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It is known that a modular form on SL2(Z) can be expressed as a rational function
in η(z), η(2z) and η(4z). By using known theorems and calculating the order
of vanishing, we can compute the eta-quotients for a given level. Using this
count, knowing how many eta-quotients are linearly independent, and using the
dimension formula, we can figure out a subspace spanned by the eta-quotients.
In this paper, we primarily focus on the case where the level is N = p, a prime.
In this case, we will show an explicit count for the number of eta-quotients of
level p and show that they are linearly independent.

1. Introduction and statement of results

Modular forms and cusp forms encode important arithmetic information, and are
therefore important to study. An easy way to accomplish this is to study the
Dedekind eta-function:

η(z) := q1/24
∏
n≥1

(1− qn), where q = e2π i z. (1-1)

In particular, we focus on functions of the form

f (z)=
∏
d | N

ηrd (dz), rd ∈ Z, (1-2)

which we call eta-quotients, as they provide nice examples of modular forms.
The following theorem is the primary motivation behind this paper.

Theorem 1.1 [Ono 2004, Theorem 1.67]. Every modular form on SL2(Z) may be
expressed as a rational function in η(z), η(2z), and η(4z).

While the recent work of Rouse and Webb [2015] has shown that Theorem 1.1
does not generalize to all levels, the subspace of eta-quotients for fixed level at least 2
is still interesting. The goal of this paper is to look at the vector space of modular
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forms with prime level, Mk(01(p)), and count the number of eta-quotients for fixed
weight k and level p, and compare the span of these eta-quotients with Mk(01(p)).
In other words, this paper focuses on explicitly counting the eta-quotients that are
modular forms for the congruence subgroups 00(p) and 01(p), where p is a prime.

Theorem 1.2. Let p > 3 be a prime and k be an integer. Then there exists f (z)=
ηr1(z)ηrp(pz) such that f (z) is a weakly holomorphic modular form with weight k
of level p if and only if k is divisible by h = 1

2 gcd(p− 1, 24).

This first theorem provides a condition on k that is necessary and sufficient for
showing that the space of weakly holomorphic modular forms with weight k and
level p contains eta-quotients. With some effort, we can create similar conditions
to guarantee when f (z) is in Mk(01(p)). The next theorem gives an explicit count
of the number of eta-quotients that are cusp forms of weight k and level p.

Theorem 1.3. Let p > 3 be a prime. Let k = hk ′, where h is the needed divisor
of k given by Theorem 1.2. Let d = (p− 1)/(2h), and let c be the smallest positive
integer representative of k ′h/12 modulo d:

(1) For c = k(p + 1)/12− bk(p + 1)/(12d)cd, the number of eta-quotients in
Sk(01(p)) is

k(p+ 1)
12d

− 1.

(2) For c < k(p + 1)/12− bk(p + 1)/(12d)cd, the number of eta-quotients in
Sk(01(p)) is ⌈

k(p+ 1)
12d

⌉
.

(3) For c > k(p + 1)/12− bk(p + 1)/(12d)cd, the number of eta-quotients in
Sk(01(p)) is ⌊

k(p+ 1)
12d

⌋
.

There are also eta-quotients in Mk(01(p)) that are not cusp forms that are given
by the following theorem.

Theorem 1.4. Let p > 3 be a prime. Then, Mk(01(p)) \ Sk(01(p)) contains at
least one eta-quotient if and only if 1

2(p − 1) | k. Furthermore, for k > 0 and
1
2(p− 1) | k, there are exactly two eta-quotients in Mk(01(p)) \ Sk(01(p)), which
are of the forms

η2pk/(p−1)(pz)
η2k/(p−1)(z)

and
η2pk/(p−1)(z)
η2k/(p−1)(pz)

.

Finally, the following theorem also tells us the size of the subspace spanned by
eta-quotients.
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Theorem 1.5. Let p > 3 be a prime. Then, the eta-quotients in Mk(01(p)) given
by the previous theorems are linearly independent.

Section 2 of this paper provides the necessary background for the results. The
background includes information on modular forms, the dimension formula, and
eta-quotients. Section 3 provides the proofs of the results given in this section.
Finally, Section 4 details still-open questions and some ideas of how to extend these
results further.

2. Background

2A. Modular forms. In this section, we present some definitions and basic facts
from the theory of modular forms. For further details, the interested reader is
referred to [Koblitz 1993, Chapter 3].

Definition 2.1. The modular group, denoted by SL2(Z), is the group of all matrices
of determinant 1 which have integral entries.

The modular group acts on the upper half-plane H= {x + iy | x, y ∈ R, y > 0}
by linear fractional transformations(

a b
c d

)
z =

az+ b
cz+ d

.

Furthermore, if we define H∗ to be the set H∪Q∪{i∞}, then the action of SL2(Z)

on H extends to an action on H∗ [Koblitz 1993].
There are only certain specific subgroups of SL2(Z) which we will use for our

purposes. They are

00(N )=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡

(
∗ ∗

0 ∗

)
(mod N )

}
,

01(N )=
{(

a b
c d

)
∈ SL2(Z)

∣∣∣∣ (a b
c d

)
≡

(
1 ∗
0 1

)
(mod N )

}
.

Each of these subgroups is called a congruence subgroup of level N. Note that if
N = 1, then 00(N )= 01(N )= SL2(Z). This brings us to our next definition.

Definition 2.2. Let0≤SL2(Z) be a congruence subgroup and define an equivalence
relation on Q∪ {∞} by z1 ∼ z2 if there is a γ ∈ 0 such that γ · z1 = z2. We call
each equivalence class under this relation a cusp of 0.

Now, for an integer k and a function f :H∗→ C and a γ =
(a

c
b
d

)
∈ SL2(Z) we

define the weight-k slash operator by

f |kγ (z)= (cz+ d)−k f (γ · z).
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Note that we will often suppress the weight from the notation when it is clear from
context or irrelevant for our purposes.

We can now define the objects which will be of primary interest to us.

Definition 2.3. A function f :H∗→ C is called a weakly holomorphic modular
form of weight k and level 0 if

(1) f is holomorphic on H,

(2) f is modular, i.e., for every γ ∈ 0 and z ∈H we have f | γ (z)= f (z), and

(3) f is meromorphic at each cusp of 0.

Furthermore, if we replace condition (3) by “ f is holomorphic at each cusp of 0”,
then we call f a modular form. If we further replace condition (3) with “ f vanishes
at each cusp of 0”, then we call f a cusp form.

Consider a form f of level N. We will clarify what we mean by a function being
“holomorphic at a cusp”. First, consider the cusp {i∞}, which we call “the cusp
at∞”. Note that the matrix

T =
(

1 1
0 1

)
is an element of 01(N ) and hence 00(N ) for every N. As our function satisfies
condition (2), we have f (T z)= f (z+ 1)= f (z); i.e., our function is periodic. It
is a basic fact from complex analysis that such a function has a Fourier expansion
of the form

f (z)=
∞∑

n=−∞

anqn, where q := e2π i z.

Using this, we say that f is meromorphic at {i∞} if there is some c < 0 such that
an = 0 for all n < c. We say that f holomorphic at {i∞} if an = 0 for all n < 0,
and we say that f vanishes at {i∞} if an = 0 for all n ≤ 0. We call the smallest n
such that an 6= 0 the order of vanishing on the cusp at∞. To cover another cusp α,
let γ ∈ SL2(Z) be such that γ ·∞ = α. Then, we need

(cz+ d)−k f (γ · z)=
∞∑

n=−∞

cnqn.

If this holds, then we say f is meromorphic at α if there is some c < 0 such that
cn = 0 for all n < c. We also similarly say that the smallest n such that cn 6= 0 is
the order of vanishing at α.

Now, we set some notation which we will use throughout. For 0 ≤ SL2(Z) we
denote the spaces of weakly holomorphic modular forms, modular forms, and cusp
forms of level 0 and weight k by M !k(0), Mk(0), and Sk(0), respectively. Note
that the spaces Sk(0)≤ Mk(0) are finite-dimensional complex vector spaces.
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Throughout, we will also need the notion of a modular form with an associated
character. We define a Dirichlet character of modulus N as a map χ : Z→ C such
that:

(1) χ(m)= χ(m+ N ) for all m ∈ Z.

(2) If gcd(m, N ) > 1 then χ(m)= 0. If gcd(m, N )= 1, then χ(m) 6= 0.

(3) χ(mn)= χ(m)χ(n) for all integers m, n.

Furthermore, if we let c be the minimal integer such that χ factors through (Z/cZ)x,
then we say χ has conductor c.

Let f ∈ Mk(01(N )) and suppose further that f satisfies

f | γ (z)= χ(d) f (z) for all γ =
(

a b
c d

)
∈ 00(N ).

Then we say that f is a modular form of level N and character χ , and we denote
the space of such functions by Mk(N , χ). Note that this is defined similarly for
weakly holomorphic modular forms and cusp forms.

It is well known that we have the decomposition

Mk(01(N ))=
⊕

χ mod N

Mk(N , χ),

where the direct sum is over all Dirichlet characters modulo N. We can further
decompose Mk(N , χ) into

Mk(N , χ)= Sk(N , χ)⊕ Ek(N , χ),

where Sk(N , χ) is the space of cusp forms and Ek(N , χ), called the Eisenstein
subspace, is orthogonal complement of Mk(N , χ) with respect to the Petersson
inner product.

2B. Dimension formulas. In this section we present formulas for the dimensions of
spaces of cusp and modular forms. For more details regarding dimension formulas,
the interested reader is referred to [Stein 2007].

2B1. The dimension formula for level 00(p) with trivial character. We present a
formula for the dimension of Ek(00(p)) and Sk(00(p)) for a rational prime p ≥ 5.

First, we set

µ0,2(p)=
{

0 if p ≡ 3 (mod 4),
2 if p ≡ 1 (mod 4),

µ0,3(p)=
{

0 if p ≡ 2 (mod 3),
2 if p ≡ 1 (mod 3).

Then define
g0(p)= 1

12(p+ 1)− 1
4µ0,2(p)− 1

3µ0,3(p).
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dim Sk(00(p))

k(12) ↓ p(12)→ 1 5 7 11

0 1
12 (u+2) 1

12 (u−6) 1
12 (u−4) 1

12 (u−12)

1 0 0 0 0

2 1
12 (u−26) 1

12 (u−18) 1
12 (u−20) 1

12 (u−12)

3 0 0 0 0

4 1
12 (u−6) 1

12 (u−6) 1
12 (u−12) 1

12 (u−12)

5 0 0 0 0

6 1
12 (u−10) 1

12 (u−18) 1
12 (u−4) 1

12 (u−12)

7 0 0 0 0

8 1
12 (u−14) 1

12 (u−6) 1
12 (u−20) 1

12 (u−12)

9 0 0 0 0

10 1
12 (u−18) 1

12 (u−18) 1
12 (u−12) 1

12 (u−12)

11 0 0 0 0

Table 1. The dimension of Sk(00(p)) with trivial character and
k > 2. Note that u = (p+1)(k−1).

Using this we have dim S2(00(p))= g0(p) and dim E2(00(p))= 1, and for even
k ≥ 4 we have dim Ek(00(p))= 2 and

dim Sk(00(p))= (k− 1)(g0(p)− 1)+ (k− 2)+µ0,2(p)
⌊ 1

4 k
⌋
+µ0,3(p)

⌊1
3 k
⌋
.

From this, we see that our formula depends on the congruence class which k and p
lie in modulo 12, so compiling these different congruences together we have Table 1.

2B2. The dimension formula for 00(p) with quadratic character. We will consider
the case that our level is 00(p) for some rational prime p and that our associated
character is quadratic. Note that at the end of the section we compile all of our
computations together in a table for convenience.

In Section 2B1 we considered the trivial character case, so we now set χ(·)=
(
·

p

)
.

We must compute the summations∑
x∈A4(p)

χ(x) and
∑

x∈A3(p)

χ(x),

where A4(N )= {x ∈Z/NZ : x2
+1= 0} and A3(p)= {x ∈Z/pZ : x2

+ x+1= 0}.
First, we will consider

∑
x∈A4(p) χ(x). This is clearly zero if A4(p) is empty,

which occurs precisely when p ≡ 3 (mod 4). Also, it is immediate that our sum-
mation equals 1 when p = 2. Now suppose p ≡ 1 (mod 4). Then #A4(p) = 2.
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Note that if r ∈ A4(p) then −r ∈ A4(p) and χ(r) = χ(−r) since χ(−1) = 1.
Furthermore, it is not hard to see that χ(r)= 1 if and only if there is an element of
order 8 in (Z/pZ)x, i.e., p ≡ 1 (mod 8). Thus, we have

∑
x∈A4(p)

χ(x)=


1 if p = 2,
0 if p ≡ 3 (mod 4),
2 if p ≡ 1 (mod 8),
−2 if p ≡ 5 (mod 8).

Now we consider the summation
∑

x∈A3(p) χ(x). Similar to the above, we have
A3(p) is empty if p ≡ 2 (mod 3), in which case our summation is zero. Also,
if p = 3 then our summation is 1. Now, suppose that p ≡ 1 (mod 3). Note: it
is immediate that if r ∈ A3(p) then so is r2. Similar to the previous situation,
we have χ(r) = 1 if and only if there is an element of order 6 in (Z/pZ)x, i.e.,
p ≡ 1 (mod 6). Note that as p is prime, it follows that p ≡ 1 (mod 6) is equivalent
to p ≡ 1 (mod 3). Thus, we have

∑
x∈A3(p)

χ(x)=


1 if p = 3,
0 if p ≡ 2 (mod 3),
2 if p ≡ 1 (mod 3).

We summarize our calculations in Table 2.

2C. Eta-quotients. We introduce the eta-function and present some results relating
this to modular forms. For further details regarding the eta-function, the interested
reader is referred to [Köhler 2011].

Recall Dedekind’s eta-function given in (1-1). The eta-function satisfies the
following transformation properties with respect to our matrices S, T defined in
Section 2A:

η(Sz)= η(−z−1)=
√
−i zη(z), η(T z)= η(z+ 1)= e2π i/24η(z).

More generally, we have the following general transformation formula for the
eta-function:

η(γ z)= ε(γ )(cz+ d)1/2η(z) for all γ =
(

a b
c d

)
∈ SL2(Z),

where

ε(γ )=


(

d
|c|

)
e(2π i/24)((a+d)c−bd(c2

−1)−3c) if c is odd,

(−1)(1/4)(sgn(c)−1)(sgn(d)−1)
(

d
|c|

)
e(2π i/24)((a+d)c−bd(c2

−1)+3d−3−3cd) if c is even,

and sgn(x)= x/|x |. For a proof of this transformation formula, the reader is referred
to [Knopp 1970, Theorem 10, Chapter 3].
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dim Sk
(

p,
(
·

p

))
k(12) ↓ p(24)→ 1 5 7 11

0 1
12 (u+8) 1

12 (u−12) 0 0

1 0 0 1
12 u 1

12 (u−6)

2 1
12 (u−20) 1

12 u 0 0

3 0 0 1
12 (u+2) 1

12 (u−6)

4 1
12 u 1

12 (u−12) 0 0

5 0 0 1
12 (u−14) 1

12 (u−6)

6 1
12 (u−4) 1

12 u 0 0

7 0 0 1
12 u 1

12 (u−6)

8 1
12 (u−4) 1

12 (u−12) 0 0

9 0 0 1
12 (u+2) 1

12 (u−6)

10 1
12 (u−12) 1

12 u 0 0

11 0 0 1
12 (u−14) 1

12 (u−6)

k(12) ↓ p(24)→ 13 17 19 23

0 1
12 (u−4) 1

12 u 0 0

1 0 0 1
12 u 1

12 (u−6)

2 1
12 (u−8) 1

12 (u−12) 0 0

3 0 0 1
12 (u+2) 1

12 (u−6)

4 1
12 (u−12) 1

12 u 0 0

5 0 0 1
12 (u−14) 1

12 (u−6)

6 1
12 (u+8) 1

12 (u−12) 0 0

7 0 0 1
12 u 1

12 (u−6)

8 1
12 (u−20) 1

12 u 0 0

9 0 0 1
12 (u+2) 1

12 (u−6)

10 1
12 u 1

12 (u−12) 0 0

11 0 0 1
12 (u−14) 1

12 (u−6)

Table 2. Dimension of Sk
(

p,
(
·

p

))
. Note that u = (p+1)(k−1).

In addition to the eta-function, we will also need to consider the related function
η(δz) for a positive integer δ. If we set f (z)= η(δz) then f (z) satisfies

f (γ z)= ε
((

a δb
c/δ d

))
(cz+ d)1/2 f (z) for all γ =

(
a b
c d

)
∈ 00(δ).
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Finally, we will need the transformation

f (T z)= e2π iδ/24 f (z).

Notice that this function is “almost” a modular form. With this in mind, we consider
certain products of these functions with the goal of eliminating the “almost”. This
brings us to eta-quotients, which we defined in (1-2). We are interested in when
these eta-quotients are modular forms. We have the following theorem which
partially answers this question.

Theorem 2.4 [Ono 2004, Theorem 1.64]. Define the eta-quotient

f (z)=
∏
δ | N

ηrδ (δz),

and set
k = 1

2

∑
δ | N

rδ ∈ Z.

Suppose our exponents r1, . . . , rN satisfy∑
δ | N

δrδ ≡ 0 (mod 24) and
∑
δ | N

N
δ

rδ ≡ 0 (mod 24).

Then,
f |kγ (z)= χ(d) f (z)

for all γ =
(a

c
b
d

)
∈ 00(N ), where

χ(n)=
(
(−1)ks

n

)
with s =

∏
δ | N δ

rδ .

This theorem provides conditions on when an eta-quotient is a weakly holo-
morphic modular form. However, to answer the question of when an eta-quotient
is a modular form we need the following theorem, which provides information
concerning the order of vanishing at the cusps of 00(N ).

Theorem 2.5 [Ono 2004, Theorem 1.65]. Let f (z) be an eta-quotient satisfying
the conditions of Theorem 2.4. Let c, d ∈ N with d | N and (c, d) = 1. Then, the
order of vanishing of f (z) at the cusp c/d is

vd =
N
24

∑
δ | N

(d, δ)2rδ
(d, N/d)dδ

.

3. Proofs of results

We will provide the proofs for the results given in Section 1. We will assume that
the eta-quotients being discussed always have N = p > 3, which is a prime, unless
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otherwise stated. From Theorems 2.4 and 2.5, we have conditions that tell us when
an eta-quotient is a holomorphic modular form. Thus, we will use the equations

1
2(r1+ rp)= k, (3-1)

r1+ prp ≡ 0 (mod 24), (3-2)

pr1+ rp ≡ 0 (mod 24), (3-3)

v1 =
1
24(pr1+ rp), (3-4)

vp =
1
24(r1+ prp), (3-5)

where v1 and vp are the orders of vanishing at the two cusps of 01(p), i∞ and
1/p, respectively.

For a fixed prime p and a fixed weight k, we see that it is possible to express rp

in terms of r1 by (3-1). It is convenient to rewrite (3-4) and (3-5) as

24v1 = 2k+ (p− 1)r1, (3-6)

24vp = 2kp+ (1− p)r1. (3-7)

It is now clear that we can relate the orders of vanishing to the weight of an
eta-quotient by

24(v1+ vp)= 2k(p+ 1). (3-8)

We begin the discussion for counting eta-quotients of level 00(p) by looking at
possible conditions on k. These conditions were stated in Theorem 1.2, which we
restate here for convenience.

Theorem 1.2. Let p > 3 be a prime and k be an integer. Then there exists f (z)=
ηr1(z)ηrp(pz) such that f (z) is a weakly holomorphic modular form with weight k
of level p if and only if k is divisible by h = 1

2 gcd(p− 1, 24).

Proof. (→) Suppose that f (z) ∈ M !(01(p)). We note that it suffices to show that
we can satisfy (3-7) and (3-8) since (3-6) can be gained from these two.

From (3-8), we see that we want 1
12 k(p+ 1) to be an integer, as the orders of

vanishing, v1 and vp, are integers. From here we can find a divisor d of k that would
make this possible. Then by (3-7), we know that we need 24 | (2kp− (p− 1)r1).
This gives us

2pdn ≡ (p− 1)r1 (mod 24), (3-9)

where dn = k. Let δ = gcd(24, 2dp, p− 1). Then, we get that 2dp/δ, (p− 1)/δ ∈
(Z/(24/δ)Z)× and obtain our desired conclusion, where d = h = 1

2 gcd(p− 1, 24);
except for when p is congruent to 1 or 17 modulo 24.

Suppose that p ≡ 1 (mod 24). Then we can rewrite (3-9) as

12n ≡ 0 (mod 24).
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This tells us that n must be even. Thus, we have k ≡ 0 (mod 12). We further note
that 12= 1

2 gcd(24`, 24), therefore showing our result for this case.
Suppose that p ≡ 17 (mod 24). Rewriting (3-9), we get

68n ≡ 16r1 (mod 24).

This tells us that

5n ≡ 4r1 (mod 6).

Since 5 ∈ Z/6Z×, we have

n ≡ 2r1 (mod 6).

Therefore, n must be even, and we have 4 | k. As 4= 1
2 gcd(24`+16, 24), we reach

our desired conclusion.

(←) Suppose that h = 1
2 gcd(p − 1, 24) divides k. We want to show that there

exists f (z)= ηr1(z)ηrp(pz) in M !k(01(p)). It is sufficient to show that there exists
r1 such that r + p(2k− r1)≡ 0 (mod 24). We can interpret this as

r1(1− p)+ 2pk = 24N ,

where N ∈ Z. As 2h divides every term, we can get

−r1d + p 2k
2h
=

24
2h

N .

Therefore, we have

dr1 ≡ p k
h

(
mod 24

2h

)
.

Since d and 24/(2h) are relatively prime, d has an inverse in Z/(24/(2h))Z. Thus,
there exists a unique r1 ∈ Z/(24/(2h))Z such that

r1 ≡ p
k
h
(d)−1

(
mod 24

2h

)
. �

As mentioned in Section 1, we can extend Theorem 1.2 to show when there
exists f (z)= ηr1(z)ηrp(pz) ∈ Mk(01(p)). Before we do so, we need a lemma.

Lemma 3.1. Let N be an integer such that gcd(N , 6)= 1. Let f (z) be given by

f (z)=
∏
d | N

ηrd (dz).

If f ∈ Mk(00(N ), χ), then it must be the case that∑
d | N

drd ≡ 0 (mod 24) and
∑
d | N

N
d

rd ≡ 0 (mod 24).
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1
12 k(p+ 1)

v1

vp

1
12 k(p+ 1)

Figure 1. The line v1+ vp =
1

12 k(p+ 1).

Proof. Since f ∈ Mk(00(p), χ), the q-series expansion of f about the cusp at
infinity must look like

f (z)=
∑
n≥0

cnqn.

Recall that η(z)= q1/24∏
n≥1(1− qn). Thus, we would have∏

d | N

ηrd (dz)= q(
∑

d | N rd d)/24
∏
n≥1

(∏
d | N

(1− qdn)rd

)
.

Therefore, we need 24 to divide ∑
d | N

drd .

We also note that for all primes p ≥ 5, we have p2
≡ 1 (mod 24). Therefore,

Nd ≡ N/d (mod 24). Thus, we have

0≡ N
∑
d | N

drd ≡
∑
d | N

N
d

rd (mod 24). �

As we wish to focus on holomorphic modular forms, we now want nonnegative
orders of vanishing, i.e., v1, vp ≥ 0. Using this condition and (3-8), we also have
v1, vp ≤ k(p+ 1)/12. We use Figure 1 to show the line that relates v1 to vp given
a fixed k and p. We note that given (3-6), we can define v1 in terms of r1, and vice
versa. Thus, to count the number of eta-quotients of our desired form, it suffices
to count the number of possible orders of vanishing. As orders of vanishing are
integer values, we only consider integer points on the line given in Figure 1.

Furthermore, from (3-6), we have

(p− 1)r1 = 24v1− 2k.
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This implies that 24v1 − 2k ≡ 0 (mod p − 1). In other words, we can write
24v1 − 2k = (p − 1)`, where ` ∈ Z. Recall how we defined h in Theorem 1.2.
Since 2h | 2k and 2h | 24, we can write 24/(2h)v1− k ′ = d`. We also know that
2h | (p− 1). Therefore, we have

24
2h
v1 ≡ k ′ (mod d).

Since we have 2h = gcd(p− 1, 24), we get 1= gcd(d, 24/(2h)). This implies that
we have a multiplicative inverse of 24/(2h) in Z/dZ. Thus, we have

v1 ≡

(24
2h

)−1
k ′ (mod d). (3-10)

From Theorem 2.4 and Lemma 3.1, we get that (3-10) becomes a necessary and
sufficient condition for an eta-quotient with order of vanishing v1 to be in M !k(01(p)).
Now, we have the following corollary which follows from this explanation as well
as Theorem 1.2 and Lemma 3.1.

Corollary 3.2. Let p ≥ 5 be a prime. There exists f (z) = ηr1(z)ηrp(pz) in
Mk(01(p)) if and only if h = 1

2 gcd(p− 1, 24) divides k and d ≤ 1
12 k(p+ 1).

We note that by definition, cusp forms occur on the interior of our line, and non-
cuspidal modular forms occur at the end points. For this reason it is useful to perform
the counts of cusp forms and noncuspidal modular forms separately. First, we prove
the count of cusp forms given in Theorem 1.3, which we restate here for convenience.

Theorem 1.3. Let p > 3 be a prime. Let k = hk ′, where h is the needed divisor of
k given by Theorem 1.2. Let d = (p− 1)/(2h), and let c be the smallest positive
integer representative of k ′h/12 modulo d.

(1) For c = k(p + 1)/12− bk(p + 1)/(12d)cd, the number of eta-quotients in
Sk(01(p)) is

k(p+ 1)
12d

− 1.

(2) For c < k(p + 1)/12− bk(p + 1)/(12d)cd, the number of eta-quotients in
Sk(01(p)) is ⌈

k(p+ 1)
12d

⌉
.

(3) For c > k(p + 1)/12− bk(p + 1)/(12d)cd, the number of eta-quotients in
Sk(01(p)) is ⌊

k(p+ 1)
12d

⌋
.

Proof. Since we are only considering cusp forms, we can assume that v1, vp > 0.
The number of points on our line from Figure 1 which satisfy this inequality and the
congruence from (3-10) is the number of eta-quotients. We now consider three cases.



840 ALLISON ARNOLD-ROKSANDICH, KEVIN JAMES AND RODNEY KEATON

Case 1: Suppose c = 0 = k(p + 1)/12 − bk(p + 1)/(12d)cd. Then, we have
v1 ≡ 0 (mod d). Furthermore, we note that d | k(p + 1)/12. Thus, we have the
number of points which match our congruence is k(p+ 1)/(12d). However, we
note that one of these points gives us vp = 0, which is not desired. Therefore, the
number of eta-quotients that are in Sk(01(p)) is

k(p+ 1)
12d

− 1.

Case 2: Suppose c<k(p+1)/12−bk(p+1)/(12d)cd . Note that bk(p+1)/(12d)cd
is less than k(p+ 1)/12. However, since c < k(p+ 1)/12−bk(p+ 1)/(12d)cd,
we have another point to count that is between bk(p+1)/(12d)cd and k(p+1)/12.
Therefore, the number of eta-quotients that are in Sk(01(p)) is⌈

k(p+ 1)
12d

⌉
.

Case 3: Suppose c>k(p+1)/12−bk(p+1)/(12d)cd . Note that bk(p+1)/(12d)cd
is less than k(p+1)/12. Since c> k(p+1)/12−bk(p+1)/(12d)cd , we have no
more points to count between bk(p+ 1)/(12d)cd and k(p+ 1)/12. Therefore, the
number of eta-quotients that are in Sk(01(p)) is⌊

k(p+ 1)
12d

⌋
. �

Second, we prove the count of noncusp forms given in Theorem 1.4, which we
restate here for convenience.

Theorem 1.4. Let p> 3 be a prime. Then, Mk(00(p))\Sk(01(p)) contains at least
one eta-quotient if and only if 1

2(p−1) | k. Furthermore, for k > 0 and 1
2(p−1) | k,

there are exactly two eta-quotients in Mk(01(p))\ Sk(01(p)), which are of the form

η2pk/(p−1)(pz)
η2k/(p−1)(z)

and
η2pk/(p−1)(z)
η2k/(p−1)(pz)

.

Proof. (→) Suppose f (x)∈ Mk(01(p))\ Sk(01(p)) is an eta-quotient that satisfies
Theorem 2.4. Then, we know that at least one of the orders of vanishing must be
zero. Thus, we have two cases.

Case 1: Suppose v1 = 0. Then, pr1 + rp = 0, which can be rewritten to get
(p−1)r1=−2k. Therefore, we have 1

2(p− 1) | k. Furthermore, we can get that r1=

2k/(p−1), and thus rp = 2pk/(p−1). When plugging these values into vp we get

vp =
1
24

(
−2k
p− 1

+
2pk
p− 1

)
=

2k
24
> 0.

Case 2: Suppose vp = 0. Then, r1 + prp = 0, which can be rewritten to get
(1− p)r1 = −2pk. Therefore, 1

2(p− 1) | k since p - (p− 1) and therefore p | r1.
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Furthermore, we get that r1 = 2pk/(p− 1), and thus rp = −2k/(p− 1). When
plugging these values into v1 we get

v1 =
1
24

(
2pk
p− 1

+
−2k
p− 1

)
=

2k
24
> 0.

In both cases, the number needed to divide k is the same. Furthermore, both create
a single eta-quotient for a fixed k. Therefore, we have 1

2(p− 1) | k. Furthermore,
there are exactly two eta-quotients which result from looking at either of the orders
of vanishing being zero, and they are

η2pk/(p−1)(pz)
η2k/(p−1)(z)

and
η2pk/(p−1)(z)
η2k/(p−1)(pz)

.

(←) Suppose that k = 1
2(p− 1)m > 0 for some integer m. Also, suppose we have

the two eta-quotients

η2pk/(p−1)(pz)
η2k/(p−1)(z)

and
η2pk/(p−1)(z)
η2k/(p−1)(pz)

.

We consider each eta-quotient as its own case.

Case 1: Consider η2pk/(p−1)(pz)/η2k/(p−1)(z). Note that r1+rp =−2k/(p−1)+
2pk/(p− 1)= 2k. Furthermore,

r1+ prp =
−2k
p− 1

+
2pk
p− 1

p = (p2
− 1)m ≡ 0 (mod 24)

since p is relatively prime to 24, and

pr1+ rp = p
−2k
p− 1

+
2pk
p− 1

= 0≡ 0 (mod 24).

When looking at the orders of vanishing, we get

v1 =
1
24
(pr1+ rp)=

1
24

(
p
−2k
p− 1

+
2pk
p− 1

)
= 0≥ 0 and

vp =
1
24
(r1+ prp)=

1
24

(
−2k
p− 1

+
2pk
p− 1

p
)
=

1
24
(p2
− 1)m ≥ 0.

Since our orders of vanishing are both ≥ 0 and one of them is equal to 0, we have
η2pk/(p−1)(pz)/η2k/(p−1)(z) ∈ Mk(01(p)) \ Sk(01(p)).

Case 2: Consider η2pk/(p−1)(z)/η2k/(p−1)(pz). Note that r1+ rp = 2pk/(p−1)+
−2k/(p− 1)= 2k. Furthermore,

r1+ prp =
2pk
p− 1

+ p
−2k
p− 1

= 0≡ 0 (mod 24),
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and since p is relatively prime to 24,

pr1+ rp = p
2pk
p− 1

+
−2k
p− 1

= (p2
− 1)m ≡ 0 (mod 24).

When looking at the orders of vanishing, we get

v1 =
1
24
(pr1+ rp)=

1
24

(
p

2pk
p− 1

+
−2k
p− 1

)
=

1
24
(p2
− 1)m ≥ 0 and

vp =
1
24
(r1+ prp)=

1
24

(
2pk
p− 1

+
−2k
p− 1

p
)
= 0≥ 0.

Since our orders of vanishing are both ≥ 0 and one of them is equal to 0, we have

η2pk/(p−1)(z)
η2k/(p−1)(pz)

∈ Mk(01(p)) \ Sk(01(p)).

Thus, Mk(01(p)) \ Sk(01(p)) contains exactly two eta-quotients. �

From the eta-quotients given in the theorem, let k = 1
2(p− 1)m where m is a

positive integer. Then the eta-quotients have characters

χ1(n)=
(
(−1)(p−1)/2m p pm

n

)
and χ2(n)=

(
(−1)(p−1)/2m pm

n

)
,

respectively. In the case where m is even, both of the characters are guaranteed
to be the trivial character. When m is odd, we are guaranteed to have a quadratic
character. In fact, both quadratic characters are the same.

Now that we know how many eta-quotients there are and can write down what
they are if needed, we would like to know the dimension of the space spanned by
these eta-quotients. This is provided by Theorem 1.5, which we restate here for
convenience.

Theorem 1.5. Let p > 3 be a prime. Then, the eta-quotients in Mk(01(p)) given
by the previous theorems are linearly independent.

Proof. Suppose that we are looking at eta-quotients in Mk(01(p)) for a prime
p > 3. Without loss of generality, we look at the Fourier series about the cusp
at∞. By using the Sturm bound [Ono 2004], we get that we need to compare the
first

⌊ 1
12 pk

⌋
+ 1 terms of each Fourier series. We can pick a cusp and order the

eta-quotients increasingly by looking at the order of vanishing. We can then create
a matrix A where the i, j-th entry represents a( j) in the i-th eta-quotient’s Fourier
series. Since all of the eta-quotients have different orders of vanishing and are in
increasing order, we get that A is in echelon form. This tells us that all the rows
are linearly independent. Thus all of the eta-quotients are linearly independent. �

The following corollaries can all be obtained by comparing dimension formulas
with our counts and applying the previous theorem.
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Corollary 3.3. Let p ≥ 5 be a prime. Recall that h = 1
2 gcd(p − 1, 24) from

Theorem 1.2. Denote the space of level p, weight k eta-quotients by ηk(p).

(1) If p ≡ 3 (mod 4), then taking the limit over odd k in the appropriate congru-
ence class from Theorem 1.2 gives

lim
k→∞

dim ηk(p)
dim Sk

(
p,
(
·

p

)) = 2h
p− 1

.

(2) If p ≡ 3 (mod 4), then taking the limit over even k in the appropriate congru-
ence class from Theorem 1.2 gives

lim
k→∞

dim ηk(p)
dim Sk(00(p))

=
2h

p− 1
.

(3) If p≡ 1 (mod 4), then taking the limit over all k in the appropriate congruence
class from Theorem 1.2 gives

lim
k→∞

dim ηk(p)
dim Sk(00(p))+ dim Sk

(
p,
(
·

p

)) = h
p− 1

.

Finally, we would like to consider the case that our v1 and vp are integral but do
not correspond to integral r1, rp. To gain some intuition concerning the properties
of the “eta-quotients” formed from these r1, rp, we consider the following example.

Example 3.4. Let p = 11 and k = 6. Note that in this situation we have that in
order to have eta-quotients we must have v1 ≡ 3 (mod 5). So, we will investigate
the properties of the function obtained by choosing v1 6≡ 3 (mod 5).

Consider v1 = 1. This implies vp = 5. Then,(
r1

rp

)
=

(
1 11
11 1

)−1 (
24

120

)
=

(
54/5
6/5

)
.

Now, we can use these to form the “eta-quotient”

f (z)= η54/5(z)η6/5(11z).

Using the transformation properties from Section 2C we have

f (T z)= e27π i/30η54/5(z)e11π i/10η6/5(11z)= f (z).

Note that if we raise f (z) to the fifth power to cancel denominators of r1 and rp

then we can use Theorem 2.4 to verify that we obtain f (z)5 ∈ S30(00(11)), i.e., our
lattice point corresponds to a “root” of an η quotient of higher weight.

Note that the remaining choices for v1 give us similar results.
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4. Conclusion and further questions

We detailed the number of eta-quotients in Mk(00(p)) of the form ηr1(z)ηrp(pz).
Further work in this project would involve generalizing these results for all levels
as well as figuring out linear combinations of eta-quotients that would be possible
on a given level.
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