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We prove that, in the sense of the Gromov–Hausdorff propinquity, certain natural
quantum metrics on the algebras of (n× n)-matrices are separated by a positive
distance when n is not prime.

1. Introduction and background

Motivated by high energy physics, M. A. Rieffel [1998; 2004] developed the notion
of a “noncommutative” or “quantum” compact metric space, and initiated the study
of topologies over classes of such quantum metric spaces. The convergence is
studied by use of a distance on the classes of these spaces. F. Latrémolière [2015;
2016a] introduced the quantum Gromov–Hausdorff propinquity, see also [Rieffel
2016], as a noncommutative analogue of the Gromov–Hausdorff distance [Burago
et al. 2001], adapted to the theory of C*-algebras.

Quantum metric spaces are built by adding some quantum metric to unital C*-
algebras [Rieffel 2004, pp. 1–65]; see [Latrémolière 2016b] for a survey with many
examples and references. C*-algebras are certain norm-closed algebras of bounded
linear operators on Hilbert spaces, up to an appropriate notion of *-isomorphism
[Davidson 1996, Theorem I.9.12]. Thus, it is natural to look to various classes of
C*-algebras and study them from the viewpoint of quantum compact metric spaces
and the Gromov–Hausdorff propinquity. The first author and F. Latrémolière did
just that in [Aguilar and Latrémolière 2015] with a class of C*-algebras called
approximately finite-dimensional C*-algebras (AF algebras) [Bratteli 1972]. Their
work constructs quantum metrics on AF algebras, which is then used to study the
topology induced by the propinquity on various natural sets of AF algebras. In
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particular, these quantum metrics can be restricted to the finite-dimensional C*-
subalgebras of AF algebras. The present work further studies some of the geometric
aspects of this construction on these finite-dimensional algebras when they are
full matrix algebras (algebras of complex-valued square matrices). Our focus is to
prove that different quantum metrics induced by the first author and Latrémolière’s
construction on the same full matrix algebras are indeed at positive distance, in the
sense of the propinquity. By its nature, it is usually difficult to prove lower bounds
on the propinquity, so our work tackles a delicate aspect of this theory. First, we
begin by defining many of these objects, from C*-algebras to quantum compact
metric spaces, while taking note of some theorems that will prove useful to our
efforts. Definitions 1.1–1.10 are contained in [Davidson 1996, Chapter I].

Definition 1.1. An associative algebra over the complex numbers C is a vector
space A over C with an associative multiplication, denoted by concatenation, such
that

a(b+ c)= ab+ ac and (b+ c)a = ba+ ca for all a, b, c ∈ A,

λ(ab)= (λa)b = a(λb) for all a, b ∈ A, λ ∈ C.

In other words, the associative multiplication is a bilinear map from A×A to A.
We say that A is unital if there exists a multiplicative identity, denoted by 1A.

That is,
1Aa = a = a1A for all a ∈ A.

Convention 1.2. All algebras are associative algebras over C unless otherwise
specified.

Notation 1.3. When E is a normed vector space, its norm will be denoted by ‖ ·‖E

by default.

Definition 1.4. A normed algebra is an algebra A with a norm ‖ · ‖A such that

‖ab‖A 6 ‖a‖A‖b‖A for all a, b ∈ A.

A is a Banach algebra when A is complete with respect to the norm ‖ · ‖A.

Definition 1.5. A C*-algebra, A, is a Banach algebra such that there exists an
antimultiplicative conjugate linear involution ∗ : A→ A, called the adjoint. That is,
* satisfies

(1) conjugate linear: (λ(a+ b))∗ = λ̄(a∗+ b∗) for all λ ∈ C, a, b ∈ A;

(2) involution: (a∗)∗ = a for all a ∈ A;

(3) antimultiplicative: (ab)∗ = b∗a∗ for all a, b ∈ A.

Furthermore, the norm, multiplication, and adjoint together satisfy the identity

‖aa∗‖A = ‖a‖2A for all a ∈ A, (1-1)
called the C*-identity.
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The set of self-adjoint elements of a C*-algebra is the set sa(A)={a∈A :a=a∗}.
An element u ∈ A of a unital C*-algebra is unitary if uu∗ = u∗u = 1A.
We say that B⊆ A is a C*-subalgebra of A if B is a norm-closed subalgebra

that is also self-adjoint; i.e., a ∈B⇐⇒ a∗ ∈B.

Our main example will be the C*-algebra of (n× n)-matrices over the complex
numbers, which we define now.

Example 1.6 [Davidson 1996, Example I.1.1]. Fix n ∈ N \ {0}. We let Mn(C)

denote the C*-algebra of (n× n)-matrices over the complex numbers called a full
matrix algebra. The algebra is given by the standard matrix operations and the
adjoint is the conjugate transpose. The norm is given by the operator norm

‖a‖Mn(C) = sup{‖ax‖2 : x ∈ Cn, ‖x‖2 6 1} for all a ∈ Mn(C),

where ax denotes matrix multiplication of the matrix a and column vector x , and
‖ · ‖2 is the standard Euclidean 2-norm on Cn.

Note that if a ∈ sa(Mn(C)), then ‖a‖Mn(C) =max{|λ| : λ is an eigenvalue of a}
by [Davidson 1996, Corollary I.3.4]. The unit of Mn(C) is the identity matrix,
which we denote by In . For a ∈Mn(C), we denote the i-row, j -column entry by ai, j .

Next, we describe morphisms between C*-algebras.

Definition 1.7. Let A,B be C*-algebras. A *-homomorphism π : A→ B is a
*-preserving, linear and multiplicative function:

• π is a *-monomorphism if it is an injective *-homomorphism.

• π is a *-epimorphism if π is a surjective *-homomorphism.

• π is a *-isomorphism if π is a bijective *-homomorphism.

• A is *-isomorphic to D if there exists a *-isomorphism π : A→D, and we
then write A∼=D.

• If both A,D are unital, then we call a *-homomorphism π : A→D unital if
π(1A)= 1D.

The next result shows that there are important analytical properties (such as
continuity, contractibility, and isometry) associated to these morphisms without
further assumptions. Thus, only algebraic conditions are indeed needed to properly
define morphisms between C*-algebras in Definition 1.7.

Proposition 1.8 [Davidson 1996, Theorem I.5.5]. Let A,D be C*-algebras. If
π : A→D is a *-homomorphism, then π is continuous and contractive. That is, its
operator norm satisfies

‖π‖B(A,D) = sup{‖π(a)‖D : a ∈ A, ‖a‖A = 1}6 1,

or equivalently, for all a ∈ A, we have ‖π(a)‖D 6 ‖a‖A.
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If π : A→D is a *-homomorphism, then π is an isometry if and only if π is a
*-monomorphism. In particular, *-isomorphisms are isometries.

In the next example, we present some *-isomorphisms related to the C*-algebras
Mn(C).

Example 1.9 [Davidson 1996, Lemma III.2.1]. A map π : Mn(C)→ Mn(C) is a
*-isomorphism if and only if there exists a unitary matrix U ∈ Mn(C) such that

π(a)=UaU∗ for all a ∈ Mn(C).

In order to define quantum compact metric spaces we need to define another
structure associated to C*-algebras.

Definition 1.10. Let A be a unital C*-algebra. Let A′ denote the set of continuous
and linear complex-valued functions on A. The state space of A is the set

S (A)= {ϕ ∈ A′ : 1= ϕ(1A)= ‖ϕ‖A′},

where ‖ϕ‖A′ = sup{|ϕ(a)| : a ∈ A, ‖a‖A = 1} is the operator norm.
A state ϕ ∈S (A) is called tracial if ϕ(ab)= ϕ(ba) for all a, b ∈ A [Davidson

1996, p. 114].

As an example, we look to Mn(C).

Example 1.11. For a ∈ Mn(C), let Trn(a) =
∑n

j=1 aj, j be the trace of a matrix.
Define trn =

1
n Trn . By [Davidson 1996, Example IV.5.4], the map trn is the unique

tracial state on Mn(C).

Rieffel [1998] introduced the notion of a quantum compact metric space by
providing a particular metric on the state space of a C*-algebra, which serves as a
quantum analogue to the Monge–Kantorovich metric on Borel probability measures
of a compact Hausdorff space. This metric lies outside the scope of this paper, so
we provide an equivalent definition of a quantum compact metric space that utilizes
a quantum analogue to the Lipschitz seminorm on continuous functions.

Definition 1.12 [Rieffel 1998; 1999; Ozawa and Rieffel 2005]. Let A be a unital
C*-algebra. Let L be a seminorm on sa(A) (possibly taking value +∞). The pair
(A, L) is a quantum compact metric space if L satisfies the following:

(1) L is lower semicontinuous with respect to ‖ · ‖A.

(2) The set dom(L)= {a ∈ sa(A) : L(a) <∞} is dense in sa(A).

(3) The kernel of L is {a ∈ sa(A) : L(a)= 0} = R1A = {r1A ∈ sa(A) : r ∈ R}.

(4) There exists a state µ ∈S (A) such that the set

{a ∈ sa(A) : µ(a)= 0 and L(a)6 1}

is totally bounded with respect to ‖ · ‖A.
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The Lipschitz seminorm on continuous functions satisfies a Leibniz rule and we
may generalize this in the following way.

Definition 1.13. Fix C > 1, D > 0. A quantum compact metric space (A, L) is a
(C, D)-quasi-Leibniz quantum compact metric space if L is a (C, D)-quasi-Leibniz
seminorm; i.e., for all a, b ∈ sa(A)

max{L(a ◦ b), L({a, b})}6 C
(
‖a‖AL(b)+‖b‖AL(a)

)
+ DL(a)L(b),

where the Jordan product is a ◦ b = 1
2(ab+ ba) and the Lie product is {a, b} =

1
2i (ab− ba).

Latrémolière [2016a] introduced a quantum analogue to the Gromov–Hausdorff
distance [Burago et al. 2001], the quantum Gromov–Hausdorff propinquity. Indeed,
the quantum Gromov–Hausdorff propinquity is a distance between quasi-Leibniz
quantum compact metric spaces that preserves the C*-algebraic and metric structures
and recovers the topology of the Gromov–Hausdorff distance, and thus provides
an appropriate framework for the study of noncommutative metric geometry. The
definition is quite involved, so in the following theorem, we summarize the results
that pertain to our work in this paper, while also defining the standard notion
of isomorphism between two quasi-Leibniz quantum compact metric spaces, a
quantum isometry.

Theorem 1.14 [Latrémolière 2016a; 2017]. The quantum Gromov–Hausdorff
propinquity

V

((A, LA), (B, LB)) between two quasi-Leibniz quantum compact
metric spaces (A, LA) and (B, LB) is a metric up to quantum isometry; i.e.,

V

((A, LA), (B, LB))=0 if and only if there exists a unital *-isomorphism π :A→B

with LB ◦π = LA.
Moreover,

V

recovers the Gromov–Hausdorff topology on compact metric spaces.

2. Gromov–Hausdorff propinquity between isomorphic full matrix algebras

The first author and Latrémolière [Aguilar and Latrémolière 2015] discovered quasi-
Leibniz Lip-norms on certain infinite-dimensional C*-algebras called approximately
finite-dimensional C*-algebras (AF algebras) with certain tracial states. Now, these
AF algebras are built by an inductive sequence of finite-dimensional AF algebras;
see [Murphy 1990, Chapter 6]. While it can be the case that two distinct inductive
sequences can produce AF algebras that are *-isomorphic, see [Davidson 1996,
Example III.2.2], the Lip-norms constructed in [Aguilar and Latrémolière 2015,
Theorem 3.5] seem to acknowledge the particular inductive sequence. Therefore,
the question arose of whether these Lip-norms can distinguish two *-isomorphic AF
algebras with different inductive sequences, where by distinguish, we mean by way
of a quantum isometry of Theorem 1.14. This would show that these Lip-norms
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are truly adding further structure to the C*-algebraic structure. Yet, showing that
two spaces are not quantum isometric is quite a nontrivial task since the condition
in Theorem 1.14 has to be checked for every *-isomorphism to provide a negative
result. Indeed, two spaces (A, LA), (B, LB) are not quantum isometric if and only
if for any *-isomorphism π : A→ B (if it exists), we have LB ◦ π 6= LA. But,
in the case of Mn(C), we have that the *-isomorphisms are well understood, as
seen in Example 1.9. Thus, in this paper, we try to tackle this question of quantum
isometry in the case of the finite-dimensional C*-algebras Mn(C) with respect to
different finite inductive sequences, and we accomplish the task in Theorem 2.11.
We begin by defining the particular quantum metric spaces that we will be working
with, which requires the following notions.

Definition 2.1. A conditional expectation P : A→B onto B, where A is a unital
C*-algebra and B is a unital C*-subalgebra of A, is a linear map such that

(1) for all a ∈ A there exists b ∈B such that P(aa∗)= bb∗,

(2) for all a ∈ A, we have ‖P(a)‖A 6 ‖a‖A,

(3) for all b, c ∈B and a ∈ A, we have P(bac)= bP(a)c, and

(4) P(b)= b for all b ∈B.

Notation 2.2. We write k | n to denote that k divides n throughout this paper.
Let n, k ∈ N \ {0}, n > 1 with k | n and k < n.
Let πk,n : Mk(C) 7→ Mn(C) be the unital *-monomorphism of [Davidson 1996,

Lemma III.2.1] determined by

πk,n(a)=

a 0
. . .

0 a

= diag(a, . . . , a) for all a ∈ Mk(C),

where there are n
k nonoverlapping copies of a filling the block diagonal and 0’s

elsewhere. Coordinatewise, the map πk,n satisfies

πk,n(a)p,q =


ai, j if there exists r ∈

{
0, . . . , n

k − 1
}

such that
p = i + rk and q = j + rk for some i, j ∈ {1, . . . , k},

0 otherwise

for all a ∈ Mk(C) and p, q ∈ {1, . . . n}.
Note that πk,n(Mk(C)) is a unital C*-subalgebra of Mn(C).

In Lemma 2.4, we will present another coordinatewise description of πk,n , which
allows for direct computation rather than finding the terms and is much more suitable
and convenient for the many calculations we will work with in this paper. But, for
now, we are prepared to define the quantum metrics on Mn(C).
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Theorem 2.3. Let n ∈N\ {0, 1} such that there exists k ∈N\ {0, 1} with k < n and
k | n. Recall the definition of the tracial state trn : Mn(C)→ C of Example 1.11.

If Pj,n : Mn(C)→ πj,n(Mj (C)) for j = 1, k denotes the unique trn-preserving
conditional expectation and we define for all a ∈ sa(Mn(C)) the seminorms

L Mn(C),1(a)= ‖a− P1,n(a)‖Mn(C),

L Mn(C),k(a)=max{‖a− P1,n(a)‖Mn(C), k · ‖a− Pk,n(a)‖Mn(C)},

then both (Mn(C), L Mn(C),1) and (Mn(C), L Mn(C),k) are (2, 0)-quasi-Leibniz quan-
tum compact metric spaces.

Proof. This is [Aguilar and Latrémolière 2015, Theorem 3.5] and in particular
Step 3 of its proof. �

Our main goal — realized in Theorem 2.11 — is to show that the two quantum
metric spaces for a fixed k, n are not quantum isometric. These spaces are motivated
by [Aguilar and Latrémolière 2015, Theorem 4.9], where these spaces do in fact form
the finite-dimensional quantum metric spaces used in their construction. Therefore,
our work is a legitimate step towards understanding the quantum isometries between
the infinite-dimensional C*-algebras presented in [Aguilar and Latrémolière 2015].
Next, our proof of Theorem 2.11 requires a detailed and coordinatewise description
of the maps πk,n and Pk,n , which could be easily implemented algorithmically. We
begin with πk,n .

Lemma 2.4. If k, n ∈ N \ {0}, n > 1 such that k | n and k < n, then the map
πk,n : Mk(C)→ Mn(C) of Notation 2.2 satisfies

πk,n(a)p,q =

{
a1+(p−1) mod k,1+(q−1) mod k if

⌊ p−1
k

⌋
=
⌊q−1

k

⌋
,

0 otherwise

for all a ∈ Mk(C) and p, q ∈ {1, . . . n}.

Proof. Let a ∈ Mk(C) and fix p, q ∈ {1, . . . , n}.

Case 1: Assume
⌊ p−1

k

⌋
=
⌊q−1

k

⌋
. Now, since k | n, there exist r, s ∈

{
0, . . . , n

k −1
}

and i, j ∈ {1, . . . , k} such that p = i + rk and q = j + sk. Therefore, we have⌊ p−1
k

⌋
=

⌊ i+rk−1
k

⌋
=

⌊ i−1
k
+ r

⌋
=

⌊ i−1
k

⌋
+ r = r

because 06 i − 1< k.
Also, we have⌊q−1

k

⌋
=

⌊ j+sk−1
k

⌋
=

⌊ j−1
k
+ s

⌋
=

⌊ j−1
k

⌋
+ s = s

because 06 j − 1< k. Thus r = s by the Case 1 assumption and πk,n(a)p,q = ai, j

by Notation 2.2. However, by modular arithmetic, since c mod d = c− d
⌊ c

d

⌋
,
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we gather that 1+ p− 1− rk = i and 1+ q − 1− rk = j imply

πk,n(a)p,q = a1+(p−1) mod k,1+(q−1) mod k .

Case 2: Assume
⌊ p−1

k

⌋
6=
⌊q−1

k

⌋
. By Notation 2.2, assume by way of contradiction

that there exists r ∈
{
0, . . . , n

k − 1
}

such that p = i + rk and q = j + rk for some
i, j ∈ {1, . . . , k}. Then, the argument of Case 1 implies that r 6= r , a contradiction.
Hence πk,n(a)p,q = 0 by Notation 2.2. �

Next, we move to understanding the conditional expectations Pk,n in a coordi-
natewise manner. First, we provide some notation for a standard basis for Mn(C).

Notation 2.5. For n ∈ N \ {0}, j ∈ {1, . . . , n}, k ∈ {1, . . . , n}, let En, j,k ∈ Mn(C)

denote the standard matrix unit, see [Davidson 1996, Section III.1], defined coordi-
natewise by

(En, j,k)p,q =

{
1, p = j and q = k,
0, otherwise

for p, q ∈ {1, . . . , n}, and note that the set {En, j,k ∈ Mn(C) : j, k ∈ {1, . . . , n}}
forms a basis for Mn(C).

Assume that l ∈ N \ {0} and l | n. Let

Bl,n = {πl,n(a) ∈ Mn(C) : a is a matrix unit of Ml(C)}.

Next, the tracial state trn induces an inner product on Mn(C) via 〈a, b〉= trn(b∗a).
In [Aguilar and Latrémolière 2015], they use this observation and that the matrix
units are orthogonal with respect to this inner product to provide a general description
of Pk,n in terms of the matrix units and πk,n; see (4.1) of that paper. We will utilize
this in Lemma 2.7 to provide an explicit coordinatewise description of Pk,n . But,
first, we prove a lemma about the relationship between the tracial state trn and the
*-monomorphism πk,n .

Lemma 2.6. If k, n ∈ N \ {0} and k | n, then trn ◦πk,n = trk .

Proof. Let a ∈ Mk(C). Then, by Lemma 2.4

(trn ◦πk,n)(a)=
1
n

Trn(πk,n(a))=
1
n

n∑
i=1

πk,n(a)i,i

=
1
n

n∑
i=1

a1+(i−1) mod k,1+(i−1) mod k

=
1
n

n/k∑
i=1

k∑
j=1

aj, j =
1
n

n/k∑
i=1

Trk(a)

=
1
n
·

n
k

Trk(a)=
1
k

Trk(a)= trk(a). �
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Lemma 2.7. If n ∈ N \ {0} and there exists k ∈ N \ {0} such that k | n, then using
notation from Theorem 2.3, for all a ∈ Mn(C), we have

Pk,n(a)=
k
n

k∑
p=1

k∑
q=1

( n/k−1∑
l=0

ap+kl,q+kl

)
πk,n(Ek,p,q),

and coordinatewise, this is

Pk,n(a)i, j =


k
n

∑n/k−1
l=0 ap+kl,q+kl if

⌊ i−1
k

⌋
=
⌊ j−1

k

⌋
and p−1= (i−1) mod k
and q−1= ( j−1) mod k,

0 otherwise

for all i, j ∈ {1, . . . , n}.
Furthermore, if k = 1, then

P1,n(a)= trn(a)In.

Proof. By [Aguilar and Latrémolière 2015, (4.1)], we have

Pk,n(a)=
∑

b∈Bk,n

trn(b∗a)
trn(b∗b)

b

for all a ∈ Mn(C), where Bk,n was defined in Notation 2.5. Thus, for b ∈ Bk,n , we
have

b = πk,n(Ek,p,q) for some p, q ∈ {1, . . . , k},

and thus
b∗b = πk,n(Ek,q,p)πk,n(Ek,p,q)= πk,n(Ek,q,p Ek,p,q).

Now

(Ek,q,p Ek,p,q)i, j =

k∑
l=1

(Ek,q,p)i,l · (Ek,p,q)l, j

and

(Ek,q,p)i,l · (Ek,p,q)l, j =

{
1 if i = q and j = q and l = p,
0 otherwise.

Therefore
Ek,q,p Ek,p,q = Ek,q,q .

Hence, by Lemma 2.6, we gather that

trn(b∗b)= trn(πk,n(Ek,q,p Ek,p,q))

= trk(Ek,q,p Ek,p,q)= trk(Ek,q,q)

=
1
k

Trk(Ek,q,q)=
1
k
· 1= 1

k
.
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Thus, we now have

Pk,n(a)=
k∑

p=1

k∑
q=1

trn(πk,n(Ek,q,p)a)
1/k

πk,n(Ek,p,q)

=

k∑
p=1

k∑
q=1

k · trn(πk,n(Ek,q,p)a)πk,n(Ek,p,q)

=

k∑
p=1

k∑
q=1

k · 1
n

Tr(πk,n(Ek,q,p)a)πk,n(Ek,p,q)

=
k
n

k∑
p=1

k∑
q=1

Tr(πk,n(Ek,q,p)a)πk,n(Ek,p,q)

=
k
n

k∑
p=1

k∑
q=1

( n∑
i=1

(πk,n(Ek,q,p)a)i,i

)
πk,n(Ek,p,q). (2-1)

Next, fix i ∈ {1, . . . , n}. By matrix multiplication
n∑

i=1

(πk,n(Ek,q,p)a)i,i =
n∑

i=1

n∑
j=1

πk,n(Ek,q,p)i, j · aj,i .

But, for j ∈ {1, . . . , n}, we have

πk,n(Ek,q,p)i, j =


1 if there exists l ∈

{
0, . . . , n

k − 1
}

such that
i = q + kl and j = p+ kl,

0 otherwise
and

πk,n(Ek,q,p)i, j ·aj,i =

aj,i if there exists l ∈
{
0, . . . , n

k − 1
}

such that
j = p+ kl and i = q + kl,

0 otherwise.
Hence

n∑
i=1

n∑
j=1

π(Ek,q,p)i, j · aj,i =

n/k−1∑
l=0

ap+kl,q+kl .

And, by (2-1), we conclude that

Pk,n(a)=
k
n

k∑
p=1

k∑
q=1

( n/k−1∑
l=0

ap+kl,q+kl

)
πk,n(Ek,p,q). (2-2)

The coordinatewise expression follows from Lemma 2.4. Indeed: Let i, j ∈
{1, . . . , n}. If

⌊ i−1
k

⌋
=
⌊ j−1

k

⌋
, then Pk,n(a)i, j lies in one of the (k × k)-diagonal

blocks of the (n × n)-matrix. So, there exist p, q such that πk,n(Ek,p,q)i, j = 1.



QUANTUM METRICS FROM TRACES ON FULL MATRIX ALGEBRAS 339

Namely p = 1+ (i −1) mod k and q = 1+ ( j −1) mod k. However, this pair p, q
corresponds to a term in the sum defining Pk,n in (2-2); that is, it corresponds to
k
n

(∑n/k−1
l=0 ap+kl,q+kl

)
πk,n(Ek,p,q). And, since the (i, j)-th entry of πk,n(Ek,p,q)

is 1, this gives us

Pk,n(a)i, j =

n/k−1∑
l=0

ap+kl,q+kl .

If
⌊ i−1

k

⌋
6=
⌊ j−1

k

⌋
, then for all p, q between 1 and k we have (πk,n(Ek,p,q))i, j =0

by the definition of πk,n , so (Pk,n(a))i, j = 0.
The last statement of this lemma follows from this coordinatewise description

with k = 1. �

For computational purposes, we present an alternative perspective on the projec-
tion map before proceeding.

Proposition 2.8. Let a ∈ Mn(C), and let k be an integer that divides n. Consider
the (k × k)-diagonal blocks of a, denoted from top-left diagonal block to bottom-
right diagonal block by B1, B2, . . . , Bn/k . The projection Pk,n(a) is the image of
the arithmetic mean of these blocks under the map πk,n . In other words,

Pk,n(a)= πk,n

(
k
n
·

n/k∑
i=1

Bi

)
.

Proof. This follows from Lemma 2.7. �

Finally, we are in a position to study the Lip-norms of Theorem 2.3.

Lemma 2.9. Let n ∈N \ {0, 1}. Using notation from Theorem 2.3, if π : Mn(C)→

Mn(C) is a *-isomorphism, then

L Mn(C),1 ◦π(a)= L Mn(C),1(a).

Proof. Let π : Mn(C) → Mn(C) be a *-isomorphism. By [Davidson 1996,
Lemma III.2.1], there exists a unitary U ∈ Mn(C) such that π(a) = UaU∗ for
all a ∈ Mn(C). Also, by Lemma 2.7, we gather P1,n(UaU∗) = trn(UaU∗)In =

trn(U∗Ua)In = trn(a)In for all a ∈ Mn(C). Now, let a ∈ Mn(C); thus

L Mn(C),1 ◦π(a)= ‖UaU∗− P1,n(UaU∗)‖Mn(C)

= ‖UaU∗− P1,n(UaU∗)‖Mn(C)

= ‖UaU∗− trn(a)In‖Mn(C)

= ‖UaU∗−U (trn(a)In)U∗‖Mn(C)

= ‖U (a− trn(a)In)U∗‖Mn(C)

= ‖U (a− P1,n(a))U∗‖Mn(C)

= ‖a− P1,n(a)‖Mn(C) = L Mn(C),1(a). �
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Lemma 2.10. If k, n ∈ N\{0}, n > 2 such that k | n and 1 < k < n, then using
notation from Theorem 2.3, we have

L Mn(C),1 6= L Mn(C),k .

Proof. Consider a ∈ Mn(C):

a = diag(k, 0, . . . , 0).

Now, by Lemma 2.7, we have

P1,n(a)= diag
(

k
n
, . . . ,

k
n

)
and thus

a− P1,n(a)= diag
(

k(n− 1)
n

,−
k
n
,−

k
n
, . . . ,−

k
n

)
∈ sa(Mn(C)).

Therefore by Example 1.6, we have

L Mn(C),1(a)= ‖a− P1,n(a)‖Mn(C) =
k(n− 1)

n

since k
n (n− 1)> k

n .
Now, we consider Pk,n . By Proposition 2.8, we need only examine the diagonal

(k× k)-blocks of a, which are

diag(k, 0, . . . , 0), 0, . . . , 0,

where 0 is the zero matrix. Summing these n
k matrices, we get

diag(k, 0, . . . , 0),

and when we divide by n
k and take the image under πk,n , we arrive at

Pk,n(a)= πk,n diag
(

k2

n
, 0, . . . , 0

)
by Proposition 2.8. Thus

a− Pk,n(a)= diag
(

k(n− k)
n

, . . . , 0,−
k2

n
, . . . , 0, . . . ,−

k2

n
, . . . , 0

)
∈ sa(Mn(C))

by the definition of πk,n in Notation 2.2. Since k | n and k < n, we have k 6 n
2 . This

implies n− k > k, and so k(n− k)> k2. Therefore k(n−k)
n > k2

n , which implies

‖a− Pk,n(a)‖Mn(C) =
k(n− k)

n
and k · ‖a− Pk,n(a)‖Mn(C) =

k2(n− k)
n
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by Example 1.6. Next, since k 6 n
2 , we have n− k > n

2 as k > 2. Hence

k(n− k)> 2 · n
2
= n =⇒ k(n− k)> n > n− 1,

which means k2(n− k) > k(n− 1), and finally we have

k2(n− k)
n

>
k(n− 1)

n
,

and thus, k · ‖a− Pk,n(a)‖Mn(C) > ‖a− P1,n(a)‖Mn(C). Therefore

L Mn(C),k(a)=
k2(n− k)

n

and we conclude that L Mn(C),1 6= L Mn(C),k . �

Theorem 2.11. Using notation from Lemma 2.10, if k, n ∈N\{0}, n > 2 such that
k | n and 1< k < n, then the quantum compact metric spaces

(Mn(C), L Mn(C),1) and (Mn(C), L Mn(C),k)

are not quantum isometric, and therefore

V(
(Mn(C), L Mn(C),1), (Mn(C), L Mn(C),k)

)
> 0,

where
V

is the quantum Gromov–Hausdorff propinquity of Theorem 1.14.

Proof. By Theorem 1.14, we show for all unital *-isomorphisms π : Mn(C)→

Mn(C) that L Mn(C),1 ◦ π 6= L Mn(C),k . Let π : Mn(C) → Mn(C), be a unital *-
isomorphism. Therefore L Mn(C),1 ◦π = L Mn(C),1 by Lemma 2.9. But, Lemma 2.10
implies that L Mn(C),1 6= L Mn(C),k . Thus, we conclude that L Mn(C),1 ◦π 6= L Mn(C),k ,
and therefore (Mn(C), L Mn(C),1) and (Mn(C), L Mn(C),k) are not quantum isometric.

�
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351Erdős–Szekeres theorem for cyclic permutations
ÉVA CZABARKA AND ZHIYU WANG

involve
2019

vol.12,
no.2

http://dx.doi.org/10.2140/involve.2019.12.181
http://dx.doi.org/10.2140/involve.2019.12.203
http://dx.doi.org/10.2140/involve.2019.12.221
http://dx.doi.org/10.2140/involve.2019.12.221
http://dx.doi.org/10.2140/involve.2019.12.235
http://dx.doi.org/10.2140/involve.2019.12.257
http://dx.doi.org/10.2140/involve.2019.12.281
http://dx.doi.org/10.2140/involve.2019.12.301
http://dx.doi.org/10.2140/involve.2019.12.321
http://dx.doi.org/10.2140/involve.2019.12.329
http://dx.doi.org/10.2140/involve.2019.12.343
http://dx.doi.org/10.2140/involve.2019.12.351

	1. Introduction and background
	2. Gromov–Hausdorff propinquity between isomorphic full matrix algebras
	Acknowledgement
	References
	
	

