# $\bullet$ <br> involve a journal of mathematics 

The Fibonacci sequence under a modulus: computing all moduli that produce a given period

Alex Dishong and Marc S. Renault

# The Fibonacci sequence under a modulus: computing all moduli that produce a given period 

Alex Dishong and Marc S. Renault<br>(Communicated by Kenneth S. Berenhaut)


#### Abstract

The Fibonacci sequence $F=0,1,1,2,3,5,8,13, \ldots$, when reduced modulo $m$ is periodic. For example, $F \bmod 4=0,1,1,2,3,1,0,1,1,2, \ldots$ The period of $F \bmod m$ is denoted by $\pi(m)$, so $\pi(4)=6$. In this paper we present an algorithm that, given a period $k$, produces all $m$ such that $\pi(m)=k$. For efficiency, the algorithm employs key ideas from a 1963 paper by John Vinson on the period of the Fibonacci sequence. We present output from the algorithm and discuss the results.


## 1. The problem

Consider the usual Fibonacci sequence $F=0,1,1,2,3,5,8, \ldots$, with $F_{0}=0$, $F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$. When reduced modulo $m$, the Fibonacci sequence is periodic. For example, $F \bmod 4=0,1,1,2,3,1,0,1,1, \ldots$ The period of $F \bmod m$ is denoted by $\pi(m)$, so we see that $\pi(4)=6$. The properties of $\pi(m)$ have been studied extensively; see, e.g., [Gupta et al. 2012; Robinson 1963; Vinson 1963; Wall 1960]. One might ask, of course, if there are any other values of $m$ such that $\pi(m)=6$. The answer is no (you can verify this by hand), but it turns out that there are 10 different moduli $m$ such that $\pi(m)=24$ (namely, $6,9,12,16,18$, $24,36,48,72,144)$. Our goal is to construct an efficient algorithm that, given a period $k$, produces all $m$ such that $\pi(m)=k$.

It is instructive to first consider how one might solve the problem by brute force. If $\pi(m)=k$, then $F_{k} \equiv 0(\bmod m)$ and $F_{k+1} \equiv 1(\bmod m)$. That is, $m$ divides both $F_{k}$ and $F_{k+1}-1$. For brute force, we fix $k$, find all common divisors of $F_{k}$ and $F_{k+1}-1$, and then apply the $\pi$ function to these divisors to see which ones produce the desired value of $k$. Computing $\pi(m)$ is not difficult but it requires factoring $m$ as a product of primes, then factoring $p \pm 1$ for each prime $p$ that divides $m$. See [Wall 1960] for theorems on $\pi(m)$ and [Flanagan et al. 2015] for an algorithm for $\pi(m)$ (as well as many other facts about the Fibonacci sequence under a modulus).

[^0]By employing key ideas from a 1963 paper by John Vinson on the period of the Fibonacci sequence, we were able to produce an algorithm that does not require computing $\pi(m)$. Instead, the moduli we seek can be produced with simple divisibility tests.

## 2. The algorithm

In this section we present Theorem 2.1 on which our algorithm is based, pseudocode for the algorithm, and some output. In the next section we provide a proof of Theorem 2.1.

First, we note that $\pi(2)=3$ but it is known that for $m>2, \pi(m)$ must be even. By inspecting a few small cases, it is easy to see that no moduli produce a period of 4 , and the smallest even period is 6 . Let $L=2,1,3,4,7, \ldots$ denote the Lucas sequence: $L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$. It is well-known that $L_{n}=F_{2 n} / F_{n}=F_{n-1}+F_{n+1}$.

Theorem 2.1. Given any even $k \geq 6$ :
(1) If $k \equiv 2(\bmod 4)$, then $\pi(m)=k$ if and only if $m \mid L_{k / 2}$, and $m \nmid F_{q}$ for all $q$ such that $q \mid k$ and $q \neq k$.
(2) If $k \equiv 4(\bmod 8)$, then $\pi(m)=k$ if and only if $m \mid F_{k / 2}$, and $m \nmid L_{k / 4}$, and $m \nmid F_{q}$ for all $q$ such that $q \left\lvert\, \frac{k}{2}\right.$ and $q \neq \frac{k}{2}$ or $\frac{k}{4}$.
(3) If $k \equiv 0(\bmod 8)$, then $\pi(m)=k$ if and only if $m \mid F_{k / 2}$, and $m \nmid F_{q}$ for all $q$ such that $q \left\lvert\, \frac{k}{2}\right.$ and $q \neq \frac{k}{2}$.
The algorithm follows immediately from the theorem.
Algorithm 2.2. Given an integer $k \geq 2$, to produce the set of all $m$ such that $\pi(m)=k:$

```
Input: an integer \(k \geq 2\)
If \(k=3\), then return \(\{2\}\).
If \(k \in\{2,4\}\) or if \(k\) is odd, then return \(\}\).
If \(k \bmod 4=2\) :
    Let \(\mathcal{M}=\left\{m: m \mid L_{k / 2}\right\}\).
    Let \(\mathcal{F}=\left\{F_{q}: q \mid k\right.\) and \(\left.q \neq k\right\}\).
If \(k \bmod 8=4\) :
    Let \(\mathcal{M}=\left\{m: m \mid F_{k / 2}\right.\) and \(\left.m \nmid L_{k / 4}\right\}\).
    Let \(\mathcal{F}=\left\{F_{q}: q \left\lvert\, \frac{k}{2}\right.\right.\) and \(q \neq \frac{k}{2}\) and \(\left.q \neq \frac{k}{4}\right\}\).
If \(k \bmod 8=0\) :
    Let \(\mathcal{M}=\left\{m: m \mid F_{k / 2}\right\}\).
    Let \(\mathcal{F}=\left\{F_{q}: q \left\lvert\, \frac{k}{2}\right.\right.\) and \(\left.q \neq \frac{k}{2}\right\}\).
Return \(\{m \in \mathcal{M}: m \nmid f\) for all \(f \in \mathcal{F}\}\)
```



Figure 1. The number of $m$ such that $\pi(m)=k$ for a given $k$.

Figure 1 shows the results when the algorithm is run on all even $k$ from 6 to 700 and the size of the output set is calculated. The value of $k$ appears on the horizontal axis, and the number of moduli $m$ such that $\pi(m)=k$ is expressed on the vertical axis.

What surprised us most in this study was the incredible number of moduli that can produce a given period. For example, $\pi(m)=600$ for $1,466,812$ different values of $m$.

Moreover, the algorithm above has much greater speed than simple brute force. When we computed the moduli for all even periods $k$ from 6 to 300 , the brute force algorithm took 180.28 seconds, whereas Algorithm 2.2 completed the task in 0.62 seconds. We used the online Sage computer algebra system for our computations [Stein et al. 2016].

## 3. Proof of Theorem 2.1

The zeros in $F \bmod m$ are evenly spaced. For example, consider $F \bmod 5$ :

$$
F \bmod 5=0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1, \ldots
$$

(To see why the zeros are evenly spaced, we can use the identities

$$
\begin{aligned}
& F_{s+t}=F_{s-1} F_{t}+F_{s} F_{t+1}, \\
& F_{s-t}=(-1)^{t}\left(F_{s} F_{t+1}-F_{s+1} F_{t}\right) .
\end{aligned}
$$

If $F_{s} \equiv F_{t} \equiv 0$, then $F_{s+t} \equiv 0$ and $F_{s-t} \equiv 0$.)
The rank of $F \bmod m$, denoted by $\alpha(m)$, is the least index $i>0$ such that $F_{i} \equiv 0(\bmod m)$. We can deduce, for example, that if $m \mid F_{i}$, then $\alpha(m) \mid i$. The
order of $F \bmod m$, denoted by $\omega(m)$, is $\pi(m) / \alpha(m)$ (which is an integer since the zeros are evenly spaced). We see above that $\pi(5)=20, \alpha(5)=5$, and $\omega(5)=4$.

It turns out that $\pi(2)=3$, but for all $m>2, \pi(m)$ must be even. As we see in the mod 5 example, $\alpha(m)$ need not be even. It is a remarkable fact that for any $m$, $\omega(m)=1,2$, or 4 ; this is proven in [Vinson 1963]. In that paper, Vinson studies the relationship between the period, rank, and order. Based on the Vinson paper, Renault was able find several other consequences, and the following theorem is a direct result of Theorem 3.35 and Corollary 3.38 in [Renault 1996].

Theorem 3.1. For any modulus $m>2$ :
(1) $\pi(m) \equiv 2(\bmod 4)$ if and only if $\omega(m)=1$. In this case, $\alpha(m) \equiv 2(\bmod 4)$.
(2) If $\pi(m) \equiv 4(\bmod 8)$, then $\omega(m)=2$ or 4 . In this case, $\alpha(m) \equiv 2(\bmod 4)$ or $\alpha(m)$ is odd, respectively.
(3) If $\pi(m) \equiv 0(\bmod 8)$, then $\omega(m)=2$. In this case, $\alpha(m) \equiv 0(\bmod 4)$.

Since $\pi(m)$ is even for $m>2$, the above theorem describes all possible cases for $\pi(m)$. Also, even though the "in this case" portions follow obviously from their preceding statements, we can use them to draw conclusions. For example, we can see from the theorem that $\alpha(m) \equiv 0(\bmod 4)$ if and only if $\pi(m) \equiv 0(\bmod 8)$. We proceed now to the proof of Theorem 2.1.
Proof of Theorem 2.1 $(1) .(\Rightarrow)$ Assume $k \equiv 2(\bmod 4)$ and $\pi(m)=k$. Since $k \equiv 2(\bmod 4)$, Theorem 3.1 tells us that $\omega(m)=1$. Thus, $m \nmid F_{q}$ for all $q$ such that $1 \leq q<k$. In particular, $m \nmid F_{q}$ for any $q$ such that $q \mid k$ and $q \neq k$.

It remains to show that $m \mid L_{k / 2}$. By the fact that $\pi(m)=k$ and the identity $F_{-n}=(-1)^{n+1} F_{n}$, we see that $F_{k-n} \equiv F_{-n} \equiv(-1)^{n+1} F_{n}(\bmod m)$. Then, since $\frac{k}{2}$ is odd,

$$
F_{k / 2-1}=F_{k-(k / 2+1)} \equiv-F_{k / 2+1}(\bmod m) .
$$

Consequently, $m \mid F_{k / 2-1}+F_{k / 2+1}$. But by the identity $L_{n}=F_{n-1}+F_{n+1}$, this is exactly $m \mid L_{k / 2}$, as required.
$(\Leftarrow)$ Assume $k \equiv 2(\bmod 4)$ and (a) $m \mid L_{k / 2}$ and (b) $m \nmid F_{q}$ for any $q$ such that $q \mid k$ and $q \neq k$. We must show that $\pi(m)=k$.

By (a), $m \mid F_{k}$, so $\alpha(m) \mid k$. By (b) we find that in fact, $\alpha(m)=k$. Thus, $\pi(m)=k$, $2 k$, or $4 k$.

If $\pi(m)=4 k$, then $\omega(m)=4$ and by Theorem 3.1, $\alpha(m)$ must be odd. However, $\alpha(m) \equiv 2(\bmod 4)$, so this can't be the case.

If $\pi(m)=2 k$, then $\pi(m) \equiv 4(\bmod 8)$, and so Theorem 2.1 $(2)(\Rightarrow)$ implies $m \nmid L_{\pi(m) / 4}$; that is, $m \nmid L_{k / 2}$. But this contradicts our hypothesis (a) that $m \mid L_{k / 2}$, and so $\pi(m) \neq 2 k$.

We must conclude that $\pi(m)=k$ and the proof is complete.

Proof of Theorem $2.1(2) .(\Rightarrow)$ Assume $k \equiv 4(\bmod 8)$ and $\pi(m)=k$. Since $\pi(m) \equiv$ $4(\bmod 8)$, by Theorem 3.1 we know that $\omega(m)=2$ or 4 . In either case, $m \mid F_{k / 2}$ and $m \nmid F_{q}$ where $q \left\lvert\, \frac{k}{2}\right.$ and $q \neq \frac{k}{2}, \frac{k}{4}$. Thus, it only remains to prove that $m \nmid L_{k / 4}$.

For ease of notation, let $s=F_{k / 2+1}$, let $a=F_{k / 4+1}$, and observe that $s \not \equiv$ $1(\bmod m)$.

Claim 1. $F_{k / 4-1} \equiv-s a(\bmod m)$.
Proof of Claim 1. Modulo $m$, the Fibonacci sequence starting at $F_{k / 2}$ is $0, s, s, 2 s$, $3 s, 5 s, \ldots$, and in general, $F_{k / 2+n} \equiv s F_{n}(\bmod m)$. In particular, $F_{(3 k) / 4+1} \equiv s a$. The identity $F_{-n}=(-1)^{n+1} F_{n}$ implies $F_{k-n} \equiv F_{-n} \equiv(-1)^{n+1} F_{n}(\bmod m)$. Since $\frac{k}{4}$ is odd, we find,

$$
F_{k / 4-1} \equiv F_{k-((3 k) / 4+1)} \equiv-F_{(3 k) / 4+1} \equiv-s a(\bmod m)
$$

Claim 2. $(a, m)=1$.
Proof of Claim 2. We have $\left(F_{k / 4-1}, F_{k / 4+1}\right)=F_{(k / 4-1, k / 4+1)}=F_{2}=1$. So, there exist integers $u$ and $v$ such that $F_{k / 4-1} u+F_{k / 4+1} v=1$. Thus, $-s a u+a v \equiv 1(\bmod m)$, and so $a(-s u+v) \equiv 1(\bmod m)$ and we find that $a$ is invertible $\bmod m$. That is, $(a, m)=1$.

Consider the identity $L_{n}=F_{n-1}+F_{n+1}$. For contradiction,

$$
\begin{aligned}
m \mid L_{k / 4} & \Longrightarrow m \mid F_{k / 4-1}+F_{k / 4+1} \Longrightarrow-s a+a \equiv 0(\bmod m) \\
& \Longrightarrow a(1-s) \equiv 0(\bmod m) \Longrightarrow s \equiv 1(\bmod m)
\end{aligned}
$$

The last implication is due to the fact that $(a, m)=1$, and we've arrived at a contradiction since $s \not \equiv 1(\bmod m)$. We conclude $m \nmid L_{k / 4}$, as needed.
$(\Leftarrow)$ Assume $k \equiv 4(\bmod 8)$, (a) $m \mid F_{k / 2}$, (b) $m \nmid L_{k / 4}$, and (c) $m \nmid F_{q}$ for all $q \mid k$ where $q \neq \frac{k}{2}$ or $\frac{k}{4}$. We must prove that $\pi(m)=k$. By (a) and (c), $\alpha(m)=\frac{k}{4}$ or $\frac{k}{2}$. We know that the only possible values for $\omega(m)$ are 1,2 , or 4 .
Case 1: $\alpha(m)=\frac{k}{4}$.
If $\omega(m)=2$, then $\pi(m)=\frac{k}{2} \equiv 2(\bmod 4)$. However this contradicts Theorem 3.1 since $\pi(m) \equiv 2(\bmod 4)$ if and only if $\omega(m)=1$.

If $\omega(m)=1$, then $\pi(m)=\frac{k}{4} \equiv 1(\bmod 2)$. Again, this contradicts Theorem 3.1 since $\omega(m)=1$ if and only if $\pi(m) \equiv 2(\bmod 4)$.

Thus, in Case 1 we find that $\omega(m)=4$ and we conclude $\pi(m)=k$.
Case 2: $\alpha(m)=\frac{k}{2}$.
If $\omega(m)=4$, then $\pi(m)=2 k \equiv 0(\bmod 8)$. But by Theorem 3.1 , if $\pi(m) \equiv$ $0(\bmod 8)$, then $\omega(m)=2$, a contradiction.

If $\omega(m)=1$, then $\pi(m)=\frac{k}{2} \equiv 2(\bmod 4)$. We can now apply Theorem $2.1(1)(\Rightarrow)$, and we find $m \mid L_{\pi(m) / 2}=L_{k / 4}$. However, this contradicts our hypothesis (b).

Thus, in Case 2 we find $\omega(m)=2$ and we conclude $\pi(m)=k$.

Proof of Theorem 2.1(3). $(\Rightarrow)$ Assume $k \equiv 0(\bmod 8)$ and $\pi(m)=k$. Since $\pi(m) \equiv 0(\bmod 8)$, Theorem 3.1 tells us that $\omega(m)=2$, and so $\alpha(m)=\frac{k}{2}$. Thus, $m \mid F_{k / 2}$ and $m \nmid F_{q}$ for any $q$ such that $1 \leq q<\frac{k}{2}$. In particular, $m \nmid F_{q}$ for all $q$ such that $q \left\lvert\, \frac{k}{2}\right.$ and $q \neq \frac{k}{2}$, and this direction of the proof is complete.
$(\Leftarrow)$ Assume $k \equiv 0(\bmod 8)$, and (a) $m \mid F_{k / 2}$, and (b) $m \nmid F_{q}$ for all $q$ such that $q \left\lvert\, \frac{k}{2}\right.$ and $q \neq \frac{k}{2}$. We must prove that $\pi(m)=k$. By (a), we see $\alpha(m) \left\lvert\, \frac{k}{2}\right.$, and by (b), we deduce that in fact $\alpha(m)=\frac{k}{2}$. Thus $\alpha(m) \equiv 0(\bmod 4)$. By Theorem 3.1, this can only happen when $\omega(m)=2$. Thus $\pi(m)=k$.

## References

[Flanagan et al. 2015] P. Flanagan, M. S. Renault, and J. Updike, "Symmetries of Fibonacci points, $\bmod m "$, Fibonacci Quart. 53:1 (2015), 34-41. MR
[Gupta et al. 2012] S. Gupta, P. Rockstroh, and F. E. Su, "Splitting fields and periods of Fibonacci sequences modulo primes", Math. Mag. 85:2 (2012), 130-135. MR Zbl
[Renault 1996] M. Renault, The Fibonacci sequence under various moduli, master's thesis, Wake Forest University, 1996, available at http://webspace.ship.edu/msrenault/fibonacci/FibThesis.pdf.
[Robinson 1963] D. W. Robinson, "The Fibonacci matrix modulo m", Fibonacci Quart 1:2 (1963), 29-36. MR Zbl
[Stein et al. 2016] W. A. Stein et al., Sage mathematics software, Version 6.7, Sage Development Team, 2016, available at http://www.sagemath.org.
[Vinson 1963] J. Vinson, "The relation of the period modulo to the rank of apparition of $m$ in the Fibonacci sequence", Fibonacci Quart 1:2 (1963), 37-45. MR Zbl
[Wall 1960] D. D. Wall, "Fibonacci series modulo m", Amer. Math. Monthly 67 (1960), 525-532. MR Zbl

Received: 2016-06-02
ajdish@udel.edu
msrenault@ship.edu

Accepted: 2017-09-09
Department of Mathematical Sciences, University of Delaware, Newark, DE, United States

Mathematics Department, Shippensburg University, Shippensburg, PA, United States

# involve 

msp.org/involve

## INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all academic levels. The editorial board consists of mathematical scientists committed to nurturing student participation in research. Bridging the gap between the extremes of purely undergraduate research journals and mainstream research journals, Involve provides a venue to mathematicians wishing to encourage the creative involvement of students.

## MANAGING EDITOR

Kenneth S. Berenhaut Wake Forest University, USA
BOARD OF EDITORS

| Colin Adams | Williams College, USA | Suzanne Lenhart | University of Tennessee, USA |
| :---: | :---: | :---: | :---: |
| John V. Baxley | Wake Forest University, NC, USA | Chi-Kwong Li | College of William and Mary, USA |
| Arthur T. Benjamin | Harvey Mudd College, USA | Robert B. Lund | Clemson University, USA |
| Martin Bohner | Missouri U of Science and Technology, | USA Gaven J. Martin | Massey University, New Zealand |
| Nigel Boston | University of Wisconsin, USA | Mary Meyer | Colorado State University, USA |
| Amarjit S. Budhiraja | U of North Carolina, Chapel Hill, USA | Emil Minchev | Ruse, Bulgaria |
| Pietro Cerone | La Trobe University, Australia | Frank Morgan | Williams College, USA |
| Scott Chapman | Sam Houston State University, USA | Mohammad Sal Moslehian | Ferdowsi University of Mashhad, Iran |
| Joshua N. Cooper | University of South Carolina, USA | Zuhair Nashed | University of Central Florida, USA |
| Jem N. Corcoran | University of Colorado, USA | Ken Ono | Emory University, USA |
| Toka Diagana | Howard University, USA | Timothy E. O'Brien | Loyola University Chicago, USA |
| Michael Dorff | Brigham Young University, USA | Joseph O'Rourke | Smith College, USA |
| Sever S. Dragomir | Victoria University, Australia | Yuval Peres | Microsoft Research, USA |
| Behrouz Emamizadeh | The Petroleum Institute, UAE | Y.-F. S. Pétermann | Université de Genève, Switzerland |
| Joel Foisy | SUNY Potsdam, USA | Robert J. Plemmons | Wake Forest University, USA |
| Errin W. Fulp | Wake Forest University, USA | Carl B. Pomerance | Dartmouth College, USA |
| Joseph Gallian | University of Minnesota Duluth, USA | Vadim Ponomarenko | San Diego State University, USA |
| Stephan R. Garcia | Pomona College, USA | Bjorn Poonen | UC Berkeley, USA |
| Anant Godbole | East Tennessee State University, USA | James Propp | U Mass Lowell, USA |
| Ron Gould | Emory University, USA | Józeph H. Przytycki | George Washington University, USA |
| Andrew Granville | Université Montréal, Canada | Richard Rebarber | University of Nebraska, USA |
| Jerrold Griggs | University of South Carolina, USA | Robert W. Robinson | University of Georgia, USA |
| Sat Gupta | U of North Carolina, Greensboro, USA | Filip Saidak | U of North Carolina, Greensboro, USA |
| Jim Haglund | University of Pennsylvania, USA | James A. Sellers | Penn State University, USA |
| Johnny Henderson | Baylor University, USA | Andrew J. Sterge | Honorary Editor |
| Jim Hoste | Pitzer College, USA | Ann Trenk | Wellesley College, USA |
| Natalia Hritonenko | Prairie View A\&M University, USA | Ravi Vakil | Stanford University, USA |
| Glenn H. Hurlbert | Arizona State University,USA | Antonia Vecchio | Consiglio Nazionale delle Ricerche, Italy |
| Charles R. Johnson | College of William and Mary, USA | Ram U. Verma | University of Toledo, USA |
| K. B. Kulasekera | Clemson University, USA | John C. Wierman | Johns Hopkins University, USA |
| Gerry Ladas | University of Rhode Island, USA | Michael E. Zieve | University of Michigan, USA |

PRODUCTION<br>Silvio Levy, Scientific Editor

Cover: Alex Scorpan
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2018 is US $\$ 190 /$ year for the electronic version, and $\$ 250 /$ year ( $+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.
Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLOw ${ }^{\circledR}$ from Mathematical Sciences Publishers.

# involve 2018 vol. 11 no. 5 

On the minuscule representation of type $B_{n}$ ..... 721
William J. Cook and Noah A. Hughes
Pythagorean orthogonality of compact sets ..... 735
Pallavi Aggarwal, Steven Schlicker and Ryan Swartzentruber
Different definitions of conic sections in hyperbolic geometry ..... 753
Patrick Chao and Jonathan Rosenberg
The Fibonacci sequence under a modulus: computing all moduli that produce a ..... 769
given periodAlex Dishong and Marc S. Renault
On the faithfulness of the representation of $\operatorname{GL}(n)$ on the space of curvature ..... 775
tensors
Corey Dunn, Darien Elderfield and Rory Martin-Hagemeyer
Quasipositive curvature on a biquotient of Sp (3) ..... 787
Jason DeVito and Wesley Martin
Symmetric numerical ranges of four-by-four matrices ..... 803
Shelby L. Burnett, Ashley Chandler and Linda J. Patton
Counting eta-quotients of prime level ..... 827
Allison Arnold-Roksandich, Kevin James and Rodney Keaton
The $k$-diameter component edge connectivity parameter ..... 845
Nathan Shank and Adam Buzzard
Time stopping for Tsirelson's norm ..... 857Kevin Beanland, Noah Duncan and Michael Holt
Enumeration of stacks of spheres ..... 867
Lauren Endicott, Russell May and Sienna Shacklette
Rings isomorphic to their nontrivial subrings877
Jacob Lojewski and Greg Oman
On generalized MacDonald codes ..... 885
Padmapani Seneviratne and Lauren Melcher
A simple proof characterizing interval orders with interval lengths between 1 and $k$ ..... 893
Simona Boyadzhiyska, Garth Isaak and Ann N. Trenk


[^0]:    MSC2010: primary 11B39, 11B50; secondary 11Y55.
    Keywords: Fibonacci sequence, period, algorithm.

