\bullet
 involve

 a journal of mathematicsOn the minimum of the mean-squared error in 2-means clustering
Bernhard G. Bodmann and Craig J. George

On the minimum of the mean-squared error in 2-means clustering

Bernhard G. Bodmann and Craig J. George
(Communicated by John C. Wierman)

Abstract

We study the minimum mean-squared error for 2-means clustering when the outcomes of the vector-valued random variable to be clustered are on two spheres, that is, the surface of two touching balls of unit radius in n-dimensional Euclidean space, and the underlying probability distribution is the normalized surface measure. For simplicity, we only consider the asymptotics of large sample sizes and replace empirical samples by the probability measure. The concrete question addressed here is whether a minimizer for the mean-squared error identifies the two individual spheres as clusters. Indeed, in dimensions $n \geq 3$, the minimum of the mean-squared error is achieved by a partition obtained from a separating hyperplane tangent to both spheres at the point where they touch. In dimension $n=2$, however, the minimizer fails to identify the individual spheres; an optimal partition is associated with a hyperplane that does not contain the intersection of the two spheres.

1. Introduction

In many applications of data science, large sets of vectors need to be grouped into a small number of subsets whose elements are close to each other. This type of partitioning into subsets is also called clustering [MacKay 2003]. The subsets are often believed to be distinct constituents in a mixture of random vectors that are sampled from different distributions. In many cases, the distributions are from a known family that is parametrized by the expected value of the outcomes, and the outcomes concentrate near the expected value [Pollard 1982; Dasgupta 1999]. Partitioning the observed set of vectors into subsets yields the empirical means, also called centroids, which provide an estimate for the expected values. On the other hand, once the expected values are accurately determined, one assumes that mapping each vector to the subset whose centroid is closest provides a good partition. This

[^0]heuristic approach to the clustering problem is captured in an iterative algorithm by Lloyd [1982], which aims to minimize an objective function that measures the Euclidean mean-squared distance of the elements in each of the subsets from the respective centroid. Although the algorithm seems to work well in practice, known results lack general a priori performance guarantees [Bucklew and Wise 1982; Kieffer 1982; Selim and Ismail 1984; Du et al. 1999; Lu and Zhou 2016] or show cases with slow convergence [Vattani 2011] even for two-dimensional clustering.

Another setting in which one tries to minimize the mean-squared distance is in vector quantization [Berger 1971; Gersho and Gray 1991]; see also [Steinhaus 1956]. There, partitioning of the outcomes of a random vector is not explicitly motivated by an underlying assumption that it is a mixture. The main goal is to approximate the random vector by a quantized one, with a finite or discrete set of outcomes, while minimizing the distortion, measured in the expected Euclidean squared norm of the quantization error or in terms of more general norms [Graf and Luschgy 2000].

In this paper, we investigate the problem of minimizing the objective function appearing in Lloyd's algorithm for the special case of partitioning into two subsets. Optimality for the 2-means problem has already been considered in dimension $n=2$ for the concrete examples of the uniform distribution on the disk and on the square [Roychowdhury 2016]. We consider the example of random vectors governed by a probability measure ρ that is formed by taking the average of two probability measures that are uniform on two spheres, that is, the surface of two balls of unit radius in n-dimensional Euclidean space. If the set S is the union of the two touching spheres and ρ the associated normalized surface measure, we wish to find the assignment $q: S \rightarrow\left\{c_{1}, c_{2}\right\}$ which maps S to $c_{1}, c_{2} \in \mathbb{R}^{n}$ such that the mean-squared error $\int_{S}\|x-q(x)\|^{2} d \rho(x)$ is minimized. The concrete question is then whether an optimizer to the mean-squared error assigns, up to sets of measure zero, a partition that singles out each individual sphere.

Earlier results prove that applying semidefinite programming to a convex relaxation of the objective function in Lloyd's clustering algorithm [Peng and Wei 2007] is successful if the spheres are sufficiently separated [Iguchi et al. 2015; 2017; Li et al. 2017]; see also a separation requirement for more general, subgaussian clusters [Mixon et al. 2016]. Indeed, in dimension $n=1$, the desired result is achieved if and only if the spheres are separated by a sufficiently large distance. A unit sphere in dimension $n=1$ is a set of two points at a distance of 2 . The uniform probability measure on two symmetrically arranged spheres at a distance 2ϵ is $\rho=\frac{1}{4} \delta_{-2-\epsilon}+\frac{1}{4} \delta_{-\epsilon}+\frac{1}{4} \delta_{\epsilon}+\frac{1}{4} \delta_{2+\epsilon}$, where δ_{a} is, for any $a \in \mathbb{R}$, a Dirac measure with support $\{a\}$. If we choose $0<\epsilon<\frac{1}{2}(\sqrt{3}-1)$, then by exhausting all choices of partitions, it is seen that the set $S_{1}=\{-\epsilon, \epsilon, 2+\epsilon\}$ with mean $\frac{1}{3} m_{1}=(2+\epsilon)$ and the set $S_{2}=\{-2-\epsilon\}$ with mean $m_{2}=-2-\epsilon$ provide an optimal partition of $\{-2-\epsilon,-\epsilon, \epsilon, 2+\epsilon\}$ for which the resulting mean-squared error is $\frac{2}{3}\left(1+\epsilon+\epsilon^{2}\right)<1$,
whereas the symmetric choice $R_{1}=\{\epsilon, 2+\epsilon\}$ and $R_{2}=\{-\epsilon,-2-\epsilon\}$ gives a mean-squared error of 1 . On the other hand, if $\epsilon>\frac{1}{2}(\sqrt{3}-1)$, then the partitioning into R_{1} and R_{2} is indeed optimal for the mean-squared error.

It is tempting to attribute the failure to recover the individual spheres to the discrete nature of the "surface" measures in \mathbb{R}. A closer look shows that the concentration of the measure near the origin is the reason for the optimal partition formed by one sphere cannibalizing the other. As n grows, the measure ρ is less concentrated near the origin, and one expects this cannibalizing behavior to disappear. Here, we examine the question of whether a successful partition can be obtained in dimensions $n \geq 2$ even if the spheres touch. This is the most challenging case in which separation can still be achieved theoretically. We consider the continuum limit, which means instead of sampling the distributions with finitely many outcomes, we assume data given in the form of uniform measures on the spheres.

Our results show that minimizing the mean-squared error in \mathbb{R}^{2} leads to a nonsymmetric partition, as in the case of dimension $n=1$. Fortunately, in dimensions $n \geq 3$ the minimizer recovers the partition into individual spheres, as one hopes to achieve. In that case, the partition is symmetric (up to sets of measure zero); it is given by a separating hyperplane that is invariant under reflections mapping each sphere onto the other.

This paper is organized as follows: In Section 2, we present the main results. The proofs are either elementary and included there or relegated to Section 3. The first part of the proofs establishes that optimal partitions for 2-means clustering are obtained from separating hyperplanes. The next part determines the location of the hyperplane.

2. Optimal partitions for the mean-squared error

The problem we are concerned with is the minimization of the mean-squared error. Its value depends on the partition of the support of a probability measure ρ describing the outcomes of a mixture of random vectors.
Definition 2.1. Given a Borel probability measure ρ on \mathbb{R}^{n} with support S and a Borel-measurable subset $S_{1} \subset S$ with complement $S_{2}=S \backslash S_{1}$, the mean-squared error associated with the partition $\left\{S_{1}, S_{2}\right\}$ of S is

$$
\mathcal{E}\left(S_{1}\right)=\min _{c_{1} \in \mathbb{R}^{n}} \int_{S_{1}}\left\|x-c_{1}\right\|^{2} d \rho(x)+\min _{c_{2} \in \mathbb{R}^{n}} \int_{S_{2}}\left\|x-c_{2}\right\|^{2} d \rho(x) .
$$

Here, $\left\|x-c_{i}\right\|$ is the Euclidean distance between x and c_{i} in $\mathbb{R}^{n}, i \in\{1,2\}$.
In this paper, we are concerned with a special case where ρ is the (normalized) surface measure for the union of two touching spheres,

$$
\rho=\frac{1}{2}\left(\sigma_{-1}+\sigma_{1}\right) .
$$

Here σ_{a} is the surface measure supported on $\mathbb{S}_{a} \equiv\left\{x \in \mathbb{R}^{n}:\left\|x-a e_{1}\right\|=1\right\}$, where e_{1} is the first canonical basis vector in \mathbb{R}^{n}. The measure σ_{a} is obtained from translating σ_{0}, so for any Borel measurable set A, we have $\sigma_{a}\left(A+a e_{1}\right)=\sigma_{0}(A)$, and for any orthogonal matrix O, we have $\sigma_{0}(A)=\sigma_{0}\left(O^{-1}(A)\right)$.

The following are the main theorems in this paper:
Theorem 2.2. Let the Borel measure be given by $\rho=\frac{1}{2}\left(\sigma_{-1}+\sigma_{1}\right)$ on \mathbb{R}^{n} with support $S=\mathbb{S}_{-1} \cup \mathbb{S}_{1}$. Let S_{1}, S_{2} form a partition of S into two Borel measurable subsets. Then there exist $a \in \mathbb{R}$ and $T_{1}=\left\{x \in \mathbb{R}^{n}: x_{1} \leq a\right\}$ such that $\mathcal{E}\left(T_{1}\right) \leq \mathcal{E}\left(S_{1}\right)$. Moreover, if S_{1} is minimal for the mean-squared error, then there is a choice of the cutoff a for which T_{1} coincides with S_{1} or S_{2}, up to a set of zero probability.

In short, disregarding sets of zero probability, an optimal partition of S is given by two sets separated by a hyperplane orthogonal to e_{1}, at an offset a from the origin. The fact that an optimal partition comes from a separating hyperplane is well known [Du et al. 1999], which we supplement with a symmetrization argument.

This result motivates abbreviating the mean-squared error for this special case, and studying its dependence on the cutoff,

$$
E(n, a)=\mathcal{E}\left(\left\{x \in S: x_{1} \leq-a\right\}\right)
$$

By the reflection symmetry of ρ with respect to the first coordinate, it is sufficient to consider $E(n, a)$ for $a \geq 0$. With this simplification, we can study the case of dimension $n=2$ in elementary terms.
Theorem 2.3. In dimension $n=2$, the absolute minimum of $E(2, a)$ among $a \in$ $[0,2)$ is attained at a nonzero cutoff a.
Proof. Parametrizing the two circles by arc length gives, by a direct computation for $a=1-\frac{\sqrt{3}}{2}$, the probabilities

$$
\begin{aligned}
& \rho\left(\left\{x \in \mathbb{R}^{2}: x_{1} \leq-1+\frac{\sqrt{3}}{2}\right\}\right)=\frac{5}{12} \\
& \rho\left(\left\{x \in \mathbb{R}^{2}: x_{1}>-1+\frac{\sqrt{3}}{2}\right\}\right)=\frac{7}{12}
\end{aligned}
$$

Choosing $c_{1}=\left(\zeta_{1}, 0\right)$ and $c_{2}=\left(\zeta_{2}, 0\right)$ with $\zeta_{1}=-1-\frac{3}{5 \pi}$ and $\zeta_{2}=\frac{5}{7}+\frac{3}{7 \pi}$ gives for the mean-squared error

$$
\begin{aligned}
& E\left(2,1-\frac{\sqrt{3}}{2}\right) \\
& \leq \frac{1}{4 \pi}\left(\int_{\pi / 6}^{11 \pi / 6}\left(\left(-1+\cos t-\zeta_{1}\right)^{2}+\sin ^{2} t\right) d t\right. \\
& \\
& \left.\quad+\int_{-\pi / 6}^{\pi / 6}\left(\left(-1+\cos t-\zeta_{2}\right)^{2}+\sin ^{2} t\right) d t+\int_{0}^{2 \pi}\left(\left(\cos t+1-\zeta_{2}\right)^{2}+\sin ^{2} t\right) d t\right) \\
& = \\
& =\frac{45 \pi^{2}-30 \pi-9}{35 \pi^{2}}<0.987
\end{aligned}
$$

This is less than $E(2,0)=1$, so the absolute minimum is not attained at $a=0$.

Figure 1. An optimal partition of the union of two circles. First set (solid) on left, second (dash-dotted) on right.

Figure 2. Value of $E(2, a)$ depending on cutoff $a \in[-2,2]$, with minimum achieved at two nonzero values of a.

To illustrate this result, we have computed the minimizing offset numerically and plotted the resulting partition of the two circles in Figure 1, together with the value of the mean-squared error associated with a given offset in Figure 2.

After expressing the means of the two subsets $\left\{x \in \mathbb{R}^{2}: x_{1} \leq a\right\}$ and $\left\{x \in \mathbb{R}^{2}\right.$: $\left.x_{1}>a\right\}$ in terms of a, Theorem 2.2 reduces identifying the optimal mean-squared error to finding the minimum of a parameter integral.

In dimension $n=3$, the mean-squared error can be computed explicitly.
Theorem 2.4. In dimension $n=3$, the absolute minimum of $E(3, a)$ among $a \in$ $[0,2)$ occurs at $a=0$.

Proof. We parametrize the two spheres by spherical coordinates and normalize the measure by surface area. Based on Theorem 2.2, an optimal partition is obtained with a separating hyperplane orthogonal to the symmetry axis $\mathbb{R} e_{1}$. The associated probabilities are, for $-2 \leq a \leq 2$,

$$
\begin{aligned}
& \rho\left(\left\{x \in \mathbb{R}^{2}: x_{1} \leq-a\right\}\right)=\frac{1}{2}-\frac{a}{4}, \\
& \rho\left(\left\{x \in \mathbb{R}^{2}: x_{1}>-a\right\}\right)=\frac{1}{2}+\frac{a}{4} .
\end{aligned}
$$

As shown in Theorem 3.4 below, the mean-squared error is obtained by choosing c_{1} and c_{2} to be the means of the two subsets, $c_{1}=\left(\zeta_{1}, 0,0\right), c_{2}=\left(\zeta_{2}, 0,0\right)$ with $\zeta_{1}=-1-\frac{a}{2}, \zeta_{2}=1-\frac{a}{2}$.

This choice results in

$$
\begin{aligned}
& E(3, a)= \frac{1}{8 \pi}\left(\int_{0}^{2 \pi} \int_{\arccos (1-a)}^{\pi}\left(\left(-1+\cos u-\zeta_{1}\right)^{2}+\sin ^{2} u\right) \sin u d u d t\right. \\
& \quad+\int_{0}^{2 \pi} \int_{0}^{\arccos (1-a)}\left(\left(-1+\cos u-\zeta_{2}\right)^{2}+\sin ^{2} u\right) \sin u d u d t \\
&=\left.\quad+\int_{0}^{2 \pi} \int_{0}^{\pi}\left(\left(1+\cos u-\zeta_{2}\right)^{2}+\sin ^{2} u\right) \sin u d u d t\right) \\
& a^{2}+1 .
\end{aligned}
$$

Thus $E(3, a)$ achieves its absolute minimum at $a=0$.
Even in the absence of explicit computations for $E(n, a)$, in the case $n>3$, we obtain the same monotonicity property as for $n=3$.
Theorem 2.5. The inequality $\frac{\partial}{\partial a} E(n, a)>0$ holds for all $a \in(0,2)$ and $n>3$. Moreover, $E(n, a)$ attains a minimum at $a=0$, and this minimum is unique.

Theorems 2.4 and 2.5 give us that the 2-means objective function E of two touching n-spheres is increasing in the variable a for the cutoff for $n \geq 3$ in the continuum limit. Thus, for dimensions $n \geq 3$, the optimal 2 -means cutoff has a value of zero, so both n-spheres are recovered successfully.

The remainder of the paper is dedicated to the proofs of Theorems 2.2 and 2.5.

3. Proofs of main results on optimal partitions

The first part of this section establishes the proof that an optimal partition is given by a separating hyperplane that is orthogonal to the symmetry axis. The second part examines the offset of the optimal separating hyperplane.

Minimizing the mean-squared error by partitions with a separating hyperplane. First, we consider a general Borel measure ρ with support S in \mathbb{R}^{n}. Given a partition $\left\{S_{1}, S_{2}\right\}$ of S, and $\rho\left(S_{i}\right)>0$, we call $m\left(S_{i}\right)=\int_{S_{i}} x d \rho(x) / \rho\left(S_{i}\right)$ the mean associated with the set S_{i}. If S_{i} is clear from the context, we also abbreviate $m_{i}=m\left(S_{i}\right)$.

By a direct computation, we have for any S_{i} with $\rho\left(S_{i}\right)>0$ and $c_{i} \in \mathbb{R}^{n}$

$$
\int_{S_{i}}\left\|x-c_{i}\right\|^{2} d \rho(x)=\int_{S_{i}}\left\|x-m_{i}\right\|^{2} d \rho(x)+\left\|c_{i}-m_{i}\right\|^{2} \rho\left(S_{i}\right),
$$

so the minimum is achieved if and only if $c_{i}=m_{i}$.

Moreover, given $c_{1}, c_{2} \in \mathbb{R}^{n}$, among all the partitions, the partition into Voronoi regions is optimal, as shown in Lemma 3.2 below.

Definition 3.1. Given $c_{1}, c_{2} \in \mathbb{R}^{n}$, we define the Voronoi partition $\left\{T_{1}, T_{2}\right\}$ of a Borel set S associated with the vectors c_{1} and c_{2} by the assignment

$$
T_{1}=\left\{x \in S:\left\|c_{1}-x\right\| \leq\left\|c_{2}-x\right\|\right\}, \quad T_{2}=S \backslash T_{1}
$$

From this definition, we see that this Voronoi partition consists of a closed halfspace and its complement, with a separating hyperplane that is orthogonal to $c_{1}-c_{2}$ and contains the midpoint $\frac{1}{2}\left(c_{1}+c_{2}\right)$.

Next, we note that given a partition into sets of nonzero probability, passing to the Voronoi partition associated with the means can only improve the mean-squared error. This fact is generally known; see for example [Du et al. 1999, Proposition 3.1].

Lemma 3.2. Let S_{1}, S_{2} be a partition of S with $0<\rho\left(S_{1}\right)<1$ and associated means m_{1} and m_{2}. Then the Voronoi partition associated with m_{1}, m_{2} satisfies

$$
\mathcal{E}\left(T_{1}\right) \leq \mathcal{E}\left(S_{1}\right)
$$

Proof. For any measurable partition S_{1} and S_{2} and $i \in\{1,2\}$, choosing any $x \in T_{i}$ gives, by the definition of the Voronoi partition,

$$
\left\|x-m_{i}\right\| \leq \min \left\{\left\|x-m_{1}\right\|,\left\|x-m_{2}\right\|\right\}
$$

Thus, the partition of S into T_{1} and T_{2} gives a mean-squared error that is bounded above by that associated with S_{1} and S_{2}.

In the following, we focus on properties of optimal partitions. These properties are also known, even in the more general context of k-means; see, e.g., [Du et al. 1999, Propositions 3.1 and 3.5] or [Graf and Luschgy 2000, Section 4.1]. We have decided to include them here to keep the exposition self-contained.

Lemma 3.3. If $\left\{S_{1}, S_{2}\right\}$ is a minimizing partition for the mean-squared error, then $0<m\left(S_{i}\right)<1$ for $i \in\{1,2\}$ and $m\left(S_{1}\right) \neq m\left(S_{2}\right)$.

Proof. Let $\left\{S_{1}, S_{2}\right\}$ be a minimizing partition. We know $0<\rho\left(S_{1}\right)<1$; otherwise S_{1} or S_{2} have unit measure and we can refine S_{1} or S_{2} and improve the meansquared error.

Moreover, assuming an optimal partition into two sets S_{1} and S_{2} of nonzero probability and equal means $m_{1}=m_{2}$, any partition performs equally well, and we can choose a subset $R_{1} \subset S_{1}$ with $0<\rho\left(R_{1}\right)<1$ such that the associated mean satisfies $r_{1} \equiv m\left(R_{1}\right) \neq m_{1}$. By the characterization of the mean,

$$
\int_{R_{1}}\left\|x-r_{1}\right\|^{2} d \rho(x)<\int_{R_{1}}\left\|x-m_{1}\right\|^{2} d \rho(x)
$$

For the partition formed by R_{1} and $R_{2}=S \backslash R_{1}$, we then get

$$
\begin{aligned}
& \int_{R_{1}}\left\|x-r_{1}\right\|^{2} d \rho(x)+\int_{R_{2}}\left\|x-m_{1}\right\|^{2} d \rho(x) \\
&<\int_{R_{1}}\left\|x-m_{1}\right\|^{2} d \rho(x)+\int_{R_{2}}\left\|x-m_{1}\right\|^{2} d \rho(x)=\mathcal{E}\left(S_{1}\right)
\end{aligned}
$$

Now inserting the mean of R_{2} instead of m_{1} in the second term on the left shows

$$
\mathcal{E}\left(R_{1}\right)<\mathcal{E}\left(S_{1}\right)
$$

This contradicts optimality, so $m_{1}=m_{2}$ cannot hold for a minimizing partition.
Theorem 3.4. Let ρ be a Borel measure on \mathbb{R}^{n} with support S. If the partition $\left\{S_{1}, S_{2}\right\}$ is a minimizer for the mean-squared error, then the sets T_{1} and T_{2} in the Voronoi partition associated with the means $\left\{m\left(S_{i}\right)\right\}_{i=1}^{2}$ coincide with S_{1} and S_{2} up to changes involving subsets of the separating hyperplane or sets whose probability vanishes.

Proof. We know $0<\rho\left(S_{1}\right)<1$, so both sets S_{1} and S_{2} have means under ρ.
Passing to the Voronoi partition $\left\{T_{1}, T_{2}\right\}$ associated with these means $\left\{m\left(S_{i}\right)\right\}_{i=1}^{2}$ gives

$$
\mathcal{E}\left(T_{1}\right)=\mathcal{E}\left(S_{1}\right)
$$

Using the inequality in the definition of the Voronoi partition, we see that if $R_{1}=$ $T_{1} \cap S_{2}$ is nonempty, then so is $R_{2}=T_{2} \cap S_{1}$, and

$$
\left\|x-m_{i}\right\| \leq \min \left\{\left\|x-m_{1}\right\|,\left\|x-m_{2}\right\|\right\} \quad \text { if } x \in R_{i} \subset T_{i}, i \in\{1,2\}
$$

Hence, defining the hyperplane $H=\left\{x \in \mathbb{R}^{n}:\left\|x-m_{1}\right\|=\left\|x-m_{2}\right\|\right\}$, on $R_{1} \backslash H$ and $R_{2} \backslash H$ strict inequality holds in the norm bounds, and we see that by the monotonicity of integrals, the equality $\mathcal{E}\left(T_{1}\right)=\mathcal{E}\left(S_{1}\right)$ forces both sets to have probability zero; that is, $\rho\left(R_{1} \backslash H\right)=\rho\left(R_{2} \backslash H\right)=0$.

From now on, we specialize to $\rho=\frac{1}{2}\left(\sigma_{-1}+\sigma_{1}\right)$. As a first result for this concrete choice of ρ, we show that the mean-squared error does not increase when passing to a suitable partition into half-spaces that are separated by a hyperplane orthogonal to e_{1}.

To obtain this, we note that choosing a partition that separates into half-spaces with a separating hyperplane that contains the symmetry axis $\mathbb{R} e_{1}$ is not optimal. Without loss of generality, we orient this hyperplane so that it is orthogonal to e_{2}.

Lemma 3.5. Let $n \geq 2, \rho=\frac{1}{2}\left(\sigma_{-1}+\sigma_{1}\right)$ be the measure defined on \mathbb{R}^{n} with support $S, S_{1}=S \cap\left\{x \in \mathbb{R}^{n}: x_{2} \geq 0\right\}$ and $T_{1}=S \cap\left\{x \in \mathbb{R}^{n}: x_{1} \geq 0\right\}$. Then $\mathcal{E}\left(S_{1}\right)>\mathcal{E}\left(T_{1}\right)$.

Proof. By symmetry, the mean of S_{1} is $m\left(S_{1}\right)=\alpha e_{2}$. Also, we know that the mean is in the interior of the convex hull of S_{1}, so $0<\alpha<1$. Again using the symmetry
between S_{1} and S_{2}, as well as $\rho\left(S_{1}\right)=\rho\left(S_{2}\right)=\frac{1}{2}$,

$$
\mathcal{E}\left(S_{1}\right)=2 \int_{S_{1}}\left\|x-\alpha e_{2}\right\|^{2} d \rho=2 \int_{S_{1}}\|x\|^{2} d \rho-\alpha^{2}=\int_{S}\|x\|^{2} d \rho-\alpha^{2} .
$$

Next, comparing with the Voronoi partition corresponding to $\left\{ \pm e_{1}\right\}$ and using symmetry properties, we have

$$
\mathcal{E}\left(S_{1}\right)=2\left(\int_{T_{1}}\left\|x-e_{1}\right\|^{2}+\frac{1}{2}\right)-\alpha^{2}=\mathcal{E}\left(T_{1}\right)+1-\alpha^{2} .
$$

From $0<\alpha<1$, we then have $\mathcal{E}\left(S_{1}\right)>\mathcal{E}\left(T_{1}\right)$.
We are now ready to prove Theorem 2.2, which states that an optimal partition coincides, up to sets of measure zero, with one obtained from a separating hyperplane that is orthogonal to $\mathbb{R} e_{1}$.

Proof of Theorem 2.2. Given a partition of S by S_{1} and S_{2} with means $m_{i}=m\left(S_{i}\right)$, $i \in\{1,2\}$, we observe the following:

The algebra of Borel sets of the form $A_{1} \times \mathbb{R}^{n-1}$ with $A_{1} \subset \mathbb{R}$, is a subalgebra of the Borel algebra of \mathbb{R}^{n}. The functions that are measurable with respect to this algebra depend only on the first coordinate. By the Radon-Nikodym theorem, there exist functions $d_{i}: \mathbb{R} \rightarrow \mathbb{R}$ such that for any $A=A_{1} \times \mathbb{R}^{n-1}$,

$$
\int_{A} d_{i}\left(x_{1}\right) \chi_{S_{i}}(x) d \rho(x)=\int_{A}\left\|x-m_{i}\right\|^{2} \chi_{S_{i}}(x) d \rho(x)
$$

Next, using Fubini, if μ is the image measure of ρ under projection onto the first coordinate, $\mu\left(A_{1}\right)=\rho\left(A_{1} \times \mathbb{R}^{n-1}\right)$, then there is $f: \mathbb{R} \rightarrow[0,1]$ such that

$$
\int_{A_{1}} d_{1} f d \mu=\int_{A_{1} \times \mathbb{R}^{n-1}}\left\|x-m_{1}\right\|^{2} \chi_{S_{1}}(x) d \rho(x)
$$

and

$$
\int_{A_{1}} d_{2}(1-f) d \mu=\int_{A_{1} \times \mathbb{R}^{n-1}}\left\|x-m_{2}\right\|^{2}\left(1-\chi_{S_{1}}(x)\right) d \rho(x) .
$$

Next, we observe if f is the function associated with a partition S_{1} and S_{2} and $R_{1}=\left\{x \in \mathbb{R}: d_{1}(x) \leq d_{2}(x)\right\}$, then letting $g=\chi_{R_{1}}$ gives

$$
\int_{\mathbb{R}} d_{1} g d \mu+\int_{\mathbb{R}} d_{2}(1-g) d \mu \leq \int_{\mathbb{R}} d_{1} f d \mu+\int_{\mathbb{R}} d_{2}(1-f) d \mu
$$

We conclude, setting $T_{1}^{\prime}=S \cap\left(R_{1} \times \mathbb{R}^{n-1}\right)$ and $T_{2}^{\prime}=S \backslash T_{1}^{\prime}$ that

$$
\int\left\|x-m_{1}\right\|^{2} \chi_{T_{1}^{\prime}} d \rho+\int\left\|x-m_{2}\right\|^{2} \chi_{T_{2}^{\prime}} d \rho \leq \mathcal{E}\left(S_{1}\right)
$$

Next, replacing m_{1} and m_{2} by the means $m_{i}^{\prime} \equiv m\left(T_{i}^{\prime}\right), i \in\{1,2\}$, does not increase the left-hand side, which shows that

$$
\mathcal{E}\left(T_{1}^{\prime}\right) \leq \mathcal{E}\left(S_{1}\right)
$$

Finally, setting $\left\{T_{1}, T_{2}\right\}$ to be the Voronoi partition associated with the means m_{1}^{\prime} and m_{2}^{\prime} implies

$$
\mathcal{E}\left(T_{1}\right) \leq \mathcal{E}\left(S_{1}\right)
$$

Moreover, if S_{1} is chosen as a minimizer for the mean-squared error, then necessarily $m_{i}=m_{i}^{\prime}, i \in\{1,2\}$; otherwise we would have strict inequality between $\mathcal{E}\left(T_{1}^{\prime}\right)$ and $\mathcal{E}\left(S_{1}\right)$. This implies that the means m_{i} are on the symmetry axis $\mathbb{R} e_{1}$. Applying Theorem 3.4 now shows that, up to a set of probability zero, S_{1} and S_{2} are separated by a hyperplane. From the preceding lemma, optimality implies that the hyperplane does not contain the symmetry axis. If it is not orthogonal to e_{1}, then there is a set $A_{1} \subset \mathbb{R}$ such that $0<\rho\left(A_{1} \times \mathbb{R}^{n-1} \cap S_{1}\right)<\frac{1}{2} \rho\left(A_{1} \times \mathbb{R}^{n-1} \cap S\right)$ and hence there is a subset $B_{1} \subset A_{1}$ with $\mu\left(B_{1}\right)>0$ for which $f\left(B_{1}\right) \subset\left(0, \frac{1}{2}\right)$. This contradicts optimality, because changing from f to the characteristic function g would lower the mean-squared error. We conclude that the hyperplane is orthogonal to e_{1}.

The optimal offset of the separating hyperplane. From here on, we consider the dependence of the mean-squared error on the offset of the separating hyperplane.

We first introduce some additional notation. When the mean-squared error is computed, the measure ρ can be replaced by an effective measure on \mathbb{R} obtained from projecting onto the first coordinate. We first consider the projection of σ_{0}. With the normalization constant

$$
A_{n}:=\left(\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x\right)^{-1}=\frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{n-1}{2}\right)},
$$

the resulting measure μ_{n} on Borel sets in $[-1,1]$ is given by [Mueller and Weissler 1982]

$$
d \mu_{n}(x):=A_{n}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x .
$$

The probability that σ_{0} assigns to $\left\{x \in \mathbb{S}_{0}: x_{1} \leq 1-a\right\}, a \in[-1,1]$, is equal to the probability of $\{x \in \mathbb{R}: x \leq 1-a\}$ under μ_{n},

$$
M_{n}^{-}(a):=\int_{-1}^{1-a} d \mu_{n}(x) .
$$

This is the mass of part of the first sphere, obtained by a separating hyperplane between the two centers of the touching spheres, at a distance of $1-a$ from the center of the first sphere. From the normalization convention, the total mass of the measure obtained from two spheres is 2 , so the complementary mass remaining is

$$
M_{n}^{+}(a):=2-M_{n}^{-}(a) .
$$

The mean of the first piece is

$$
C_{n}^{-}(a):=\frac{\int_{-1}^{1-a} x d \mu_{n}(x)}{M_{n}^{-}(a)},
$$

and that of the second piece, relative to $C_{n}^{-}(0)=0$, is accordingly

$$
C_{n}^{+}(a):=\frac{2-\int_{-1}^{1-a} x d \mu_{n}(x)}{M_{n}^{+}(a)} .
$$

With the help of Fubini-Tonelli, the integration over \mathbb{R}^{n} giving the mean-squared error can be reduced to an integral with respect to μ_{n}. The contributions to the mean-squared error are split into three terms,

$$
\begin{aligned}
& E_{-}(n, a):=\int_{-1}^{1-a}\left(1-x^{2}+\left(x-C_{n}^{-}(a)\right)^{2}\right) d \mu_{n}(x) \\
& E_{ \pm}(n, a):=\int_{1-a}^{1}\left(1-x^{2}+\left(x-C_{n}^{+}(a)\right)^{2}\right) d \mu_{n}(x) \\
& E_{+}(n, a):=\int_{-1}^{1}\left(1-x^{2}+\left(2+x-C_{n}^{+}(a)\right)^{2}\right) d \mu_{n}(x) .
\end{aligned}
$$

In each of these cases the integrand is the squared distance of a point on either of the two spheres from the respective mean of the partition. The resulting mean-squared error is obtained by summing the three contributions and dividing by the total mass,

$$
E(n, a)=\frac{1}{2}\left[E_{-}(n, a)+E_{ \pm}(n, a)+E_{+}(n, a)\right] .
$$

Lemma 3.6. Let $n \geq 2$ and $a \in[0,2]$. Then $E(n, a)$ is expressed in terms of C_{n}^{-}, M_{n}^{-}, C_{n}^{+}, and M_{n}^{+}according to

$$
E(n, a)=3-\frac{1}{2}\left(\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)+\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)\right) .
$$

Proof. From normalization, we have the identities

$$
\int_{-1}^{1} d \mu_{n}(x)=1, \quad \int_{-1}^{1-a} d \mu_{n}(x)=1-\int_{1-a}^{1} d \mu_{n}(x)
$$

from symmetry,

$$
\int_{-1}^{1} x d \mu_{n}(x)=0 \quad \int_{-1}^{1-a} x d \mu_{n}(x)=-\int_{1-a}^{1} x d \mu_{n}(x)
$$

With the expression for $C_{n}^{-}(a)$ and $M_{n}^{-}(a)$,

$$
\begin{aligned}
E_{-}(n, a) & =M_{n}^{-}(a)-2 C_{n}^{-}(a) \int_{-1}^{1-a} x d \mu_{n}(x)+\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a) \\
& =M_{n}^{-}(a)-\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)
\end{aligned}
$$

The integrals in the other terms are converted similarly, including $C_{n}^{+}(a)$ and $M_{n}^{+}(a)$,

$$
\begin{aligned}
E_{ \pm}(n, a) & =\int_{1-a}^{1} d \mu_{n}(x)-2 C_{n}^{+}(a) \int_{1-a}^{1} x d \mu_{n}(x)+\left(C_{n}^{+}(a)\right)^{2} \int_{1-a}^{1} d \mu_{n}(x) \\
& =1-M_{n}^{-}(a)+2 C_{n}^{+}(a) C_{n}^{-}(a) M_{n}^{-}(a)+\left(C_{n}^{+}(a)\right)^{2}\left(1-M_{n}^{-}(a)\right) \\
& =1-M_{n}^{-}(a)+2 C_{n}^{+}(a) C_{n}^{-}(a) M_{n}^{-}(a)+\left(C_{n}^{+}(a)\right)^{2}\left(M_{n}^{+}(a)-1\right)
\end{aligned}
$$

Because the last term is integrated over the entire sphere, the normalization and symmetry yield

$$
\begin{aligned}
E_{+}(n, a) & =\int_{-1}^{1} d \mu_{n}(x)-2\left(2-C_{n}^{+}(a)\right) \int_{-1}^{1} x d \mu_{n}(x)+\left(2-C_{n}^{+}(a)\right)^{2} \int_{-1}^{1} d \mu_{n}(x) \\
& =1+\left(2-C_{n}^{+}(a)\right)^{2} \\
& =5-4 C_{n}^{+}(a)+\left(C_{n}^{+}(a)\right)^{2} .
\end{aligned}
$$

Adding together $E_{-}(n, a), E_{ \pm}(n, a)$, and $E_{+}(n, a)$ and dividing by 2 gives, after collecting terms,

$$
\begin{array}{r}
E(n, a)=\frac{1}{2}\left[M_{n}^{-}(a)-\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)+1-M_{n}^{-}(a)+2 C_{n}^{+}(a) C_{n}^{-}(a) M_{n}^{-}(a)\right. \\
\left.+\left(C_{n}^{+}(a)\right)^{2}\left(M_{n}^{+}(a)-1\right)+5-4 C_{n}^{+}(a)+\left(C_{n}^{+}(a)\right)^{2}\right] \\
=\frac{1}{2}\left[6-\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)+2 C_{n}^{+}(a) C_{n}^{-}(a) M_{n}^{-}(a)\right. \\
\\
\\
\left.+\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)-4 C_{n}^{+}(a)\right] .
\end{array}
$$

We simplify further by converting between M_{n}^{-}and M_{n}^{+},

$$
\begin{aligned}
E(n, a)= & \frac{1}{2}\left[6-\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)+2 C_{n}^{+}(a)(2-\right. \\
& \left.C_{n}^{+}(a) M_{n}^{+}(a)\right) \\
& \left.+\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)-4 C_{n}^{+}(a)\right] \\
= & \frac{1}{2}\left[6-\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)-2\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)+\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)\right] .
\end{aligned}
$$

Thus,

$$
E(n, a)=3-\frac{1}{2}\left(\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)+\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)\right) .
$$

Lemma 3.7. The derivative $\frac{\partial}{\partial a} E(n, a)$ is expressed in terms of M_{n}^{-}, M_{n}^{+}and a as

$$
\begin{aligned}
\frac{\partial}{\partial a} E(n, a)= & \frac{2 A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}}{\left(M_{n}^{-(a)} M_{n}^{+}(a)\right)^{2}} \\
\times & {\left[(1-a)\left(M_{n}^{-}(a)\right)^{3}+(2 a-1)\left(M_{n}^{-}(a)\right)^{2}\right.} \\
& +\frac{A_{n}}{n-1}(2-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\left(M_{n}^{-}(a)\right)^{2}+\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} M_{n}^{-}(a) \\
& \left.\quad+2 \frac{A_{n}}{n-1}(a-1)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} M_{n}^{-}(a)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}\right] .
\end{aligned}
$$

Proof. Note that

$$
\int_{-1}^{1-a} x d \mu_{n}(x)=-\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}
$$

by direct integration.
Differentiating term by term yields

$$
\begin{aligned}
& \frac{\partial}{\partial a} E(n, a) \\
& =-\frac{1}{2\left(M_{n}^{-}(a)\right)^{2}}\left[2 \frac{A_{n}^{2}}{n-1}(1-a)\left(2 a-a^{2}\right)^{n-2} M_{n}^{-}(a)\right. \\
& \left.+\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}\right] \\
& -\frac{1}{2\left(M_{n}^{+}(a)\right)^{2}}\left[2\left(2+\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\right) A_{n}(1-a)\left(2 a-a^{2}\right)^{\frac{n-3}{2}} M_{n}^{+}(a)\right. \\
& \left.-\left(2+\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\right)^{2} A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}\right] \\
& =-\frac{A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}}{2\left(M_{n}^{-}(a)\right)^{2}}\left[2 \frac{A_{n}}{n-1}(1-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} M_{n}^{-}(a)+\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}\right] \\
& -\frac{A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}}{2\left(M_{n}^{+}(a)\right)^{2}}\left[2\left(2+\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\right)(1-a) M_{n}^{+}(a)\right. \\
& \left.-\left(2+\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\right)^{2}\right] .
\end{aligned}
$$

Combining terms and simplifying gives

$$
\begin{aligned}
\frac{\partial}{\partial a} E(n, a)= & \frac{2 A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}}{\left(M_{n}^{-}(a) M_{n}^{+}(a)\right)^{2}} \\
& \quad \times\left[-2 \frac{A_{n}}{n-1}(1-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} M_{n}^{-}(a)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}\right. \\
& \quad+\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} M_{n}^{-}(a)+(2 a-1)\left(M_{n}^{-}(a)\right)^{2} \\
& \left.\quad+(1-a)\left(M_{n}^{-}(a)\right)^{3}+\frac{A_{n}}{n-1}(2-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\left(M_{n}^{-}(a)\right)^{2}\right]
\end{aligned}
$$

Finally, rearranging terms gives the claimed expression for $\frac{\partial}{\partial a} E(n, a)$.
To prove that for any fixed $n>3$, the function $a \mapsto E(n, a)$ is increasing for $a \in(0,2)$, it suffices to show that $\frac{\partial}{\partial a} E(n, a)$ is positive for all $a \in(0,2)$ and $n>3$. This will be the centerpiece of the proof of Theorem 2.5 . To prepare this, we use
the simplified expression for $\frac{\partial}{\partial a} E(n, a)$ given in the preceding lemma and find an estimate for M_{n}^{-}that is obtained by studying the monotonicity properties of the function $n \mapsto M_{n}^{-}(a)$ for a fixed.
Lemma 3.8. The expression $M_{n}^{-}(a)$ is continuous in both $n \in[3, \infty)$ and $a \in[0,2]$, and $\frac{\partial}{\partial n} M_{n}^{-}(a)>0$ for $n>3$ and $a \in(0,1)$ (and is negative for $n>3$ and $a \in(1,2)$). Proof. First, note that by Leibniz integral rule and integrability of $x^{\alpha} \ln x, \alpha>1$, at 0 ,

$$
\begin{aligned}
\frac{\partial}{\partial n} \int_{-1}^{1-a}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x & =\int_{-1}^{1-a} \frac{\partial}{\partial n}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x \\
& =\int_{-1}^{1-a} \ln \left(1-x^{2}\right)\left(1-x^{2}\right)^{\frac{n-3}{2}} d x
\end{aligned}
$$

Thus, taking the partial derivative with respect to n, we obtain

$$
\frac{\partial}{\partial n} M_{n}^{-}(a)=\int_{-1}^{1-a} \ln \left(1-x^{2}\right) d \mu_{n}(x)-\int_{-1}^{1-a} d \mu_{n}(x) \int_{-1}^{1} \ln \left(1-x^{2}\right) d \mu_{n}(x)
$$

Consequently, we have $\frac{\partial}{\partial n} M_{n}^{-}(0)=\frac{\partial}{\partial n} M_{n}^{-}(1)=\frac{\partial}{\partial n} M_{n}^{-}(2)=0$. Next, we show that $\frac{\partial}{\partial n} M_{n}^{-}(a)>0$ for $a \in(0,1)$. To this end, we find critical points of $a \mapsto$ $\frac{\partial}{\partial n} M_{n}^{-}(a)$.

By

$$
\frac{\partial}{\partial a} \frac{\partial}{\partial n} M_{n}^{-}(a)=\frac{\left(2 a-a^{2}\right)^{\frac{n-3}{2}}}{\int_{-1}^{1}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x} \int_{-1}^{1}\left(\ln \left(1-x^{2}\right)-\ln \left(2 a-a^{2}\right)\right) d \mu_{n}(x)
$$

we have that $\frac{\partial}{\partial a} \frac{\partial}{\partial n} M_{n}^{-}(a)=0$ if and only if

$$
\left.a \in\left\{0,1 \pm \sqrt{1-\exp \left(\int_{-1}^{1} \ln \left(1-x^{2}\right) d \mu_{n}(x)\right.}\right), 2\right\}
$$

Hence, for

$$
\left.a \in\left(0,1-\sqrt{1-\exp \left(\int_{-1}^{1} \ln \left(1-x^{2}\right) d \mu_{n}(x)\right.}\right)\right)
$$

we have $\frac{\partial}{\partial n} M_{n}^{-}(a)$ is increasing in a. To see this, take

$$
0<\omega \leq \int_{-1}^{1} \ln \left(1-x^{2}\right) d \mu_{n}(x)
$$

set $\omega^{*}=1-\sqrt{1-\exp (\omega)}$ and verify $\frac{\partial}{\partial a} \frac{\partial}{\partial n} M_{n}^{-}\left(\omega^{*}\right)>0$. Similarly, for

$$
a \in\left(1-\sqrt{1-\exp \left(\int_{-1}^{1} \ln \left(1-x^{2}\right) d \mu_{n}(x)\right)}, 1\right)
$$

we have $\frac{\partial}{\partial n} M_{n}^{-}(a)$ is decreasing in a. Therefore, by $\frac{\partial}{\partial n} M_{n}^{-}(0)=\frac{\partial}{\partial n} M_{n}^{-}(1)=0$, we see $\frac{\partial}{\partial n} M_{n}^{-}(a)>0$ for all $a \in(0,1)$. Repeating this for $a \in[1,2]$ gives $\frac{\partial}{\partial n} M_{n}^{-}(a)<0$
for all $a \in(1,2)$. Thus we have shown $M_{n}^{-}(a)$ is increasing in $n>3$ for $a \in(0,1)$ (and decreasing in $n>3$ for $a \in(1,2)$).

Corollary 3.9. For $a \in[0,1]$, we then have the inequalities $M_{3}^{-}(a) \leq M_{n}^{-}(a) \leq 1$ for all $n>3$.

Lemma 3.10. For all $n \geq 3$ and for all $a \in[1,2)$,

$$
M_{n}^{-}(a) \geq \frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}} .
$$

Proof. We make the change of variables $y=1+x$ with $d y=d x$, in $M_{n}^{-}(a)=$ $\int_{-1}^{1-a} A_{n}\left(1-x^{2}\right)^{\frac{n-3}{2}} d x$ to obtain $M_{n}^{-}(a)=\int_{0}^{2-a} A_{n}\left(2 y-y^{2}\right)^{\frac{n-3}{2}} d y$. Repeating integration by parts on parts $(2-y)^{\frac{n-3}{2}}$ and $y^{\frac{n-3}{2}} d y$ yields the formula

$$
\begin{aligned}
& \int_{0}^{2-a} A_{n}(2-y)^{\frac{n-3}{2}} y^{\frac{n-3}{2}} d y \\
& =2 \frac{A_{n}}{n-1} \sum_{k=0}^{\infty}\left(\prod_{j=0}^{k} \frac{n-2 j-1}{n+2 j-1}\right)\left(2 a-a^{2}\right)^{\frac{n-(2 k+3)}{2}}(2-a)^{2 k+1}
\end{aligned}
$$

By

$$
\begin{aligned}
\left|\left(\prod_{j=0}^{K} \frac{n-2 j-1}{n+2 j-1}\right)\right| & =\left|(-1)^{K}\left(\prod_{j=0}^{K}\left(1-\frac{n-1}{j+\frac{n-1}{2}}\right)\right)\right| \\
& \leq\left|\left(\prod_{j=0}^{K} \exp \left(-\frac{n-1}{j+\frac{n-1}{2}}\right)\right)\right| \\
& =\left|\exp \left(-\sum_{j=0}^{K} \frac{n-1}{j+\frac{n-1}{2}}\right)\right| \rightarrow 0
\end{aligned}
$$

as $K \rightarrow \infty$, we see the alternating series converges. Moreover, since the first term is always positive, the sum converges to a function always greater than zero for $a \in(1,2)$ (by a property of alternating series). Lastly, we see that for each odd $n \geq 3$, there are exactly $\frac{n-1}{2}$ positive terms and for even $n \geq 4$, there are $\frac{n-2}{2}$ positive terms prior to a convergent alternating series (which starts at a positive term).

Consequently,

$$
M_{n}^{-}(a) \geq 2 \frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}(2-a)=\frac{2}{a} \frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}},
$$

which is greater than or equal to $\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}$ (by maximizing the denominator for $a \in[1,2)$).

Lemma 3.10 gives estimates on $M_{n}^{-}(a)$ that we combined with the expression for $E(n, a)$ and $\frac{\partial}{\partial a} E(n, a)$ from Lemmas 3.6 and 3.7 to show the main inequality $\frac{\partial}{\partial a} E(n, a)>0$ for $a \in[1,2)$ in the proof of Theorem 2.5.

Proof of Theorem 2.5. We recall the simplified expressions

$$
E(n, a)=3-\frac{1}{2}\left(\left(C_{n}^{-}(a)\right)^{2} M_{n}^{-}(a)+\left(C_{n}^{+}(a)\right)^{2} M_{n}^{+}(a)\right)
$$

and

$$
\frac{\partial}{\partial a} E(n, a)=\frac{2 A_{n}\left(2 a-a^{2}\right)^{\frac{n-3}{2}}}{\left(M_{n}^{-}(a) M_{n}^{+}(a)\right)^{2}} L(n, a),
$$

where

$$
\begin{aligned}
L(n, a)= & \left((1-a) M_{n}^{-}(a)+2 a-1\right)\left(M_{n}^{-}(a)\right)^{2} \\
+ & \left(\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}} M_{n}^{-}(a)-2 \frac{A_{n}}{n-1}(1-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\right) M_{n}^{-}(a) \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} M_{n}^{-}(a)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} .
\end{aligned}
$$

To show the desired inequality, we need only show that $L(n, a)$ is positive for $a \in(0,2)$ and $n>3$.

We distinguish two cases, depending on the value of a.
Case I: If $a \in(0,1)$, by Corollary 3.9 , we replace $M_{n}^{-}(a)$ with $M_{3}^{-}(a)=\frac{2-a}{2}$ for all positive terms. That is,

$$
\begin{aligned}
L(n, a) \geq & \left((1-a) M_{n}^{-}(a)+2 a-1\right)\left(M_{n}^{-}(a)\right)^{2} \\
+ & \frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\left(\frac{2-a}{2}\right)^{2}-2 \frac{A_{n}}{n-1}(1-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} M_{n}^{-}(a) \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}\left(\frac{2-a}{2}\right)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} .
\end{aligned}
$$

Moreover, we see

$$
(1-a) M_{n}^{-}(a)+2 a-1 \geq(1-a) M_{3}^{-}(a)+2 a-1=\frac{a}{2}+\frac{a^{2}}{2} \geq 0 .
$$

Hence, the first term can be estimated as well by eliminating $M_{n}^{-}(a)$, resulting in the lower bound

$$
\begin{aligned}
L(n, a) \geq & \left(\frac{a}{2}+\frac{a^{2}}{2}\right)\left(\frac{2-a}{2}\right)^{2}+\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\left(\frac{2-a}{2}\right)^{2} \\
& -2 \frac{A_{n}}{n-1}(1-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} M_{n}^{-}(a) \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}\left(\frac{2-a}{2}\right)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} .
\end{aligned}
$$

By Lemma 3.8, we also have that $M_{n}^{-}(a) \leq M_{n}^{-}(0)=1$.

Using this estimate for the remaining negative factor multiplying M_{n}^{-}gives a further lower bound from which all quantities other than a have been eliminated,

$$
\begin{aligned}
L(n, a) \geq & \frac{(1+a) a(2-a)^{2}}{8}+\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}}\left(\frac{2-a}{2}\right)^{2} \\
& -2 \frac{A_{n}}{n-1}(1-a)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}\left(\frac{2-a}{2}\right)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} \\
= & \frac{(1+a) a(2-a)^{2}}{8}+\frac{1}{8} \frac{A_{n}}{n-1}\left(2 a^{4}-8 a^{3}+24 a^{2}-16 a\right)\left(2 a-a^{2}\right)^{\frac{n-1}{2}} \\
& -\frac{1}{2}\left(\frac{A_{n}}{n-1}\right)^{2} a\left(2 a-a^{2}\right)^{n-1}
\end{aligned}
$$

Finally, by the second and third term decreasing in $a \in(0,1)$, we have

$$
\begin{aligned}
L(n, a) & \geq \frac{(1+a) a(2-a)^{2}}{8}+\frac{1}{4} \frac{A_{n}}{n-1}-\frac{1}{2}\left(\frac{A_{n}}{n-1}\right)^{2} \\
& =\frac{1}{8}\left((1+a) a(2-a)^{2}+\frac{2 A_{n}}{n-1}-\left(\frac{2 A_{n}}{n-1}\right)^{2}\right) \geq \frac{(1+a) a(2-a)^{2}}{8}>0
\end{aligned}
$$

Consequently for $a \in(0,1]$, we have $\frac{\partial}{\partial a} E(n, a)>0$.
Case II: If $a \in[1,2)$, we re-examine $L(n, a)$ and apply Lemma 3.10.
By the inequality

$$
\frac{A_{n}}{n-1}\left(2 a-a^{2}\right)^{\frac{n-1}{2}} \geq\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1}
$$

we have

$$
\begin{aligned}
L(n, a) \geq & \left((1-a) M_{n}^{-}(a)+2 a-1\right)\left(M_{n}^{-}(a)\right)^{2} \\
+ & \left(\frac{A_{n}}{n-1}\right)^{2}(2-a)\left(2 a-a^{2}\right)^{n-1}\left(M_{n}^{-}(a)\right)^{2}+\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} M_{n}^{-}(a) \\
& +2\left(\frac{A_{n}}{n-1}\right)^{2}(a-1)\left(2 a-a^{2}\right)^{n-1} M_{n}^{-}(a)-\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} \\
= & \left((1-a) M_{n}^{-}(a)+2 a-1\right)\left(M_{n}^{-}(a)\right)^{2} \\
+ & \left(\frac{A_{n}}{n-1}\right)^{2}(2 a)\left[M_{n}^{-}(a)-\frac{1}{2}\left(M_{n}^{-}(a)\right)^{2}\right]\left(2 a-a^{2}\right)^{n-1} \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}\left[2\left(M_{n}^{-}(a)\right)^{2}-M_{n}^{-}(a)-1\right]\left(2 a-a^{2}\right)^{n-1}
\end{aligned}
$$

Using Lemma 3.10 in the last inequality and recalling that if $a \in(1,2)$, then $M_{n}^{-}(a)<M_{n}^{-}(1)=\frac{1}{2}$, we further estimate

$$
(1-a) M_{n}^{-}(a)+2 a-1>\frac{3}{2} a-\frac{1}{2}>0,
$$

which gives

$$
\begin{aligned}
L(n, a) \geq & \left((1-a) M_{n}^{-}(a)+2 a-1\right)\left(\frac{A_{n}}{n-1}\right)^{2}\left(2 a-a^{2}\right)^{n-1} \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}(2 a)\left[M_{n}^{-}(a)-\frac{1}{2}\left(M_{n}^{-}(a)\right)^{2}\right]\left(2 a-a^{2}\right)^{n-1} \\
& +\left(\frac{A_{n}}{n-1}\right)^{2}\left[2\left(M_{n}^{-}(a)\right)^{2}-M_{n}^{-}(a)-1\right]\left(2 a-a^{2}\right)^{n-1}
\end{aligned}
$$

Thus, combining terms, we obtain a lower bound

$$
\left.\left.\begin{array}{rl}
L(n, a) \geq & \left(\frac{A_{n}}{n-1}\right)^{2}\left[(1-a) M_{n}^{-}(a)+2 a-1\right.
\end{array}+2 a M_{n}^{-}(a)-a\left(M_{n}^{-}(a)\right)^{2}\right), ~+2\left(M_{n}^{-}(a)\right)^{2}-M_{n}^{-}(a)-1\right]\left(2 a-a^{2}\right)^{n-1} .
$$

consisting of strictly positive terms if $1<a<2$.
Consequently, we see for $n>3$ and $a \in(1,2)$,

$$
\frac{\partial}{\partial a} E(n, a)>0 .
$$

We conclude that for $a \in(0,2)$ and $n>3, E(n, a)$ is strictly increasing, thus attaining its unique minimum at $a=0$.

Acknowledgment

Both authors would like to thank Dustin Mixon for suggesting the intriguing calculus exercise worked out in the last subsection. Additional thanks go to the anonymous referee for comments that helped improve the presentation of this paper.

References

[Berger 1971] T. Berger, Rate distortion theory: a mathematical basis for data compression, PrenticeHall, Englewood Cliffs, NJ, 1971. MR
[Bucklew and Wise 1982] J. A. Bucklew and G. L. Wise, "Multidimensional asymptotic quantization theory with r th power distortion measures", IEEE Trans. Inform. Theory 28:2 (1982), 239-247. MR Zbl
[Dasgupta 1999] S. Dasgupta, "Learning mixtures of Gaussians", pp. 634-644 in 40th Annual Symposium on Foundations of Computer Science (New York, 1999), IEEE Computer Soc., Los Alamitos, CA, 1999. MR
[Du et al. 1999] Q. Du, V. Faber, and M. Gunzburger, "Centroidal Voronoi tessellations: applications and algorithms", SIAM Rev. 41:4 (1999), 637-676. MR Zbl
[Gersho and Gray 1991] A. Gersho and R. M. Gray, Vector quantization and signal compression, Kluwer International Series in Engineering and Computer Science 159, Kluwer, New York, 1991. Zbl
[Graf and Luschgy 2000] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics 1730, Springer, 2000. MR Zbl
[Iguchi et al. 2015] T. Iguchi, D. G. Mixon, J. Peterson, and S. Villar, "On the tightness of an SDP relaxation of k-means", preprint, 2015. arXiv
[Iguchi et al. 2017] T. Iguchi, D. G. Mixon, J. Peterson, and S. Villar, "Probably certifiably correct k-means clustering", Math. Program. 165:2 (2017), 605-642. MR Zbl
[Kieffer 1982] J. C. Kieffer, "Exponential rate of convergence for Lloyd's method, I", IEEE Trans. Inform. Theory 28:2 (1982), 205-210. MR Zbl
[Li et al. 2017] X. Li, Y. Li, S. Ling, T. Strohmer, and K. Wei, "When do birds of a feather flock together? k-means, proximity, and conic programming", preprint, 2017. arXiv
[Lloyd 1982] S. P. Lloyd, "Least squares quantization in PCM", IEEE Trans. Inform. Theory 28:2 (1982), 129-137. MR Zbl
[Lu and Zhou 2016] Y. Lu and H. H. Zhou, "Statistical and computational guarantees of Lloyd's algorithm and its variants", preprint, 2016. arXiv
[MacKay 2003] D. J. C. MacKay, Information theory, inference and learning algorithms, Cambridge University Press, 2003. MR Zbl
[Mixon et al. 2016] D. G. Mixon, S. Villar, and R. Ward, "Clustering subgaussian mixtures with k-means", pp. 211-215 in 2016 IEEE Information Theory Workshop (Cambridge, 2016), IEEE Computer Soc., Piscataway, NJ, 2016.
[Mueller and Weissler 1982] C. E. Mueller and F. B. Weissler, "Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere", J. Funct. Anal. 48:2 (1982), 252-283. MR Zbl
[Peng and Wei 2007] J. Peng and Y. Wei, "Approximating k-means-type clustering via semidefinite programming", SIAM J. Optim. 18:1 (2007), 186-205. MR Zbl
[Pollard 1982] D. Pollard, "A central limit theorem for k-means clustering", Ann. Probab. 10:4 (1982), 919-926. MR Zbl
[Roychowdhury 2016] M. K. Roychowdhury, "Optimal quantizers for some absolutely continuous probability measures", preprint, 2016. arXiv
[Selim and Ismail 1984] S. Z. Selim and M. A. Ismail, " k-means-type algorithms: a generalized convergence theorem and characterization of local optimality", IEEE Trans. Pattern Anal. Mach. Intell. 6:1 (1984), 81-87. Zbl
[Steinhaus 1956] H. Steinhaus, "Sur la division des corps matériels en parties", Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 801-804. MR Zbl
[Vattani 2011] A. Vattani, " k-means requires exponentially many iterations even in the plane", Discrete Comput. Geom. 45:4 (2011), 596-616. MR Zbl

Received: 2017-11-06 Revised: 2018-02-09 Accepted: 2018-03-07
bgb@math.uh.edu Department of Mathematics, University of Houston, Houston, TX, United States
cm4il243@gmail.com Department of Mathematics, University of Houston, Houston, TX, United States

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

Colin Adams	Williams College, USA	Gaven J. Martin	Massey University, New Zealand
Arthur T. Benjamin	Harvey Mudd College, USA	Mary Meyer	Colorado State University, USA
Martin Bohner	Missouri U of Science and Technology,	USA Emil Minchev	Ruse, Bulgaria
Nigel Boston	University of Wisconsin, USA	Frank Morgan	Williams College, USA
Amarjit S. Budhiraja	U of N Carolina, Chapel Hill, USA	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran
Pietro Cerone	La Trobe University, Australia	Zuhair Nashed	University of Central Florida, USA
Scott Chapman	Sam Houston State University, USA	Ken Ono	Emory University, USA
Joshua N. Cooper	University of South Carolina, USA	Timothy E. O'Brien	Loyola University Chicago, USA
Jem N. Corcoran	University of Colorado, USA	Joseph O'Rourke	Smith College, USA
Toka Diagana	Howard University, USA	Yuval Peres	Microsoft Research, USA
Michael Dorff	Brigham Young University, USA	Y.-F. S. Pétermann	Université de Genève, Switzerland
Sever S. Dragomir	Victoria University, Australia	Jonathon Peterson	Purdue University, USA
Behrouz Emamizadeh	The Petroleum Institute, UAE	Robert J. Plemmons	Wake Forest University, USA
Joel Foisy	SUNY Potsdam, USA	Carl B. Pomerance	Dartmouth College, USA
Errin W. Fulp	Wake Forest University, USA	Vadim Ponomarenko	San Diego State University, USA
Joseph Gallian	University of Minnesota Duluth, USA	Bjorn Poonen	UC Berkeley, USA
Stephan R. Garcia	Pomona College, USA	Józeph H. Przytycki	George Washington University, USA
Anant Godbole	East Tennessee State University, USA	Richard Rebarber	University of Nebraska, USA
Ron Gould	Emory University, USA	Robert W. Robinson	University of Georgia, USA
Sat Gupta	U of North Carolina, Greensboro, USA	Javier Rojo	Oregon State University, USA
Jim Haglund	University of Pennsylvania, USA	Filip Saidak	U of North Carolina, Greensboro, USA
Johnny Henderson	Baylor University, USA	James A. Sellers	Penn State University, USA
Natalia Hritonenko	Prairie View A\&M University, USA	Hari Mohan Srivastava	University of Victoria, Canada
Glenn H. Hurlbert	Arizona State University,USA	Andrew J. Sterge	Honorary Editor
Charles R. Johnson	College of William and Mary, USA	Ann Trenk	Wellesley College, USA
K. B. Kulasekera	Clemson University, USA	Ravi Vakil	Stanford University, USA
Gerry Ladas	University of Rhode Island, USA	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy
David Larson	Texas A\&M University, USA	Ram U. Verma	University of Toledo, USA
Suzanne Lenhart	University of Tennessee, USA	John C. Wierman	Johns Hopkins University, USA
Chi-Kwong Li	College of William and Mary, USA	Michael E. Zieve	University of Michigan, USA
Robert B. Lund	Clemson University, USA		

PRODUCTION

Silvio Levy, Scientific Editor

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2019 is US $\$ 195 /$ year for the electronic version, and $\$ 260 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

involve 2019 vol. 12 no. 2

Lights Out for graphs related to one another by constructions 181Laura E. Ballard, Erica L. Budge and Darin R.Stephenson
A characterization of the sets of periods within shifts of finite type 203
Madeline Doering and Ronnie Pavlov
Numerical secondary terms in a Cohen-Lenstra conjecture on real 221 quadratic fieldsCodie Lewis and Cassandra Williams
Curves of constant curvature and torsion in the 3-sphere 235Debraj Chakrabarti, Rahul Sahay and JaredWilliams
Properties of RNA secondary structure matching models 257
Nicole Anderson, Michael Breunig, Kyle Goryl, Hannah Lewis, Manda Riehl and McKenzie Scanlan
Infinite sums in totally ordered abelian groups 281Greg Oman, Caitlin Randall and Logan Robinson
On the minimum of the mean-squared error in 2-means clustering 301Bernhard G. Bodmann and Craig J. George
Failure of strong approximation on an affine cone 321
Martin Bright and Ivo Kok
Quantum metrics from traces on full matrix algebras 329Konrad Aguilar and Samantha Brooker
Solving Scramble Squares puzzles with repetitions 343Jason Callahan and Maria Mota
Erdős-Szekeres theorem for cyclic permutations 351Éva CZabarka and Zhiyu Wang

[^0]: MSC2010: 62H30.
 Keywords: k-means clustering, performance guarantees, mean-squared error.
 This paper was supported in part by an REU portion of NSF grant DMS-1412524 and by NSF grant DMS-1715735.

