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The notion of G-graph was introduced by Bretto et al. and has interesting prop-
erties. This graph is related to a group G and a set of generators S of G and is
denoted by 0(G, S). In this paper, we consider several types of groups G and
study the existence of Hamiltonian and Eulerian paths and circuits in 0(G, S).

1. Introduction

Let G be a finitely generated group with a generating set S = {s1, s2, . . . , sn}. The
left transversal of the left cosets of the subgroup 〈si 〉 in G is denoted by T〈si 〉. This
means that {〈si 〉x | x ∈ T〈si 〉} is the set of all the distinct left cosets of 〈si 〉 in G. A
simple graph 0(G, S) is defined as follows: the vertex set of 0(G, S) is the set
{〈si 〉x j | x j ∈ T〈si 〉}, and two distinct vertices 〈si 〉x j and 〈sk〉xl are joined by an edge
if 〈si 〉x j ∩ 〈sk〉xl 6=∅.

The G-graphs were introduced in [Bretto and Faisant 2005] to study the group
isomorphism problem. They also defined a similar graph 0(G, S), which dif-
fers from 0(G, S) by the fact that there are p edges between 〈si 〉x j and 〈sk〉xl if
|〈si 〉x j ∩ 〈sk〉xl | = p. In this paper, we are more concerned with the simple graph
0(G, S). For more information on the subject see, for example, [Bretto et al. 2007;
Bretto and Gillibert 2005]. By [Bretto et al. 2007], if S is a generating set of G,
then 0(G, S) is a connected graph. We always choose S such that G = 〈S〉.

The existence of Hamiltonian paths and circuits in 0(G, S) was the main interest
of [Bretto and Faisant 2011]. In [Bauer et al. 2008] the authors considered various
classes of finite groups G and studied the Eulerianness and Hamiltonicity of the
graph 0(G, S). For instance, they studied the Hamiltonicity of certain G-graphs on
the groups Zm × Zn and D2n , the dihedral group of order 2n. In this paper we will
consider the groups Zn1 × Zn2 × · · ·× Znk such that n1 | n2 | · · · | nk , the dicyclic
group T4n of order 4n with presentation

T4n = 〈a, b | a2n
= e, an

= b2, b−1ab = a−1
〉,
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V8n , a group of order 8n with presentation

V8n = 〈a, b | a2n
= b4
= e, ba = a−1b−1, b−1a = a−1b〉,

and obtain the conditions under which 0(G, S) is Eulerian or Hamiltonian.

2. Preliminaries

Let S = {s1, s2, . . . , sn} be a generating set for the group G. Let

Vsi = {〈si 〉x j | x j ∈ T〈si 〉}, 16 i 6 n,

where T〈si 〉 is a complete set of left transversals of 〈si 〉 in G. Then by definition the
vertex set of 0(G, S) is V (0(G, S))=

⊔n
i=1 Vsi . The graph 0(G, S) is connected

and n-partite. We recall some results which will be used in this paper.

Result 1 [Bondy and Murty 1976]. Let 0 be a nontrivial connected graph. Then:

(a) 0 has an Eulerian circuit if and only if every vertex of 0 has even degree.

(b) 0 has an Eulerian path if and only if 0 has exactly two vertices of odd degree.
Furthermore, the path begins at one of the vertices of odd degree and terminates
at the other one.

Result 2 [Bauer et al. 2008]. Let G be a group with a generating set given by
S = {s1, s2, . . . , sn}. Let Si j = |〈si 〉∩〈sj 〉|. Then the degree of the vertex 〈si 〉 in the
graph 0(G, S) is equal to deg(〈si 〉) =

∑n
i=1(o(si )/Si j )− 1, where o(si ) denotes

the order of the element si ∈ G. Note that for all elements x j 〈si 〉 in Vi we have
deg(x j 〈si 〉)= deg(〈si 〉).

Result 3 [Bauer et al. 2008]. Let G = Zn × Zm and S = {(1, 0), (0, 1)}. Then
0(G, S) has a Hamiltonian path if and only if |m− n|6 1.

In the following we generalize Result 3 to obtain a necessary condition for a
Hamiltonian circuit of 0(G, S).

Theorem 2.1. Let G = 〈a, b〉, S = {a, b} and X = |G|/o(a) and Y = |G|/o(b). If
0(G, S) has a Hamiltonian path, then |X − Y |6 1.

Proof. Let Va = {a1, a2 · · · aX } and Vb = {b1, b2 · · · bY }.

Case 1: Assume that the Hamiltonian path begins from a vertex in Va . Call this
vertex ai1 . The next vertex can’t be from Va . Thus it is from Vb. Call this vertex bi1 .
In this way, the Hamiltonian path can be represented as ai1 , bi1 , ai2 , bi2 , . . . .

If this Hamiltonian path ends with a vertex from Va , it is represented as

ai1, bi1, ai2, bi2, . . . , aiX−1, biX−1, aiX .

Now notice that bi1, bi2, . . . , biX−1 should exhaust all the vertices of Vb exactly
once. So {bi1, bi2, . . . , biX−1} = {b1, b2, . . . , bY }; hence X − 1= Y , which implies
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X−Y = 1. But if this path ends with a vertex of Vb, it is represented as ai1 , bi1 , ai2 ,
bi2 , . . . , aiX , biX . Similarly, {bi1, bi2, . . . , biX } = {b1, b2, . . . , bY }, so X = Y.

Case 2: Assume that the Hamiltonian path begins with a vertex from Vb. In the
same manner as above, this path can be represented as bi1 , ai1 , bi2 , ai2 , . . . .

If this path ends with a vertex from Va , it is represented by bi1 , ai1 , bi2 , ai2 , . . . ,
biY , aiY . Notice that ai1, ai2, . . . , aiY should exhaust all the vertices of Va exactly
once, so {ai1, ai2, . . . , aiY } = {a1, a2, . . . , aX }; hence Y = X . But if this path, ends
with a vertex from Vb, it is represented by bi1 , ai1 , bi2 , ai2 , . . . , biY−1 , aiY−1 , biY .
Similarly, {ai1, ai2, . . . , aiY−1}={a1, a2, . . . , aX }, so Y−1= X , implying Y−X =1.

Thus in the general case the inequality |X − Y |6 1 holds. �

Result 4. Let G = Zn × Zm and S = {(1, 0), (0, 1)}. Then 0(G, S) has a Hamil-
tonian circuit if and only if m = n.

A generalization of Result 4 for the existence of a Hamiltonian circuit is given
in the following theorem.

Theorem 2.2. Let G = 〈a, b〉, S = {a, b} and X = |G|/o(a) and |G|/o(b). If
0(G, S) has Hamiltonian circuit, then X = Y.

Proof. Let Va = {a1, a2, . . . , aX } and Vb = {b1, b2, . . . , bY }, and assume this circuit
starts from a vertex in Va , which is called ai1 . The next vertex can’t be from Va , so it
should be from Vb; call this vertex bi1 . Therefore this circuit can be represented by
ai1 , bi1 , ai2 , bi2 , . . . , aiX , biX , ai1 . Now notice that bi1 , bi2 , . . . , biX should exhaust
all the vertices of Vb exactly once. So {bi1, bi2, . . . , biX } = {b1, b2, . . . , bY }; hence
X = Y. �

3. Finite abelian groups

From [Rotman 1995] it’s well known that every finite abelian group G is isomor-
phic to a direct product of cycle groups, say G ∼= Zn1 × Zn2 × · · · × Znk , where
n1 | n2 | · · · | nk . We choose

S = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)}

as a generating set of G. The vector (0, . . . , 1, . . . , 0) with 1 in the i-th position is
denoted by ei , and the zero vector is denoted by 0= (0, 0, . . . , 0).

We are going to generalize the results of Section 3 in [Bauer et al. 2008] and
obtain necessary and sufficient conditions in order that 0(G, S) contains an Eulerian
path or circuit.

Theorem 3.1. Let G be a finite abelian group which can be represented by G ∼=
Zn1 × Zn2 × · · · × Znk , where n1 | n2 | · · · | nk . Let S = {e1, e2, . . . , ek}. Then
0(G, S) has an Eulerian circuit if and only if k is odd or n1 is even. Furthermore
0(G, S) has an Eulerian path if and only if G ∼= Z1× Z1 or G ∼= Z1× Z2.
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(0)+ 0 (0)+ 0

Figure 1. 0(Z1× Z1, S).

(e2)+ 0

(0)+ 0 (0)+ e2

Figure 2. 0(Z1× Z2, S).

Proof. Let us check the vertices 〈ei 〉+ 0 (16 i 6 k) of 0(G, S):

(e1)+ 0= (0, e1, 2e1, . . . , (n1− 1)e1),

(e2)+ 0= (0, e2, 2e2, . . . , (n2− 1)e2),

...

(ek)+ 0= (0, ek, 2ek, . . . , (nk − 1)ek).

For all i, j such that 1 6 i, j 6 k, i 6= j , we have ((ei )+ 0 ∩ (ej )+ 0) = 0, so
|(ei )+ 0∩ (ej )+ 0| = 1. Thus for all (ei )+ x and (ej )+ y such that (ei )+ x ∈ Vei

and (ej )+ y ∈ Vej , if |(ei )+ 0∩ (ej )+ 0| 6= 0, then |(ei )+ 0∩ (ej )+ 0| = 1. So
in the simple graph 0(G, S), we have deg((ei )+ x)= (k− 1)ni for every (ei )+ x
from vertices of 0(G, S) (Result 2). Now consider the following cases:

Case 1: If k is odd, then the degree of every vertex of 0(G, S) is even. On the other
hand, G = 〈(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)〉. Thus 0(G, S)

is connected, so it has an Eulerian circuit but it doesn’t have any Eulerian paths
(Result 1).

Case 2: Assume that k is even:

Case 2.1: If n1 is even, then ni is even for each 16 i 6 k, because n1 | n2 | · · · | nk .
So the degree of every vertex of 0(G, S) is even; thus it has an Eulerian circuit but
it doesn’t have any Eulerian paths (Result 1).

Case 2.2: If n1 is odd and G ∼= Z1× Z1, then 0(G, S) is given in Figure 1. It has
an Eulerian path, but it doesn’t have any Eulerian circuits (Result 1).

Case 2.3: If n1 is odd and G ∼= Z1× Z2, then 0(G, S) is given in Figure 2. It has
an Eulerian path, but it doesn’t have any Eulerian circuits.
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Case 2.4: If n1 is odd, n1 > 3 and G = Zn1 × Zn2 , then n1 | n2, so n2 > 3. On the
other hand, the number of vertices of Ve1 is |G|/o(e1) = n2. So 0(G, S) has at
least three vertices of odd order. Thus it doesn’t have any Eulerian paths or circuits
(Result 1).

Case 2.5: If G = Zn1 × Zn2 × · · · × Znk such that n1 is odd and k > 2, then
0(G, S) doesn’t have any Eulerian paths or circuits: the number of vertices of Ve1

is |G|/o(e1)=
∏k

j=2 ni j .
If
∏k

j=2 ni j = 1, then G = Z1×· · ·× Z1× Z1, so 0(G, S) has k vertices of odd
degree (the degree is k− 1). Thus 0(G, S) has at least four vertices of odd degree,
and hence it doesn’t have any Eulerian paths or circuits (Result 1).

If
∏k

j=2 ni j = 2, then G = Z1× · · ·× Z1× Z2, so

k−1∑
r=1

|Ver | =

k−1∑
r=1

|G|
o(er )

= 2(k− 1)> 6.

Thus 0(G, S) has at least six vertices of odd degree (the degree is k − 1), so it
doesn’t have any Eulerian paths or circuits (Result 1).

If
∏k

j=2 ni j > 3, then 0(G, S) has at least three vertices of odd degree (the degree
is n1(k− 1)), so it doesn’t have any Eulerian paths or circuits (Result 1). Therefore
the theorem is proved. �

4. Dicyclic group

Let G be the dicyclic group whose presentation is

T4n = 〈a, b | a2n
= e, an

= b2, b−1ab = a−1
〉, (1)

which is a group of order 4n. We want to check the existence of Eulerian and
Hamiltonian circuits and paths in the graph 0(G, S) for a suitable subset S of G.

Theorem 4.1. Let G be the group (1) and S = {a, b}. If n is even, 0(G, S) has an
Eulerian circuit and doesn’t have any Eulerian paths. If n is odd, 0(G, S) has an
Eulerian path and doesn’t have any Eulerian circuits.

Proof. Clearly o(b)= 4. Now we check the vertices (a)e and (b)e, where e is the
identity element of G:

(a)e = (e, a, a2, . . . , a2n−1),

(b)e = (e, b, b2, b3)= (e, b, an, anb).

So (a)e ∩ (b)e = {e, an
}, and thus |(a)e ∩ (b)e| = 2. Now we know that if

(a)x ∩ (b)y 6= ∅, then by [Bauer et al. 2008], |(a)x ∩ (b)y| = 2. Notice that
the number of vertices of Va is |G|/o(a) = (4n)/(2n) = 2. On the other hand
o(b)= 4, so deg((b)y)= 4 for every (b)y ∈ Vb. Thus every vertex of Vb has exactly
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(a)e (a)b

(b)e (b)a

Figure 3. 0(T8, {a, b}).

(a)e (a)b

(b)e (b)a (b)a2

Figure 4. 0(T12, {a, b}).

two edges to every vertex of Va . Also we know that the number of vertices of Vb is
|G|/o(b)= 4n/4= n; thus 0(G, S) is isomorphic to K 2

n,2, so 0(G, S) u Kn,2.
Next if n is even, then deg(v) is even for every vertex v of 0(G, S); hence

0(G, S) has an Eulerian circuit and it doesn’t have any Eulerian paths (Result 1).
But if n is odd, then deg(b)y is 2 for every (b)y in Vb, and deg(a)x is n, which

is odd for every (a)x in Va . So 0(G, S) has exactly two vertices of odd order; thus
it has an Eulerian path and it doesn’t have any Eulerian circuits (Result 1). �

Theorem 4.2. Let G be the group (1) and S = {a, b}. If n = 2, then 0(G, S) has a
Hamiltonian path and circuit. If n = 1 or 3, then 0(G, S) has Hamiltonian path
but it doesn’t have any Hamiltonian circuits. If n 6= 1, 2, 3, then 0(G, S) doesn’t
have any Hamiltonian paths or circuits.

Proof. Assume that 0(G, S) = Kn,2 has a Hamiltonian path; then |n − 2| 6 1
(Theorem 2.1). Therefore just one of the following cases happens:

Case 1: n = 2. So 0(G, S) is as in Figure 3. Thus its Hamiltonian path is (a)e,
(b)a, (a)b, (b)e, and the Hamiltonian circuit is (a)e, (b)a, (a)b, (b)e, (a)e.

Case 2: (n−2=1) ⇒ (n=3). So 0(G, S) is as in Figure 4. Thus its Hamiltonian
path is (b)e, (a)e, (b)a, (a)b, (b)a2, but it doesn’t have any Hamiltonian circuits
because n 6= 2 (Theorem 2.2).
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(a)e (a)b

(b)e

Figure 5. 0(T4, {a, b}).

Case 3: (2−n=1) ⇒ (n=1). So 0(G, S) is as in Figure 5. Thus its Hamiltonian
path is (a)e, (b)e, (a)b, but it doesn’t have any Hamiltonian circuits because n 6= 2
(Theorem 2.2).

So 0(G, S) has a Hamiltonian circuit if and only if n=2, and it has a Hamiltonian
path if and only if n = 1 or 3. �

Theorem 4.3. Let G be the group (1) and S = {ab, b}. Then 0(G, S) has Eulerian
and Hamiltonian circuits, and the Hamiltonian circuit is just the Eulerian circuit.
Also 0(G, S) has a Hamiltonian path, but it doesn’t have any Eulerian paths.

Proof. Clearly o(ab)= 4. Now let us check the vertices of Vb:

(b)e = (e, b, b2, b3),

(b)a = (a, ba, b2, b3a),

(b)a2
= (a2, ba2, b2, b3a2),

...

(b)an−1
= (an−1, ban−1, b2, b3an−1).

Now notice that bai
= a2n−i b, (b)2ai

= an+i and (b)3ai
= an−i b. So

(b)e = (e, b, an, (a)nb),

(b)a = (a, a2n−1b, an+1, (a)n−1b),

(b)a2
= (a2, a2n−2b, an+2, (a)n−2b),

...

(b)an−1
= (an−1, an+1b, a2n−1, ab).

Next let us see the vertices of Vab:

(ab)e = (e, ab, (ab)2, (ab)3),

(ab)a = (a, aba, (ab)2a, (ab)3a),

(ab)a2
= (a2, aba2, (ab)2a2, (ab)3a2),

...

(ab)an−1
= (an−1, aban−1, (ab)2an−1, (ab)3an−1).
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(b)e (b)a (b)a2 (b)a3 (b)an−1

(ab)e (ab)a (ab)a2 (ab)a3 (ab)an−1

Figure 6. 0(T4n, {ab, b}).

Since abai
= a(bai ) = a2n−1+i, we know (ab)2ai

= anai
= an+i and (ab)3ai

=

an+1bai
= an−i+1. So

(ab)e = (e, ab, (a)n, (a)n+1b),

(ab)a = (a, b, (a)n+1, (a)nb),

(ab)a2
= (a2, a2n−1b, (a)n+2, (a)n−1b),

...

(ab)an−1
= (an−1, an+2b, (a)2n−1, (a)2b).

Thus we have
(ab)ai

∩ (b)ai
= {ai, an+i

},

(ab)ai+1
∩ (b)ai

= {a2n−i, an−i b},

(ab)e∩ (b)an−1
= {ab, an+1b}.

Therefore 0(G, S) is as shown in Figure 6.
Hence the Eulerian and Hamiltonian circuit is

(ab)e, (b)e, (ab)a, (b)a, (ab)a2, (b)a2, . . . , (ab)an−1, (b)an−1, (ab)e,

the Hamiltonian path is

(ab)e, (b)e, (ab)a, (b)a, (ab)a2, (b)a2, . . . , (ab)an−1, (b)an−1

and 0(G, S) doesn’t have any Eulerian paths because the degree of every vertex of
0(G, S) is even (Result 1). �

Theorem 4.4. Let G be the group (1) and S = {a, ab}. If n is even, 0(G, S) has
an Eulerian circuit and it doesn’t have any Eulerian paths, and if n is odd, 0(G, S)

has an Eulerian path and it doesn’t have any Eulerian circuits.

Proof. Let us check the vertices (a)e and (ab)e:

(a)e = (e, a, a2, . . . , a2n−1),

(b)e = (e, ab, an, an+1b).
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(a)e (a)b

(ab)e (ab)a

Figure 7. 0(T8, {a, ab}).

(a)e (a)b

(ab)e (ab)a (ab)a2

Figure 8. 0(T12, {a, ab}).

So (a)e∩ (ab)e= {e, an
}; thus |(a)e∩ (ab)e| = 2. We know that for (a)x ∈ Va and

(ab)y ∈ Vab, if (a)x ∩ (ab)y 6=∅, then by [Bauer et al. 2008], |(a)x ∩ (ab)y| = 2.
On the other hand o(ab) = 4 so deg(ab)x = 4 for every (ab)x ∈ Vab, and also
we know that the number of vertices of Va is |G|/o(a)= (4n)/(2n)= 2. Thus in
0(G, S), every vertex of Vb has an edge to every vertex of Va , so 0(G, S) is Kn,2.
Now if n is even, the degree of every vertex of 0(G, S) is even, so it has an Eulerian
circuit and doesn’t have any Eulerian paths (Result 1).

But if n is odd, 0(G, S) has exactly two vertices of odd degree ((a)e and (a)b),
so it has an Eulerian path and doesn’t have any Eulerian circuits (Result 1). �

Theorem 4.5. Let G be the group (1) and S = {a, ab}. If n = 2, then 0(G, S) has
a Hamiltonian path and circuit, if n = 1 or n = 3, then 0(G, S) has a Hamiltonian
path and it doesn’t have any Hamiltonian circuits, and if n 6= 1, 2, 3, then 0(G, S)

doesn’t have any Hamiltonian paths or circuits.

Proof. The G-graph 0(G, S) is isomorphic to Kn,2 (as we have already proved).
Assume that it has a Hamiltonian path; then |n− 2|6 1 (Theorem 2.1). So just one
of the following cases happens:

Case 1: n= 2. So 0(G, S) is as in Figure 7. Therefore its Hamiltonian path is (a)e,
(ab)e, (a)b, (ab)a, and its Hamiltonian circuit is (a)e, (ab)e, (a)b, (ab)a, (a)e.
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(a)e (a)b

(ab)e

Figure 9. 0(T4, {a, ab}).

Case 2: (n−2 = 1) ⇒ (n = 3). So 0(G, S) is as in Figure 8. Therefore its
Hamiltonian path is (ab)e, (a)e, (ab)a, (a)b, (ab)a2. But it doesn’t have any
Hamiltonian circuits because n 6= 2 (Theorem 2.2).

Case 3: (2−n = 1) ⇒ (n = 1). So 0(G, S) is as in Figure 9. Therefore its
Hamiltonian path is (a)e, (ab)e, (a)b. But it doesn’t have any Hamiltonian circuits
because n 6= 2 (Theorem 2.2). So 0(G, S) has a Hamiltonian circuit if and only
if n = 2, and it has a Hamiltonian path if and only if n = 1 or 3. �

5. The group V8n of order 8n

The group G = V8n has presentation

V8n = 〈a, b | a2n
= b4
= e, ba = a−1b−1, b−1a = a−1b〉. (2)

We want to check the existence of Eulerian and Hamiltonian paths and circuits in
0(G, S).

Theorem 5.1. Let G be the group (2) and S = {a, b}. Then 0(G, S) always has an
Eulerian circuit and never has Eulerian paths.

Proof. Let us check (a)e and (b)e:

(a)e = (e, a, a2, . . . , a2n−1),

(b)e = (e, b, b2, b3).

So, (a)e ∩ (b)e = {e}; thus |(a)e ∩ (b)e| = 1. Hence, for every (a)x ∈ Va and
(b)y ∈ Vb, if (a)x ∩ (b)y 6= ∅, then |(a)x ∩ (b)y| = 1 [Bauer et al. 2008]. Now
notice that o(a)= 2n, so the number of vertices of Va is |G|/o(a)= (8n)/(2n)= 4.
Also we know that o(b)= 4, so deg(b)y = 4 for every (b)y ∈ Vb. Thus every vertex
of Vb has exactly one edge to every vertex of Va . On the other hand, the number of
vertices of Vb is |G|/o(b)= 8n/4= 2n, so 0(G, S)= K2n,4.

Hence the degree of every vertex of 0(G, S) is even (2n or 4), so it has an
Eulerian circuit but it doesn’t have any Eulerian paths (Result 1). �

Theorem 5.2. Let G be the group (2) and S = {a, b}. Then 0(G, S) has a Hamil-
tonian circuit if and only if n = 2.
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(a)e (a)b (a)b2 (a)b3

(b)e (b)a (b)a2 (b)a3

Figure 10. 0(V16, {a, b}).

Proof. The G-graph 0(G, S) is isomorphic to K2n,4. Assume that it has a Hamil-
tonian path, so |2n − 4| 6 1 (Theorem 2.1); hence one of the following cases
happens:

Case 1: (2n=4) ⇒ (n=2). So 0(G, S) is as in Figure 10. The Hamiltonian path
is (a)e, (b)e, (a)b, (b)a, (a)b2, (b)a2, (a)b3, (b)a3, and the Hamiltonian circuit is
(a)e, (b)e, (a)b, (b)a, (a)b2, (b)a2, (a)b3, (b)a3, (a)e.

Case 2: (4−2n= 1) ⇒ (2n= 3), which is not possible.

Case 3: (2n−4= 1) ⇒ (2n= 5), which is not possible.

Notice that if n 6= 2, then 0(G, S) doesn’t have any Hamiltonian circuits
(Theorem 2.2). So 0(G, S) has a Hamiltonian path and circuit if and only if n=2. �

Theorem 5.3. Let G be the group (2) and S = {b, ab}. Then 0(G, S) always has
an Eulerian circuit and doesn’t have any Eulerian paths.

Proof. Clearly o(ab) = 2. Now notice that abai
= b3ai−1 and ab2ai

= b2ai+1.
Next let us check the vertices of Vab:

(ab)e = (e, ab)= (e, b3a2n−1),

(ab)a = (a, aba)= (a, b3),

(ab)a2
= (a2, aba)= (a, b3a),

...

(ab)a2n−1
= (a2n−1, aba)= (a, b3a2n−2),

(ab)b = (b, ab2)= (b, b2a),

(ab)ba = (ba, ab2a)= (ba, b2a2),

(ab)ba2
= (ba2, ab2a2)= (ba2, b2a3),

...

(ab)ba2n−1
= (ba2n−1, ab2a2n−1)= (ba2n−1, b2).
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(ab)e (ab)a (ab)a2
(ab)a2n−2 (ab)a2n−1

(b)e (b)a (b)a2

(b)a2n−2 (b)a2n−1

(ab)b (ab)ba (ab)ba2
(ab)ba2n−2 (ab)ba2n−1

Figure 11. 0(V8n, {b, ab}).

Let us also check those of Vb:

(b)e = (e, b, b2, b3),

(b)a = (a, ba, b2a, b3a),

(b)a2
= (a2, ba2, b2a2, b3a2),

...

(b)a2n−1
= (a2n−1, ba2n−1, b2a2n−1, b3a2n−1).

So we have (ab)ai
∩ (b)ai

= {ai
} and (ab)ai+1

∩ (b)ai
= {b3ai

} and (ab)bai
∩

(b)ai
= {bai

} and (ab)bai−1
∩ (b)ai

= {b2ai
}. Hence in 0(G, S), the degree of

every vertex of Vab is 2, and the degree of every vertex of Vb is 4. So the degree of
every vertex of 0(G, S) is even. On the other hand G = V8n = 〈ab, b〉, so 0(G, S)

is connected [Bretto et al. 2007]. Thus 0(G, S) is a connected graph such that the
degree of every vertex is even, so it has an Eulerian circuit and it doesn’t have any
Eulerian paths (Result 1). The Eulerian circuit in 0(G, S) is

(b)a2n−1, (ab)e, (b)e, (ab)a, (b)a, (ab)a2, (b)a2,

. . . , (ab)a2n−2, (b)a2n−2, (ab)a2n−1, (b)a2n−1, (ab)ba2n−1,

(b)e, (ab)e, (b)a, (ab)ba, (b)a2, (ab)ba2,

. . . , (b)a2n−2, (ab)ba2n−2, (b)a2n−1. �

Theorem 5.4. Let G be the group (2) and S = {b, ab}. Then 0(G, S) doesn’t have
any Hamiltonian paths or circuits.

Proof. The number of vertices of Vb is |G|/o(b) = 8n/4 = 2n, and the number
of vertices of Vab is |G|/o(a) = 8n/2 = 4n. Now assume that 0(G, S) has a
Hamiltonian path, so |4n − 2n| 6 1 (Theorem 2.1). Hence one of the following
cases will happen:
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(ab)e (ab)a (ab)a2
(ab)a2n−1

(a)e (a)b
(a)b2

(a)b3

(ab)b
(ab)ba (ab)ba2 (ab)ba2n−1

Figure 12. 0(V8n, {a, ab}).

Case 1: (4n= 2n) ⇒ (n= 0).

Case 2: (4n−2n= 1) ⇒ (2n= 1) ⇒
(
n= 1

2

)
.

Case 3: (2n−4n= 1) ⇒ (2n=−1) ⇒
(
n=−1

2

)
.

Obviously none of these cases can happen, so 0(G, S) doesn’t have any Hamil-
tonian paths, and thus it doesn’t have any Hamiltonian circuits. �

Theorem 5.5. Let G be the group (2) and S = {a, ab}. Then 0(G, S) has an
Eulerian circuit and doesn’t have any Eulerian paths.

Proof. Notice that o(a)= 2n and o(ab)= 2. Also notice that (ab)e = (e, ab) and
(a)e= (e, a, a2, · · · , a2n−1), so (ab)e∩ (a)e= {e}. Thus, for every (a)x ∈ Va and
(ab)y ∈ Vab, if (a)x ∩ (ab)y 6=∅, then |(a)x ∩ (ab)y| = 1 [Bauer et al. 2008]. So
the degree of every vertex of Va is 2n, and the degree of every vertex of Vab is 2.

On the other hand G = 〈a, ab〉, so 0(G, S) is connected [Bretto et al. 2007].
Thus, 0(G, S) is a connected graph such that the degree of every vertex is even.
So it has an Eulerian circuit and doesn’t have any Eulerian paths (Result 1). �

Theorem 5.6. Let G be the group (2) and S = {a, ab}. Then 0(G, S) has a
Hamiltonian path and circuit if and only if n = 1.

Proof. The number of vertices of Va is |G|/o(a)= (8n)/(2n)= 4, and the number
of vertices of Vab is |G|/o(ab) = 8n/2 = 4n. Now assume that 0(G, S) has a
Hamiltonian path, so |4n−4|6 1 (Theorem 2.1). Hence one of the following cases
happens:

Case 1: (4n−4= 1) ⇒ (4n= 5), which is impossible.

Case 2: (4−4n= 1) ⇒ (4n= 3), which is impossible.

Case 3: (4n−4= 0) ⇒ (4n= 4) ⇒ (n= 1). In this case, the image of 0(G, S)

is shown in Figure 13. Its Hamiltonian path is (ab)e, (a)b3, (ab)ba, (a)b2, (ab)b,
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(ab)e (ab)a (ab)b (ab)ba

(a)e (a)b (a)b2
(a)b3

Figure 13. 0(V8, {a, ab}).

(a)b, (ab)a, (a)e, and its Hamiltonian circuit is (ab)e, (a)b3, (ab)ba, (a)b2, (ab)b,
(a)b, (ab)a, (a)e, (ab)e. If 0(G, S) doesn’t have any Hamiltonian paths, then it
doesn’t have any Hamiltonian circuits; thus 0(G, S) has a Hamiltonian path and
circuit if and only if n = 1. �

6. Conclusion

In this paper we investigated the existence of Eulerian circuits and paths in the
G-graphs of finite abelian groups. Also we checked the existence of Hamiltonian
and Eulerian circuits and paths in the G-graphs of some nonabelian finite groups.
Our method can be applied to other finite groups as well.
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