\bullet
 involve

 a journal of mathematicsThe probability of randomly generating finite abelian groups

Tyler Carrico

The probability of randomly generating finite abelian groups

Tyler Carrico
(Communicated by Joseph Gallian)

Abstract

Extending the work of Deborah L. Massari and Kimberly L. Patti, this paper makes progress toward finding the probability of k elements randomly chosen without repetition generating a finite abelian group, where k is the minimum number of elements required to generate the group. A proof of the formula for finding such probabilities of groups of the form $\mathbb{Z}_{p^{m}} \oplus \mathbb{Z}_{p^{n}}$, where $m, n \in \mathbb{N}$ and p is prime, is given, and the result is extended to groups of the form $\mathbb{Z}_{p^{n_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_{k}}}$, where $n_{i}, k \in \mathbb{N}$ and p is prime. Examples demonstrating applications of these formulas are given, and aspects of further generalization to finding the probabilities of randomly generating any finite abelian group are investigated.

Introduction

Throughout this paper, let k be the minimum number of elements required to generate a group G, A_{G} be the event where k elements randomly chosen without repetition generate G, and $P\left(A_{G}\right)$ be the probability of A_{G} occurring. Massari [1979] showed that, for a finite cyclic group G of order $a, P\left(A_{G}\right)=\phi(a) / a$, where ϕ is the Euler phi function. Patti [2002] showed, among other things, that, for $G=\mathbb{Z}_{p} \oplus \cdots \oplus \mathbb{Z}_{p}$ (the external direct product of \mathbb{Z}_{p} taken k times, where p is prime),

$$
P\left(A_{G}\right)=\frac{\prod_{i=0}^{k-1}\left(p^{k}-p^{i}\right)}{\prod_{j=0}^{k-1}\left(p^{n}-j\right)}
$$

It is natural to ask what the probability of generating groups like G is when powers are added to the p subscripts. We now turn to this problem.

Theorem 1. Let $G=\mathbb{Z}_{p^{m}} \oplus \mathbb{Z}_{p^{n}}$ where $m, n \in \mathbb{N}$ and p is prime. Then

$$
P\left(A_{G}\right)=\frac{p^{2(m+n-2)}\left(p^{2}-1\right)\left(p^{2}-p\right)}{p^{m+n}\left(p^{m+n}-1\right)}
$$

MSC2010: 20P05.
Keywords: abelian, group, generate, probability.

Proof. Partition the elements of G into p^{2} subsets (these particular types of subsets will be referred to as A-subsets from this point forward):
$A_{i j}=\left\{\left(p x+i \bmod p^{m}, p y+j \bmod p^{n}\right): x \in \mathbb{Z}_{p^{m}}, y \in \mathbb{Z}_{p^{n}}, i, j \in\{0,1, \ldots, p-1\}\right\}$.
Note that $\bigcup A_{i j}=G$ and $\left|A_{i j}\right|=|G| / p^{2}=p^{m+n-2}$ for $i=0,1, \ldots, p-1$ and $j=0,1, \ldots, p-1$.

From this point forward we assume without being explicit that, in any tuple $(p x+i, p y+j), i$ and j are reduced modulo $p, p x+i$ is reduced modulo p^{m}, and $p y+j$ is reduced modulo p^{n}.

Note that, for any $g \in G$ and any $t_{1}, t_{2} \in \mathbb{Z}$ such that $t_{1} \equiv t_{2} \bmod p, t_{1} g$ and $t_{2} g$ belong to the same A-subset. Therefore, any element $g \in G$ can at most generate p A-subsets since there are p possible choices for an integer t that have the potential to place $t g$ in different A-subsets. For an element g, let F_{g} denote the family of A-subsets to which $t g$ belongs for all possible values of t. Note that for each $g \notin A_{00}$ exactly p A-subsets belong to F_{g} (g does not necessarily generate all A-subsets belonging to F_{g}, but it generates at least one element belonging to each A-subset).

Let $g=(a, b) \in G$, and let (c, d) and (e, f) be two elements, each from any Asubset belonging to F_{g}. Then $(c, d) \equiv k_{1}(a, b) \bmod p$ and $(e, f) \equiv k_{2}(a, b)$ $\bmod p$ for some $k_{1}, k_{2} \in \mathbb{Z}$. Thus, for any $k_{3}, k_{4} \in \mathbb{Z}, k_{3}(c, d)+k_{4}(e, f) \equiv$ $k_{3} k_{1}(a, b)+k_{4} k_{2}(a, b)=\left[k_{3} k_{1}+k_{4} k_{2}\right](a, b) \bmod p$, which belongs to an A-subset in F_{g}. Thus, these two elements generate at most p A-subsets and thus cannot generate G. Note that, since $A_{00} \in F_{g}$ for all $g \in G$, it is impossible for two elements to generate G when one of them belongs to A_{00}.

Now suppose we choose elements $a, b \notin A_{00}$, say $a=\left(p x_{1}+i_{1}, p y_{1}+j_{1}\right)$ and $b=\left(p x_{2}+i_{2}, p y_{2}+j_{2}\right)$, such that a does not belong to any A-subset in F_{b} and b does not belong to any A-subset in F_{a} (thus it is not the case that $i_{1}=i_{2}=0, j_{1}=j_{2}=0$, $i_{1}=j_{1}=0$, or $i_{2}=j_{2}=0$). We will show that a and b together generate G.

Case 1: At least one of $i_{1}, i_{2}, j_{1}, j_{2}$ is zero. Without loss of generality let $i_{1}=0$. Then $i_{2} \neq 0, j_{1} \neq 0$, and because $\operatorname{gcd}\left(p y_{1}+j_{1}, p^{n}\right)=1$ there exists $q \in \mathbb{Z}$ such that $q a=(p x, 1)$ for some $x \in \mathbb{Z}_{p^{m}}$.
Subcase $1: j_{2}=0$. Then by similar reasoning there exists $r \in \mathbb{Z}$ such that $r b=(1, p y)$ for some $y \in \mathbb{Z}_{p^{n}}$. Now $q a-p x r b=\left(0,-p^{2} x y+1\right)$, and $\operatorname{gcd}\left(-p^{2} x y+1, p^{n}\right)=1$ so there exists $s \in \mathbb{Z}$ such that $s[q a-p x r b]=(0,1)$. Finally, $r b-p y s[q a-p x r b]=$ $(1,0)$.

Subcase 2: $j_{2} \neq 0$. Then $b-j_{2} q a=\left(p\left[x_{2}-j_{2} x\right]+i_{2}, p y_{2}\right)$, and we arrive at the same situation as Subcase 1.

Case 2: None of $i_{1}, i_{2}, j_{1}, j_{2}$ are zero. Let

$$
e=i_{2} a-i_{1} b=\left(p\left[i_{2} x_{1}-i_{1} x_{2}\right], p\left[i_{2} y_{1}-i_{1} y_{2}\right]+c\right)
$$

where $c=i_{2} j_{1}-i_{1} j_{2}$. We will show that $c \neq 0$. Assume to the contrary that $c=0$. Since $j_{2} \neq 0, j_{2} \in\{1,2, \ldots, p-1\} \subset \mathbb{Z}_{p}$, and, because \mathbb{Z}_{p} is a field, there exists $k \in \mathbb{Z}_{p}$ such that $k j_{2} \equiv 1 \bmod p$. Let $d=j_{1} k$. Because $i_{1} j_{2}=i_{2} j_{1}$, we now have $i_{1} \equiv i_{1} j_{2} k=i_{2} j_{1} k=d i_{2} \bmod p$ and $j_{1} \equiv j_{1} j_{2} k=d j_{2} \bmod p$ so that a and $d b$ are in the same A-subset, a contradiction. Thus, $c \neq 0$.

Now, because $\operatorname{gcd}\left(p\left[i_{2} y_{1}-i_{1} y_{2}\right]+c, p^{n}\right)=1$, there exists $q \in \mathbb{Z}$ such that $q e=(p x, 1)$ for some $x \in \mathbb{Z}_{p^{m}}$. Further, $f=b-q e\left[p y_{2}+j_{2}\right]=\left(p x_{3}+i_{2}, 0\right)$ for some $x_{3} \in \mathbb{Z}_{p^{m}}$ and $\operatorname{gcd}\left(p x_{3}+i_{2}, p^{m}\right)=1$, so there exists $t \in \mathbb{Z}$ such that $t f=(1,0)$. Finally, $q e-p x t f=(0,1)$.

In any case, we have shown that a and b generate $(1,0)$ and $(0,1)$, and thus a and b together generate G.

It is left to show the value of $P\left(A_{G}\right)$. For the first element a, any element other than an element from A_{00} can be chosen. Thus, there are p^{m+n-2} elements from each of the $p^{2}-1$ possible A-subsets from which to choose, a total of $p^{m+n-2}\left(p^{2}-1\right)$ elements out of the possible p^{m+n}. For the second element, an element must be chosen from an A-subset not belonging to F_{a}. Since p A-subsets belong to F_{a}, there are $p^{2}-p$ such A-subsets, each containing p^{m+n-2} elements. Thus, there are $p^{m+n-2}\left(p^{2}-p\right)$ elements out of the remaining $p^{m+n}-1$ possible elements from which to choose. Therefore,

$$
\begin{aligned}
P\left(A_{G}\right) & =\frac{p^{m+n-2}\left(p^{2}-1\right)}{p^{m+n}} \cdot \frac{p^{m+n-2}\left(p^{2}-p\right)}{p^{m+n}-1} \\
& =\frac{p^{2(m+n-2)}\left(p^{2}-1\right)\left(p^{2}-p\right)}{p^{m+n}\left(p^{m+n}-1\right)} .
\end{aligned}
$$

Example. Consider the group $H=\mathbb{Z}_{75} \oplus \mathbb{Z}_{7^{12}}$. Then

$$
\begin{aligned}
P\left(A_{H}\right) & =\frac{7^{2(5+12-2)}\left(7^{2}-1\right)\left(7^{2}-7\right)}{7^{5+12}\left(7^{5+12}-1\right)} \\
& =\frac{7^{30}(48)(42)}{7^{17}\left(7^{17}-1\right)} \\
& =0.83965 .
\end{aligned}
$$

This result can be extended to the external direct product of any finite number of $\mathbb{Z}_{p^{n_{i}}}$.

Theorem 2. Let $G=\mathbb{Z}_{p^{n_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p^{n_{k}}}$, where $n_{i} \in \mathbb{N}$ and p is prime. Define $n=\sum_{i=1}^{k} n_{i}$. Then

$$
P\left(A_{G}\right)=\frac{p^{k(n-k)} \prod_{i=0}^{k-1}\left(p^{k}-p^{i}\right)}{\prod_{j=0}^{k-1}\left(p^{n}-j\right)}
$$

Proof. Partition the elements of G into $p^{k} \mathrm{~A}$-subsets:
$A_{i_{1} \cdots i_{k}}=\left\{\left(p x_{1}+i_{1} \bmod p^{n_{1}}, \ldots, p x_{k}+i_{k} \bmod p^{n_{k}}\right): x_{j} \in \mathbb{Z}_{\left.p^{n_{j}}, i_{j} \in\{0,1, \ldots, p-1\}\right\} .}\right.$
Note that $\bigcup A_{i_{1} \cdots i_{k}}=G$ and $\left|A_{i_{1} \cdots i_{k}}\right|=|G| / p^{k}=p^{n-k}$ for $i_{j}=0,1, \ldots, p-1$.
Similar to the case where $k=2$, any element $g \in G$ can at most generate p A-subsets, and for each $g \notin A_{0 \ldots 0}$ exactly p A-subsets belong to F_{g}. When k elements are chosen, if any two elements belong to A-subsets within the same family, at most $p^{k-1} \mathrm{~A}$-subsets can be generated. Therefore, it is impossible to generate G with such a choice of elements.

Now choose an element not in the null family, then choose another not in the family of the first element, then choose another such that it is not in any family generated by any linear combination of the first two elements, and so forth until we have chosen k elements a_{1}, \ldots, a_{k}. Then none of the elements can be written as a linear combination of the other $k-1$ elements. Define $A=$ $\left\{a_{1}, \ldots, a_{k}\right\}$. Assume that none of the elements of A are part of an A-subset with zero in its subscript. Then for any $a_{m_{1}}$ and $a_{m_{2}}$ there exist integers c_{1} and c_{2} so that $c_{1} a_{m_{1}}+c_{2} a_{m_{2}} \in A_{0 i_{2} \cdots i_{k}}$, where not all of the i_{j} are zero. Therefore, we can generate $k-1$ elements $a_{1}^{\prime}, \ldots, a_{k-1}^{\prime}$ where $a_{m}^{\prime}=c_{1} a_{m}+c_{2} a_{m+1}$ and c_{1} and c_{2} are such that $a_{m}^{\prime} \in A_{0 i_{2} \cdots i_{k}}$, where not all of the i_{j} are zero. Assume that $i_{j} \neq 0$ for $j=2, \ldots, k$. Define $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{k-1}^{\prime}\right\}$. Note that none of $a_{1}^{\prime}, \ldots, a_{k-1}^{\prime}$ can be written as linear combinations of the other $k-2$ elements, for, if this were possible, some a_{j} could be written as a linear combination of the elements in A other than a_{j}, which contradicts our choice of the elements of A. We can now generate $k-2$ elements $a_{1}^{\prime \prime}, \ldots, a_{k-2}^{\prime \prime}$ in a similar manner so that $a_{m}^{\prime \prime} \in A_{00 i_{3} \cdots i_{k}}$, and similar conditions and assumptions hold. Continuing in this manner, we generate an element $a^{(k)} \in A_{0 \ldots 0 i_{k}}$, where $i_{k} \neq 0$. Now, because $\operatorname{gcd}\left(p x_{k}+i_{k}, p^{n_{k}}\right)=1$, there exists c such that $c a^{(k)}=\left(p y_{1} \bmod p^{n_{1}}, \ldots, p y_{k-1} \bmod p^{n_{k-1}}, 1\right)$ for some $y_{i} \in \mathbb{Z}_{p^{n_{i}}}$.

Following a procedure similar to the one previously described, only changing the order by which the linear combinations of the elements are taken, we can generate $k-1$ other elements so that we have a total of k elements b_{1}, \ldots, b_{k} such that the j-th coordinate of b_{j} is 1 and the remaining coordinates are multiples of p. Now linear combinations of these elements can be taken so that k elements c_{1}, \ldots, c_{k} are generated, where the j-th coordinate of c_{j} is not a multiple of p and the remaining coordinates are 0 . Thus, the greatest common divisor of the j-th coordinate of each c_{j} and $p^{n_{j}}$ is 1 , and thus there exists t_{j} for each c_{j} such that $t_{j} c_{j}$ has 1 for the j-th coordinate and zero for the remaining coordinates.

If, unlike our earlier assumptions, it happens at any point that some i_{j} is zero, notice that this is a subcase of our original case, where we already possess elements
which otherwise we would have had to generate as we did in our original case. Thus, our assumption that each i_{j} be nonzero at each step is unnecessary and, in any case, a_{1}, \ldots, a_{k} together generate G.

It is left to show the value of $P\left(A_{G}\right)$. For the first element a_{1}, any element other than an element from $A_{0 \ldots 0}$ can be chosen. Thus, there are p^{n-k} elements from each of the $p^{k}-1$ possible A-subsets from which to choose, a total of $p^{n-k}\left(p^{k}-1\right)$ elements out of the possible p^{n}. For the second element a_{2}, an element must be chosen from an A-subset not belonging to $F_{a_{1}}$. Since p A-subsets belong to $F_{a_{1}}$, there are $p^{k}-p$ such A-subsets, each containing p^{n-k} elements. Thus, there are $p^{n-k}\left(p^{k}-p\right)$ elements out of the remaining $p^{n}-1$ possible elements from which to choose. Continuing in this manner and multiplying the resulting probabilities, we have

$$
\begin{aligned}
P\left(A_{G}\right) & =\frac{p^{n-k}\left(p^{k}-1\right)}{p^{n}} \cdot \frac{p^{n-k}\left(p^{k}-p\right)}{p^{n}-1} \cdots \frac{p^{n-k}\left(p^{k}-p^{k-1}\right)}{p^{n}-k} \\
& =\frac{p^{k(n-k)} \prod_{i=0}^{k-1}\left(p^{k}-p^{i}\right)}{\prod_{j=0}^{k-1}\left(p^{n}-j\right)} .
\end{aligned}
$$

Example. Consider the group $I=\mathbb{Z}_{29} \oplus \mathbb{Z}_{29^{2}} \oplus \mathbb{Z}_{29^{3}} \oplus \mathbb{Z}_{29^{4}}$. Then $1+2+3+4=10$, so

$$
\begin{aligned}
P\left(A_{I}\right) & =\frac{29^{4(10-4)}\left(29^{4}-1\right)\left(29^{4}-29\right)\left(29^{4}-29^{2}\right)\left(29^{4}-29^{3}\right)}{29^{10}\left(29^{10}-1\right)\left(29^{10}-2\right)\left(29^{10}-3\right)} \\
& =0.964 .
\end{aligned}
$$

Extension. The fundamental theorem of finite abelian groups states that every finite abelian group is isomorphic to a direct product of cyclic groups of prime-power order, that is, groups of the form $\mathbb{Z}_{p_{1}{ }^{n_{1}}} \oplus \cdots \oplus \mathbb{Z}_{p_{k}{ }^{n_{k}}}$, where $n_{i} \in \mathbb{N}$ and p_{i} are prime [Gallian 2006]. We would thus hope that extending the previous theorem by varying the primes would be simple. This is not the case, however. Consider the following three groups and the probabilities of generating them:
(1) Let $G_{1}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Then $P\left(A_{G_{1}}\right)=1 / 2$.
(2) Let $G_{2}=\mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$. Then $P\left(A_{G_{2}}\right)=2 / 3$.
(3) Let $G_{3}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$. Then $P\left(A_{G_{3}}\right)=8 / 35$.

Notice that, although we have a formula for finding the probabilities of generating (1) and (2) and G_{3} is isomorphic to $G_{1} \oplus G_{2}$, the relationship between the probabilities of generating each of the three groups $(1 / 2,2 / 3$, and $8 / 35)$ is not obvious. The following is a conjecture for the probability of generating groups of form similar to G_{3}.

Conjecture. Let $G=\mathbb{Z}_{p^{n_{1}}} \oplus \mathbb{Z}_{p^{n_{2}}} \oplus \mathbb{Z}_{q^{n_{3}}} \oplus \mathbb{Z}_{q^{n_{4}}}$, where $n_{i} \in \mathbb{N}$ and p and q are prime. Then
$P\left(A_{G}\right)=\frac{p^{2\left(n_{1}+n_{2}-2\right)} q^{2\left(n_{3}+n_{4}-2\right)}\left(p^{2} q^{2}-p^{2}-q^{2}+1\right)\left(p^{2} q^{2}-p^{2} q-q^{2} p+p q\right)}{p^{n_{1}+n_{2}} q^{n_{3}+n_{4}}\left(p^{n_{1}+n_{2}} q^{n_{3}+n_{4}}-1\right)}$.
This equation is similar in form to our previous theorem, yet it differs significantly in the number of A-subsets from which elements can be chosen that successfully generate G; the first element can be chosen from $p^{2} q^{2}-p^{2}-q^{2}+1 \mathrm{~A}$-subsets and the second element can be chosen from $p^{2} q^{2}-p^{2} q-q^{2} p+p q$ A-subsets. The following conjecture shows how similar complexities arise in a group form similar to the previous case:
Conjecture. Let $G=\mathbb{Z}_{p^{n_{1}}} \oplus \mathbb{Z}_{p^{n_{2}}} \oplus \mathbb{Z}_{p^{n_{3}}} \oplus \mathbb{Z}_{q^{n_{4}}}$ where $n_{i} \in \mathbb{N}$ and p and q are prime. Then

$$
P\left(A_{G}\right)=\frac{p^{3\left(n_{1}+n_{2}+n_{3}-3\right)} q^{n_{4}-1}\left(p^{3}-1\right)\left(p^{3}-p\right)\left(p^{3}-p^{2}\right)\left(q^{3}-1\right)}{p^{n_{1}+n_{2}+n_{3}} q^{n_{4}}\left(p^{n_{1}+n_{2}+n_{3}} q^{n_{4}}-1\right)\left(p^{n_{1}+n_{2}+n_{3}} q^{n_{4}}-2\right)} .
$$

Finally, since a set of elements from a group will either generate the whole group or a proper subgroup, if we let B_{G} be the event where k elements randomly chosen without repetition generate a proper subgroup of G, then $P\left(B_{G}\right)$, the probability of B_{G} occurring, is

$$
P\left(B_{G}\right)=1-P\left(A_{G}\right) .
$$

Acknowledgements

I would like to express my gratitude to Dr. Daniel Kiteck for dedicating time to oversee the research, continually checking my proofs, and giving guidance, advice, and encouragement. I would also like to thank Dr. Bob Mallison for invaluable hints which led to the completion of the proofs of the theorems.

References

[Gallian 2006] J. A. Gallian, Contemporary abstract algebra, 6th ed., Houghton Mifflin, Boston and New York, 2006.
[Massari 1979] D. L. Massari, "The probability of generating a cyclic group", Pi Mu Epsilon Journal 7:1 (1979), 3-6. Zbl 0435.20055
[Patti 2002] K. L. Patti, "The probability of randomly generating a finite group", Pi Mu Epsilon Journal 11:6 (2002), 313-316.

Received: 2012-07-26 Revised: 2012-10-26 Accepted: 2012-11-13
supernaturalgospel@gmail.com 202-0004 Tokyo, Nishitokyo-shi, Shimohoya 3-11-23, Japan

involve

 msp.org/involve

 msp.org/involve EDITORS

 EDITORS}

Managing Editor
Kenneth S. Berenhaut, Wake Forest University, USA, berenhks@ wfu.edu

Board of Editors			
Colin Adams	Williams College, USA colin.c.adams@williams.edu	David Larson	Texas A\&M University, USA larson@math.tamu.edu
John V. Baxley	Wake Forest University, NC, USA baxley@wfu.edu	Suzanne Lenhart	University of Tennessee, USA lenhart@math.utk.edu
Arthur T. Benjamin	Harvey Mudd College, USA benjamin@hmc.edu	Chi-Kwong Li	College of William and Mary, USA ckli@math.wm.edu
Martin Bohner	Missouri U of Science and Technology, USA bohner@mst.edu	Robert B. Lund	Clemson University, USA lund@clemson.edu
Nigel Boston	University of Wisconsin, USA boston@math.wisc.edu	Gaven J. Martin	Massey University, New Zealand g.j.martin@massey.ac.nz
Amarjit S. Budhiraja	U of North Carolina, Chapel Hill, USA budhiraj@email.unc.edu	Mary Meyer	Colorado State University, USA meyer@stat.colostate.edu
Pietro Cerone	Victoria University, Australia pietro.cerone@vu.edu.au	Emil Minchev	Ruse, Bulgaria eminchev@hotmail.com
Scott Chapman	Sam Houston State University, USA scott.chapman@shsu.edu	Frank Morgan	Williams College, USA frank.morgan@williams.edu
Joshua N. Cooper	University of South Carolina, USA cooper@math.sc.edu	Mohammad Sal Moslehian	Ferdowsi University of Mashhad, Iran moslehian@ferdowsi.um.ac.ir
Jem N. Corcoran	University of Colorado, USA corcoran@colorado.edu	Zuhair Nashed	University of Central Florida, USA znashed@mail.ucf.edu
Toka Diagana	Howard University, USA tdiagana@howard.edu	Ken Ono	Emory University, USA ono@mathcs.emory.edu
Michael Dorff	Brigham Young University, USA mdorff@math.byu.edu	Timothy E. O'Brien	Loyola University Chicago, USA tobrie1@luc.edu
Sever S. Dragomir	Victoria University, Australia sever@matilda.vu.edu.au	Joseph O'Rourke	Smith College, USA orourke@cs.smith.edu
Behrouz Emamizadeh	The Petroleum Institute, UAE bemamizadeh@pi.ac.ae	Yuval Peres	Microsoft Research, USA peres@microsoft.com
Joel Foisy	SUNY Potsdam foisyjs@potsdam.edu	Y.-F. S. Pétermann	Université de Genève, Switzerland petermann@math.unige.ch
Errin W. Fulp	Wake Forest University, USA fulp@wfu.edu	Robert J. Plemmons	Wake Forest University, USA plemmons@wfu.edu
Joseph Gallian	University of Minnesota Duluth, USA jgallian@d.umn.edu	Carl B. Pomerance	Dartmouth College, USA carl.pomerance@dartmouth.edu
Stephan R. Garcia	Pomona College, USA stephan.garcia@pomona.edu	Vadim Ponomarenko	San Diego State University, USA vadim@sciences.sdsu.edu
Anant Godbole	East Tennessee State University, USA godbole@etsu.edu	Bjorn Poonen	UC Berkeley, USA poonen@math.berkeley.edu
Ron Gould	Emory University, USA rg@mathcs.emory.edu	James Propp	U Mass Lowell, USA jpropp@cs.uml.edu
Andrew Granville	Université Montréal, Canada andrew@dms.umontreal.ca	Józeph H. Przytycki	George Washington University, USA przytyck@gwu.edu
Jerrold Griggs	University of South Carolina, USA griggs@math.sc.edu	Richard Rebarber	University of Nebraska, USA rrebarbe@math.unl.edu
Sat Gupta	U of North Carolina, Greensboro, USA sngupta@uncg.edu	Robert W. Robinson	University of Georgia, USA rwr@cs.uga.edu
Jim Haglund	University of Pennsylvania, USA jhaglund@ math.upenn.edu	Filip Saidak	U of North Carolina, Greensboro, USA f_saidak@uncg.edu
Johnny Henderson	Baylor University, USA johnny_henderson@baylor.edu	James A. Sellers	Penn State University, USA sellersj@math.psu.edu
Jim Hoste	Pitzer College jhoste@pitzer.edu	Andrew J. Sterge	Honorary Editor andy@ajsterge.com
Natalia Hritonenko	Prairie View A\&M University, USA nahritonenko@pvamu.edu	Ann Trenk	Wellesley College, USA atrenk@wellesley.edu
Glenn H. Hurlbert	Arizona State University,USA hurlbert@asu.edu	Ravi Vakil	Stanford University, USA vakil@math.stanford.edu
Charles R. Johnson	College of William and Mary, USA crjohnso@math.wm.edu	Antonia Vecchio	Consiglio Nazionale delle Ricerche, Italy antonia.vecchio@cnr.it
K. B. Kulasekera	Clemson University, USA kk@ces.clemson.edu	Ram U. Verma	University of Toledo, USA verma99@msn.com
Gerry Ladas	University of Rhode Island, USA gladas@math.uri.edu	John C. Wierman	Johns Hopkins University, USA wierman@jhu.edu
		Michael E. Zieve	University of Michigan, USA zieve@umich.edu

PRODUCTION

Silvio Levy, Scientific Editor
See inside back cover or msp.org/involve for submission instructions. The subscription price for 2013 is US $\$ 105 /$ year for the electronic version, and $\$ 145 /$ year ($+\$ 35$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

Involve peer review and production are managed by EditFLow ${ }^{\circledR}$ from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers

involve 2013 vol. 6 no. 4

Embeddedness for singly periodic Scherk surfaces with higher dihedral symmetry 383Valmir Bucaj, Sarah Cannon, Michael Dorff, Jamal Lawson and RyanViertel
An elementary inequality about the Mahler measure 393
Konstantin Stulov and RongWei Yang
Ecological systems, nonlinear boundary conditions, and Σ-shaped bifurcation curves 399
Kathryn Ashley, Victoria Sincavage and Jerome Goddard II
The probability of randomly generating finite abelian groups 431
Tyler Carrico
Free and very free morphisms into a Fermat hypersurface 437
Tabes Bridges, Rankeya Datta, Joseph Eddy, Michael Newman and John Yu
Irreducible divisor simplicial complexes 447Nicholas R. Baeth and John J. Hobson
Smallest numbers beginning sequences of 14 and 15 consecutive happy numbers 461
Daniel E. Lyons
An orbit Cartan type decomposition of the inertia space of $\operatorname{SO}(2 m)$ acting on $\mathbb{R}^{2 m}$ 467
Christopher Seaton and John Wells
Optional unrelated-question randomized response models 483
Sat Gupta, Anna Tuck, Tracy Spears Gill and Mary Crowe
On the difference between an integer and the sum of its proper divisors 493
Nichole Davis, Dominic Klyve and Nicole Kraght
A Pexider difference associated to a Pexider quartic functional equation in topological 505vector spacesThemistocles M. Rassias

