lemma 2.10 implies that $L_{M_{n}(\mathbb{C}), 1} \neq L_{M_{n}(\mathbb{C}), k}$. Thus, we conclude that $L_{M_{n}(\mathbb{C}), 1} \circ \pi \neq L_{M_{n}(\mathbb{C}), k}$, and therefore $\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), 1}\right)$ and $\left(M_{n}(\mathbb{C}), L_{M_{n}(\mathbb{C}), k}\right)$ are not quantum isometric.

Acknowledgement

The authors are grateful to Dr. Frédéric Latrémolière for his feedback and support.

References

[Aguilar and Latrémolière 2015] K. Aguilar and F. Latrémolière, "Quantum ultrametrics on AF algebras and the Gromov-Hausdorff propinquity", Studia Math. 231:2 (2015), 149-193. MR Zbl
[Bratteli 1972] O. Bratteli, "Inductive limits of finite dimensional C^{*}-algebras", Trans. Amer. Math. Soc. 171 (1972), 195-234. MR Zbl
[Burago et al. 2001] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics 33, Amer. Math. Soc., Providence, RI, 2001. MR Zbl
[Davidson 1996] K. R. Davidson, C^{*}-algebras by example, Fields Institute Monographs 6, Amer. Math. Soc., Providence, RI, 1996. MR Zbl
[Latrémolière 2015] F. Latrémolière, "Convergence of fuzzy tori and quantum tori for the quantum Gromov-Hausdorff propinquity: an explicit approach", Münster J. Math. 8:1 (2015), 57-98. MR Zbl
[Latrémolière 2016a] F. Latrémolière, "The quantum Gromov-Hausdorff propinquity", Trans. Amer. Math. Soc. 368:1 (2016), 365-411. MR Zbl
[Latrémolière 2016b] F. Latrémolière, "Quantum metric spaces and the Gromov-Hausdorff propinquity", pp. 47-133 in Noncommutative geometry and optimal transport (Besançon, 2014), edited by P. Martinetti and J.-C. Wallet, Contemp. Math. 676, Amer. Math. Soc., Providence, RI, 2016. MR Zbl
[Latrémolière 2017] F. Latrémolière, "A compactness theorem for the dual Gromov-Hausdorff propinquity", Indiana Univ. Math. J. 66:5 (2017), 1707-1753. MR Zbl
[Murphy 1990] G. J. Murphy, C^{*}-algebras and operator theory, Academic Press, Boston, 1990. MR Zbl
[Ozawa and Rieffel 2005] N. Ozawa and M. A. Rieffel, "Hyperbolic group C^{*}-algebras and freeproduct C^{*}-algebras as compact quantum metric spaces", Canad. J. Math. 57:5 (2005), 1056-1079. MR Zbl
[Rieffel 1998] M. A. Rieffel, "Metrics on states from actions of compact groups", Doc. Math. 3 (1998), 215-229. MR Zbl
[Rieffel 1999] M. A. Rieffel, "Metrics on state spaces", Doc. Math. 4 (1999), 559-600. MR Zbl
[Rieffel 2004] M. A. Rieffel, Gromov-Hausdorff distance for quantum metric spaces; Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance, Mem. Amer. Math. Soc. 796, Amer. Math. Soc., Providence, RI, 2004. MR Zbl
[Rieffel 2016] M. A. Rieffel, "Matricial bridges for 'matrix algebras converge to the sphere"", pp. 209-233 in Operator algebras and their applications (San Antonio, 2015), edited by R. S. Doran, Contemp. Math. 671, Amer. Math. Soc., 2016. MR Zbl

Received: 2017-12-05 Accepted: 2018-03-07
konrad.aguilar@asu.edu
samijobrooker@gmail.com

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States

Department of Mathematics, University of Denver, Denver, CO, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Gaven J. Martin	Massey University, New Zealand
Arthur T. Benjamin	Harvey Mudd College, USA	Mary Meyer	Colorado State University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Emil Minchev	Ruse, Bulgaria
Nigel Boston	University of Wisconsin, USA	Frank Morgan	Williams College, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Pietro Cerone	La Trobe University, Australia	Zuhair Nashed	University of Central Florida, USA
Scott Chapman	Sam Houston State University, USA	Ken Ono	Emory University, USA
Joshua N. Cooper	University of South Carolina, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Jem N. Corcoran	University of Colorado, USA	Joseph O'Rourke	Smith College, USA
Toka Diagana	Howard University, USA	Yuval Peres	Microsoft Research, USA
Michael Dorff	Brigham Young University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Sever S. Dragomir	Victoria University, Australia	Jonathon Peterson	Purdue University, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	James A. Sellers	Penn State University, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	Ram U. Verma	University of Toledo, USA
Suzanne Lenhart	University of Tennessee, USA	John C. Wierman	Johns Hopkins University, USA
Chi-Kwong Li	College of William and Mary, USA	Michael E. Zieve	University of Michigan, USA
Robert B. Lund	Clemson University, USA		

PRODUCTION

Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2019 vol. 12 no. 2

Lights Out for graphs related to one another by constructions 181Laura E. Ballard, Erica L. Budge and Darin R.Stephenson
A characterization of the sets of periods within shifts of finite type 203
Madeline Doering and Ronnie Pavlov
Numerical secondary terms in a Cohen-Lenstra conjecture on real 221 quadratic fieldsCodie Lewis and Cassandra Williams
Curves of constant curvature and torsion in the 3-sphere 235Debraj Chakrabarti, Rahul Sahay and JaredWilliams
Properties of RNA secondary structure matching models 257
Nicole Anderson, Michael Breunig, Kyle Goryl, Hannah Lewis, Manda Riehl and McKenzie Scanlan
Infinite sums in totally ordered abelian groups 281Greg Oman, Caitlin Randall and Logan Robinson
On the minimum of the mean-squared error in 2-means clustering 301Bernhard G. Bodmann and Craig J. George
Failure of strong approximation on an affine cone 321
Martin Bright and Ivo Kok
Quantum metrics from traces on full matrix algebras 329Konrad Aguilar and Samantha Brooker
Solving Scramble Squares puzzles with repetitions 343Jason Callahan and Maria Mota
Erdős-Szekeres theorem for cyclic permutations 351Éva CZabarka and Zhiyu Wang

[^0]: MSC2010: 46L89, 46L30, 58B34.
 Keywords: noncommutative metric geometry, Gromov-Hausdorff propinquity, quantum metric spaces, Lip-norms, C*-algebras, full matrix algebras.
 Brooker was partially supported by the Summer Research Grant provided by the Undergraduate Research Center at the University of Denver.

