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The pressure in the renal interstitium is an important factor for normal kidney
function. Here we develop a computational model of the rat kidney and use it to
investigate the relationship between arterial blood pressure and interstitial fluid
pressure. In addition, we investigate how tissue flexibility influences this rela-
tionship. Due to the complexity of the model, the large number of parameters,
and the inherent uncertainty of the experimental data, we utilize Monte Carlo
sampling to study the model’s behavior under a wide range of parameter values
and to compute first- and total-order sensitivity indices. Characteristically, at ele-
vated arterial blood pressure, the model predicts cases with increased or reduced
interstitial pressure. The transition between the two cases is controlled mostly
by the compliance of the blood vessels located before the afferent arterioles.

1. Introduction

Kidneys are the core organs in the urinary system. Their principal functions are to
remove metabolic waste from the blood and to regulate blood salt and water levels
[Eaton et al. 2009]. Through the regulation of salt and water, kidneys also play an
important role in the regulation of arterial blood pressure [Cowley 1997; Wolgast
et al. 1981]. To perform these functions, each kidney adjusts the composition of
the urine it produces.

Each kidney has an outer layer, called the cortex, and an inner layer, known as
the medulla [Kriz and Bankir 1988]. Much of the space in these regions is filled
by the functional units of the kidney, which are termed nephrons. Depending on
the organism, each kidney contains thousands to millions of nephrons. Nephrons
are responsible for the production of urine.

Kidneys contain two types of nephrons, cortical (short) and juxtamedullary
(long) nephrons, each of which is surrounded by a net of capillaries. Cortical

MSC2010: primary 49Q12, 65C05, 92C30, 93A30; secondary 92C50, 92C42.
Keywords: mathematical model, sensitivity analysis, Monte Carlo, kidney, interstitium.

625

http://msp.org
http://msp.org/involve/
http://dx.doi.org/10.2140/involve.2017.10-4
http://dx.doi.org/10.2140/involve.2017.10.625


626 M. BEDELL, C. Y. LIN, E. ROMÁN-MELÉNDEZ AND I. SGOURALIS

nephrons remain almost entirely in the cortex, while juxtamedullary nephrons ex-
tend deep into the medulla. Each nephron consists of a glomerulus and a renal
tubule. Furthermore, each renal tubule consists of various permeable or imper-
meable segments [Eaton et al. 2009; Kriz and Bankir 1988]. Additionally, each
nephron has access to a collecting duct for removal of the produced urine.

Kidneys are connected with the rest of the body by two blood vessels, the renal
artery, which carries blood into the kidney, and the renal vein, which carries blood
out of the kidney to recirculate into the body. In addition, urine is excreted from
the body through the ureter. Blood coming from the renal artery is delivered to the
afferent arterioles. A steady flow of blood coming from the afferent arteriole of
a nephron is filtered in the glomerulus and flows into the renal tubule. The blood
flow is maintained constant in each glomerulus by the constriction or relaxation
of its afferent arteriole [Holstein-Rathlou and Marsh 1994; Sgouralis and Layton
2015]. Nearly all of the fluid that passes through the renal tubules is reabsorbed and
only a minor fraction results in urine. Fluid is reabsorbed from the renal tubules in
two stages: first by the renal interstitium and then by the surrounding capillaries.
The processes underlying reabsorption are driven by the pressures in the interstitial
spaces [Cowley 1997; Wolgast et al. 1981].

The pressures in the renal interstitium are important determinants of kidney
function. There is a lack of investigations that look at the factors affecting them. We
develop a computational model of the rat kidney, for which several experimental
data exist, and use it to study the relationship between arterial blood pressure and
interstitial fluid pressure. In addition, we study how tissue flexibility affects this
relationship and how the model predictions are affected by the uncertainty of key
model parameters. We model the uncertain parameters as random variables and
quantify their impact using Monte Carlo sampling and global sensitivity analysis.

2. Methods

2.1. Model description. The model consists of a collection of compartments that
follow the characteristic anatomy of the kidneys of mammals [Kriz and Bankir
1988; Moffat and Fourman 1963]. The compartments fall in three categories:

(i) regions that model the cortical and medullary interstitial spaces,

(ii) pipes that model the blood vessels and renal tubules, and

(iii) spheres that model the glomeruli.

A schematic diagram depicting the arrangement of the compartments (1–35) is
shown in Figure 1 and a summary is given in Table 1. To facilitate the description of
the model equations below, we use a set of nodes (c1–c32) to mark the connections
of the compartments; these nodes are also included in Figure 1 and Table 1.
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Figure 1. Schematic diagram of the model kidney. It shows the
arrangement of blood vessels (red) and nephrons (yellow) within
the interstitial spaces (gray). With the exceptions of the capil-
laries, the schematic displays only one of each of the different
compartments contained in the full model. Nodes c1–c32 mark
the connections of the compartments.

Briefly described, blood enters through the renal artery (node c1) and splits into
a number of large arteries (compartments 3–5) that drain to the afferent arterioles
(compartments 6 and 12). Each afferent arteriole supplies one glomerulus (com-
partments 21 and 27). In the glomeruli, blood is divided between the efferent
arterioles (compartments 8 and 14) and the renal tubules (compartments 22–26
and 28–32). Leaving the efferent arterioles, blood passes through the cortical
microcirculation (compartments 9 and 10) or the medullary microcirculation (com-
partments 15–18), before it rejoins in large veins (compartments 11, 19, and 20)
and leaves through the renal vein (node c18).

The model represents short (compartments 21–26) and long nephrons (compart-
ments 27–32) that both drain in the same collecting duct (compartments 33–35),
which, in turn, drains to the ureter (node c32). The model accounts for the spacial
as well as the anatomical differences between the two nephrons that are developed
in the mammalian kidney [Kriz and Bankir 1988; Moffat and Fourman 1963]. For
example, the model accounts for differences in the location within the cortex or
medulla, in the pre- and postglomerular vascular supply, dimensions, reabsorptive
capacity, etc.
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Figure 2. Model pipes: impermeable pipe, left, and permeable pipe, right.

2.1.1. Model pipes and spheres. Blood vessels and renal tubules are modeled as
distensible pipes, while glomeruli are modeled as distensible spheres. Fluid flows
through a compartment i at a volumetric rate of Qi (Figure 2). Following the phys-
iology, some of the pipes are considered permeable while others are impermeable
[Eaton et al. 2009]. For simplicity, we assume that the only pipes modeling blood
vessels that are permeable are those that model capillaries.

The flow that passes through the walls of a permeable pipe is denoted by Ji .
According to the common convention, Ji > 0 denotes fluid leaving the pipe and
Ji < 0 denotes fluid entering the pipe. Due to conservation of mass, the flow that
leaves from an impermeable pipe Qout

i is the same as the flow that enters Qin
i , thus

Qout
i = Qin

i , (1)

while the flow that leaves a permeable pipe is given by

Qout
i = Qin

i − Ji . (2)

We assume that the flow crossing through the walls of renal tubules and glomerular
capillaries is a constant fraction of the corresponding inflow

Ji = fi Qin
i , (3)

where fi is the fraction of fluid that crosses through the pipe’s wall. For the coeffi-
cients fi we use the values listed in Table 1, which are chosen such that the model
predicts flows similar to the antidiuretic rat model in [Moss and Layton 2014].

Flows through the walls of the cortical and medullary capillaries are computed
by the Starling equation [Wolgast et al. 1981]:

J9 = K 9
f (P9− P1+π9−π1), (4)

J16 = K 16
f (P16− P2+π16−π2), (5)

where K 9
f = 1.59µm3/mmHg/min and K 16

f = 2.28µm3/mmHg/min are the filtra-
tion coefficients of the cortical and medullary capillaries and π1, π2, π9, and π16

are the oncotic pressures and P1, P2, P9, and P15 are the hydrostatic pressures in the
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i compartment (type) number P int
i Pext

i nodes frac.
coeff.

1 Cortical interstitium (region) 1 P1 - - -
2 Medullary interstitium (region) 1 P2 - - -
3 Medullary artery (pipe) 8 P3 P2 c1–c2 0
4 Arcuate artery (pipe) 24 P4

1
2 (P1+ P2) c2–c3 0

5 Cortical radial artery (pipe) 864 P5 P1 c3–c4 0
6 Afferent arteriolesn (pipe) 20736 P6 P1 c4–c5 0
7 Glomerular capillarysn (pipe) 5598720 P7 Pc19 c5–c6 3/28

8 Efferent arteriolesn (pipe) 20736 P8 P1 c6–c7 0
9 Cortical capillary (pipe) 1658880 P9 P1 c7–c8 see (4)

10 Venulesn (pipe) 20736 P10 P1 c8–c9 0
11 Cortical radial vein (pipe) 864 P10 P1 c9–c16 0
12 Afferent arterioleln (pipe) 10368 P12 P1 c3–c10 0
13 Glomerular capillaryln (pipe) 4302720 P13 Pc24 c10–c11 3/28

14 Efferent arterioleln (pipe) 10368 P14 P1 c11–c12 0
15 Descending vas rectum (pipe) 207360 P15 P2 c12–c13 0
16 Medullary capillary (pipe) 10368000 P16 P2 c13–c14 see (5)
17 Ascending vas rectum (pipe) 414720 P17 P2 c14–c15 0
18 Venulesn (pipe) 10368 P18 P1 c15–c16 0
19 Arcuate vein (pipe) 24 P19

1
2 (P1+ P2) c16–c17 0

20 Medullary vein (pipe) 8 P20 P2 c17–c18 0
21 Glomerulussn (sphere) 20736 Pc19 P1 c19 –
22 Proximal tubulesn (pipe) 20736 P22 P1 c19–c20 2/3

23 Descending limbsn (pipe) 20736 P23 P2 c20–c21 3/10

24 Medullary ascending limbsn (pipe) 20736 P24 P2 c21–c22 0
25 Cortical ascending limbsn (pipe) 20736 Pc24 P1 c22–c23 0
26 Distal tubulesn (pipe) 20736 P26 P1 c23–c29 13/84

27 Glomerulusln (sphere) 10368 P24 P1 c24 –
28 Proximal tubuleln (pipe) 10368 P28 P1 c24–c25 2/3

29 Descending limbln (pipe) 10368 P29 P2 c25–c26 5/12

30 Medullary ascending limbln (pipe) 10368 P30 P2 c26–c27 0
31 Cortical ascending limbln (pipe) 10368 P31 P1 c27–c28 0
32 Distal tubuleln (pipe) 10368 P32 P1 c28–c29 0
33 Cortical collecting duct (pipe) 144 P33 P1 c29–c30 13/84

34 Medullary collecting duct (pipe) 144 P34 P2 c30–c31 12/13

35 Papillary collecting duct (pipe) 8 P35 P2 c31–c32 0

Table 1. Summary of the compartments contained in the kidney
model. Superscripts sn and ln denote short and long nephrons,
respectively. Number refers to the total number of compartments
contained in the full model.
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associated compartments. The oncotic pressures are obtained by an approximation
of the Landis–Pappenheimer relation

πi = αCi +βC2
i , (6)

where α = 1.63 mmHg·dl/gr and β = 0.29 mmHg·dl2/gr2 as used in [Deen et al.
1972]. In (6), Ci denotes the concentration of protein in the compartment i . We
assume a fixed protein concentration of the blood entering through the renal artery
of Ca = 5.5 gr/dl and compute concentrations throughout the blood vessels (com-
partments 3–9 and 12–16) by taking into consideration conservation of mass:

Cout
i =

Qin
i

Qin
i − Ji

C in
i , (7)

where C in
i and Cout

i denote the inflow and outflow concentrations of the compart-
ment i . The oncotic pressures π9 and π16 in (4) and (5) are computed based on the
averages

C9 =
1
2(C

in
9 +Cout

9 ), (8)

C16 =
1
2(C

in
19+Cout

19 ). (9)

In each pipe and glomerulus, the internal pressure is denoted P int
i and the ex-

ternal Pext
i . For pipes, P int

i is computed by the average of the pressures at the
associated inflow and outflow nodes (Figure 1). For the glomeruli, internal pressure
equals to the pressure of the associated node (Figure 1 and Table 1). For all pipes
and glomerulus compartments, the external pressures equal the internal pressure
of the surrounding compartment, which, in the case of the cortical and medullary
regions, are denoted by P1 and P2, respectively. Exceptions to this are the arcuate
arteries and veins (compartments 4 and 19, respectively), which anatomically are
located between the cortex and the medulla [Kriz and Bankir 1988], so we compute
Pext

i for these compartments by the average of P1 and P2.
The volumes of the compartments, besides the regions and the afferent arterioles

(compartments 1, 2, 6, and 12), depend passively on the pressure difference that is
developed across their walls:

Vi = V ref
i + si (P int

i − Pext
i +1P ref

i ), (10)

where V ref
i , 1P ref

i , and si are constants. In particular, V ref
i and 1P ref

i denote a
reference volume and the pressure difference across the walls of the compartment
when Vi equals V ref

i , respectively. The parameters si are a measure of the dis-
tensibility of the compartments. A large si value indicates a compartment that is
very distensible, while a low value si indicates a more rigid compartment. In the
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model, we use si ≥ 0 such that an increase in P int
i or a decrease in Pext

i leads to an
expansion of the volume Vi , and vice versa.

For a model pipe, let P in
i and Pout

i denote the pressures at its inflow and out-
flow nodes, respectively. These pressures are related by a modified form of the
Poiseuille law:

P in
i − Pout

i =
8µi L i

πR4
i

(
Qin

i −
2
3 Ji
)
, (11)

where µi is the viscosity of the flowing fluid, L i is the length of the pipe, and
Ri is its radius. In the model, we assume µi and L i to be constants, while we
compute Ri based on the compartment’s volume (i.e., Vi =πR2

i L i ). Equation (11)
reduces to the common Poiseuille equation for the impermeable pipes [Sgouralis
and Layton 2015], while for the permeable pipes, it is assumed that Ji is linearly
distributed along the length of the pipe with a value of zero at the end of the pipe.

Pressure at node c1 equals the arterial blood pressure Pa , which in our model is
a free variable. Pressures at nodes c18 and c32 are kept constant at 4 mmHg and
2 mmHg, respectively, in agreement with the values of venous and ureter pressures
used in previous modeling studies [Moss and Thomas 2014; Layton et al. 2012].

2.1.2. Model afferent arterioles. The afferent arterioles are unique vessels in the
sense that they actively adjust radii such that blood flows through them at a fixed
rate [Holstein-Rathlou and Marsh 1994; Sgouralis and Layton 2015]. In the model,
we assume that blood flows in the afferent arterioles that feed the short and long
nephrons (i.e., Q6 and Q12, respectively) are fixed at 280 nl/min and 336 nl/min,
respectively, as in previous modeling studies of renal hemodynamics (see, for ex-
ample, [Moss and Layton 2014; Fry et al. 2014; Sgouralis and Layton 2014]).

We compute the radii of the afferent arterioles by using the Poiseuille equation
[Sgouralis and Layton 2015], which yields

R6 =

(
8µ6L6

π

Q6

Pc4− Pc5

)1/4

, (12)

R12 =

(
8µ12L12

π

Q12

Pc3− Pc10

)1/4

. (13)

Note that (12) and (13) imply that whenever the pressure difference along the
afferent arterioles Pc4 − Pc5 and Pc3 − Pc10 increases, the radii R6 and R12 de-
crease. This, in turn, implies that whenever the arterial blood pressure Pa in-
creases, the afferent arterioles constrict, and thus the total volumes occupied by
them, V6 = πR2

6 L6 and V12 = πR2
12L12, are reduced.

2.1.3. Model interstitial regions. The cortical and medullary interstitial spaces,
i.e., compartments 1 and 2, lie outside of the compartments 3–35 and therefore
must be calculated separately using a different set of equations. We obtain the first



632 M. BEDELL, C. Y. LIN, E. ROMÁN-MELÉNDEZ AND I. SGOURALIS

of such relationships by assuming that the net accumulation of interstitial fluid
within the cortex and medulla is zero. That is,

J9+
1

80 J22+
1
80 J26+

1
160 J28+

1
160 J32 = 0, (14)

J16+
1

500 J23+
1

1000 J29+
1

72000 J34 = 0, (15)

where the flows Ji are weighted based on the total number of the compartments
contained in the full model (Table 1).

Equations (4) and (5) require the oncotic pressures π1 and π2, which in turn
require the cortical and medullary protein concentrations C1 and C2 for (6). Protein
concentrations in the cortical and medullary regions are computed assuming that
the total mass of protein contained in each region, M1 and M2, respectively, remains
constant. Thus,

C1 = M1/V1, (16)

C2 = M2/V2. (17)

We use the values M1 = 1.93 mgr and M2 = 1.25 mgr, which are computed such
that the resulting model predicts reference pressures in the renal cortex and medulla
of ∼ 6 mmHg, similar to those estimated experimentally [Cowley 1997].

Cortical and medullary interstitial volumes V1 and V2 are assumed to change
proportionally; thus,

V1/V2 = κ, (18)

where κ is the proportionality constant. The combined volume of the interstitial
regions V1+V2 is calculated based on the total volume of the kidney V0 according to

V1+ V2 = V0− Vcortex− Vmedulla, (19)

where Vcortex and Vmedulla are found by summing the total volumes of the pipe and
glomerulus compartments contained within each region. Finally, the total volume
of the kidney V0 is calculated by

V0 = V ref
0 + s0 (P1− Pext

0 +1P ref
0 ), (20)

where in this case Pext
0 refers to the pressure external to the kidney, which is set to

0 mmHg. Equation (20) assumes that the total volume of the kidney is determined
by the distensibility of the renal capsule s0, which is stretched by the difference of
the pressures developed across it, i.e., P1− Pext

0 .

2.2. Model parameters. Values for the model parameters are given in Table 2.
These values are chosen such that at a reference arterial blood pressure P ref

a =
100 mmHg, the model predicts pressures and volumes that are in good agreement
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i
L i

µi
P ref

i 1P ref
i Rref

i V ref
i σ̃i ci P ref

ci
µm mmHg mmHg µm µm3 mmHg

1 - - 6 - - 7.62 · 1010 - c1 100
2 - - 6 - - 4.92 · 1010 - c2 97.51
3 7 · 103 µL 98.75 −92.75 270 1.60 · 109 σ̃G4 c3 95.02
4 2 · 103 µL 96.26 −90.26 150 1.41 · 108 σ̃G4 c4 93.97
5 3 · 103 µL 94.50 −88.50 75 5.30 · 107 σ̃G4 c5 51.17
6 300 µA 72.57 −66.57 10 9.42 · 104 - c6 48.08
7 80 µC 49.62 −37.27 4.2 4.43 · 103 σ̃G5 c7 14.38
8 310 µE 31.23 25.23 11 1.17 · 105 σ̃G5 c8 8.92
9 40 µC 11.65 −5.65 4.2 2.21 · 103 σ̃G5 c9 5.44

10 50 µL 7.17 −1.18 12 2.26 · 104 σ̃G5 c10 50.52
11 3 · 103 µL 5.40 0.60 150 2.12 · 108 σ̃G5 c11 47.51
12 260 µA 72.77 −66.77 10 8.16 · 104 - c12 12.94
13 100 µC 49.02 −35.35 4.2 5.54 · 103 σ̃G5 c13 9.88
14 265 µE 30.22 −24.22 11 1.00 · 105 σ̃G5 c14 9.12
15 210 µE 11.41 −5.41 9 5.34 · 104 σ̃G5 c15 7.78
16 60 µC 9.50 −3.50 4.2 3.32 · 103 σ̃G5 c16 5.37
17 210 µA 8.45 −2.45 9 5.34 · 104 σ̃G5 c17 4.41
18 30 µA 6.58 −0.58 12 1.35 · 104 σ̃G5 c18 4
19 2 · 103 µL 4.89 1.11 190 2.26 · 108 σ̃G5 c19 12.36
20 7 · 103 µL 4.20 1.79 425 3.97 · 109 σ̃G5 c20 11.73
21 - - 12.36 −6.36 80 2.14 · 106 σ̃G2 c21 11.30
22 14 · 103 µN 12.04 −6.04 15 9.89 · 106 σ̃G3 c22 10.93
23 2 · 103 µN 11.51 −5.51 8.5 4.53 · 105 σ̃G3 c23 10.79
24 2 · 103 µN 11.12 5.11 8.5 4.53 · 105 σ̃G3 c24 13.66
25 3 · 103 µN 10.86 −4.86 12 1.35 · 106 σ̃G3 c25 12.90
26 5 · 103 µN 10.73 −4.73 13.5 2.86 · 106 σ̃G3 c26 11.76
27 - - 13.66 −7.66 100 4.18 · 106 σ̃G2 c27 10.84
28 14 · 103 µN 13.28 −7.28 55 9.89 · 106 σ̃G3 c28 10.79
29 5 · 103 µN 12.33 −6.33 8.5 1.13 · 106 σ̃G3 c29 10.66
30 5 · 103 µN 11.30 −5.30 8.5 1.13 · 106 σ̃G3 c30 6.64
31 1 · 103 µN 10.82 −4.82 12 4.52 · 105 σ̃G3 c31 2.00
32 5 · 103 µN 10.73 −4.73 13.5 2.86 · 106 σ̃G3 c32 2
33 1.5 · 103 µN 8.65 −2.65 16 1.20 · 106 σ̃G3

34 4.5 · 103 µN 4.32 1.68 16 3.61 · 106 σ̃G3

35 2.5 · 103 µN 2.00 4.00 2.3 4.15 · 1010 σ̃G1

Table 2. Parameter and reference values for the model compart-
ments (indexed by i) and nodes (indexed by ci). Values for vis-
cosity and flexibility are given in Table 3.
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viscosity values (min·mmHg) flexibility values (mmHg−1)

µL = 6.4 · 10−7 σ̃G1 = 0.002
µA = 2 · 10−6 σ̃G2 = 0.005
µE = 2.5 · 10−6 σ̃G3 = 0.045
µC = 4.9 · 10−6 σ̃G4 = 0.004
µN = 5.4 · 10−8 σ̃G5 = 0.065

Table 3. Viscosity and flexibility values.

with either direct experimental measurements [Nyengaard 1993; Nordsletten et al.
2006; Jensen and Steven 1977; Heilmann et al. 2012; Cortes et al. 1996] or previous
modeling studies [Moss and Layton 2014; Moss and Thomas 2014; Edwards and
Layton 2011; Sgouralis and Layton 2012; 2013; 2016; Oien and Aukland 1991;
Sgouralis et al. 2015; Chen et al. 2011].

The pressure-volume relationships used in the model, (10) and (20), require
values for the parameters si . We assume that

(i) si scale proportionally to the reference volumes

si = σi V ref
i , (21)

and

(ii) the coefficients σi depend only on the histology of the associated compart-
ment.

That is, we group the compartments as follows:

Group G1: renal capsule (s0) and papillary collecting duct (s35),

Group G2: glomeruli (s21 and s27),

Group G3: renal tubules (s22–s26) and proximal collecting ducts (s28–s34),

Group G4: preafferent arteriole blood vessels (s3–s5),

Group G5: postafferent arteriole blood vessels (s7–s11 and s13–s20).

Then we assign the same flexibility value σi to all members of each group
(Table 2). With this formulation, the model compartments in each histological
group experience the same fractional change in volume whenever they are chal-
lenged by the same pressure gradient P int

i − Pext
i .

The available experimental data do not permit an accurate estimate of the values
of the flexibility parameters. For this reason, we treat the flexibilities of the five
groups σg as independent random variables. To facilitate the comparison among
the different groups, we set

σg = σ̃g3g, (22)
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Figure 3. Probability densities of the flexibility parameters3g of
the histological groups G1–G5 used in this study.

where σ̃g are constants, and 3g are random variables configured to have mode 1.
We estimate the values of σ̃g empirically based on ex vivo measurements reported
in [Hebert et al. 1975; Zhu et al. 1992; Cortes et al. 1996; Cortell et al. 1973;
Yamamoto et al. 1983] (Table 2).

For each simulation, 3g are drawn from the log-normal distribution (Figure 3),
which is chosen such that

(i) sg attain nonnegative values,

(ii) arbitrarily large values of sg are allowed, and

(iii) low sg values are more frequent than large ones.

We choose the latter condition assuming that the experimental procedures (anes-
thesia, renal decapsulation, tissue isolation, etc.) utilized in [Hebert et al. 1975;
Cortes et al. 1996; Cortell et al. 1973; Yamamoto et al. 1983] likely increase rather
than decrease tissue flexibility, thus our computed σ̃g likely overestimate rather
than underestimate σg.

Finally, we configure the log-normal distributions such that 3G1 and 3G2 have
a log-standard deviation of 1.1, and 3G3, 3G4, and 3G5 have a log-standard devi-
ation of 1.25 (Figure 3). According to our experience, such configuration reflects
the degree of the uncertainty in our estimated values of σ̃g, for which we consider
σ̃G3, σ̃G4, and σ̃G5 less accurately estimated than σ̃G1 and σ̃G2.

2.3. Sensitivity analysis.

2.3.1. Formulation. For the sensitivity analysis of the model described in the pre-
vious sections, we adopt a variance-based method which is best suited for nonlin-
ear models [Saltelli et al. 2000; Sobol’ 2001]. Let

y = f (x1, x2, . . . , xk) (23)
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denote a generic model, where y is an output value and x1, x2, . . . , xk are some ran-
dom inputs (in our case those represent the uncertain parameters). For a factor xg,
the first- and total-order sensitivity indices are given by

Sg =
V(E(y | xg))

V(y)
, (24)

Tg = 1−
V(E(y | x−g))

V(y)
, (25)

respectively [Saltelli et al. 2000; Saltelli 2002; Sobol’ 2001]. In the equations
above, E and V denote mean value and variance, respectively. In (24), first the
mean of y is computed by fixing the factor xg to some value x̃g, and then the
variance of the mean values is computed over all possible x̃g. In (25), first the
mean value is computed by fixing all factors except xg (which is denoted by x−g),
and then the variance of the mean values is computed over all possible x−g.

According to the above definitions, the first-order index Sg indicates the fraction
by which the variance of y will be reduced if only the value of the factor xg is
certainly specified [Saltelli et al. 2000]. Similarly, the total-order index Tg indicates
the fraction of the variance of y that will be left if all factors besides xg are certainly
specified [Saltelli et al. 2000]. We compute both indices, because generally for a
nonlinear model the factors are expected to interact in a nonadditive way, and
therefore Tg is expected to be larger than Sg. The difference Tg− Sg characterizes
the extent of the interactions with the other factors that xg is involved with.

2.3.2. Evaluation of sensitivity indices. To better characterize the contribution of
the individual factors 3g of (22), in the variance of P1 and P2, we calculate their
first- and total-order sensitivity indices given in (24) and (25). We compute the
indices according to the method proposed by Saltelli [2002], which is computa-
tionally less demanding than a straightforward application of the formulas (24)
and (25).

Briefly, according to the Saltelli method we form two input matrices:

MA =


3

1,A
G1 3

1,A
G2 3

1,A
G3 3

1,A
G4 3

1,A
G5 3

1,A
G6

3
2,A
G1 3

2,A
G2 3

2,A
G3 3

2,A
G4 3

2,A
G5 3

2,A
G6

...
...

...
...

...
...

3
N ,A
G1 3

N ,A
G2 3

N ,A
G3 3

N ,A
G4 3

N ,A
G5 3

N ,A
G6

 , (26)

MB =


3

1,B
G1 3

1,B
G2 3

1,B
G3 3

1,B
G4 3

1,B
G5 3

1,B
G6

3
2,B
G1 3

2,B
G2 3

2,B
G3 3

2,B
G4 3

2,B
G5 3

2,B
G6

...
...

...
...

...
...

3
N ,B
G1 3

N ,B
G2 3

N ,B
G3 3

N ,B
G4 3

N ,B
G5 3

N ,B
G6

 (27)
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by generating Monte Carlo samples 3 j,A
g and 3

j,B
g for the factors 3g. Sub-

sequently, for each factor, we form a matrix Mg. Each Mg is formed by the
columns of MA, except the column that corresponds to the factor 3g, which is
taken from MB . For instance, MG2 is given by

MG2 =


3

1,A
G1 3

1,B
G2 3

1,A
G3 3

1,A
G4 3

1,A
G5 3

1,A
G6

3
2,A
G1 3

2,B
G2 3

2,A
G3 3

2,A
G4 3

2,A
G5 3

2,A
G6

...
...

...
...

...
...

3
N ,A
G1 3

N,B
G2 3

N ,A
G3 3

N ,A
G4 3

N ,A
G5 3

N ,A
G6

 . (28)

We use each row of the matrices MA, MB , and Mg to solve the model equations at
Pa = 180 mmHg and combine the solutions in the vectors

mk
A =


P1,A

k

P2,A
k
...

P N ,A
k

 , mk
B =


P1,B

k

P2,B
k
...

P N ,B
k

 , mk
g =


P1,g

k

P2,g
k
...

P N ,g
k

 , (29)

where k = 1 corresponds to the pressure in the cortical region P1, and k = 2 to the
pressure in the medullary region P2. The first- and total-order sensitivity indices
are then computed by

Sk
g =

1/(N − 1)
∑N

j=1(P
j,A

k P j,g
k )− 1/N

∑N
j=1(P

j,A
k P j,B

k )

V(mk
A)

, (30)

T k
g = 1−

1/(N − 1)
∑N

j=1(P
j,B

k P j,g
k )−

(
1/N

∑N
j=1 P j,B

k

)2

V(mk
B)

, (31)

respectively. In (30) and (31), V denotes the sample variance. For further details
on the method, see [Saltelli 2002].

2.4. Numerical methods. For the numerical solution, we combine the model equa-
tions (1)–(20) into a system of 69 coupled nonlinear equations. Given a value for
the arterial blood pressure Pa and a choice for the flexibility parameters 3g, the
resulting system is solved to yield the values for the pressures at the interstitial
regions P1 and P2, the pressures at the model nodes Pc1–Pc32, and the volumes of
the compartments V1–V35.

To obtain solutions, we implement the system in MATLAB and use the stan-
dard root-finding function (fsolve). This function computes solutions to the model
equations iteratively by starting from a given initial approximation. For the initial
approximation we use the reference values from literature (Table 2). Note that by
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Figure 4. Model predictions for selected parameter choices. Up-
per panels: radii of the afferent arterioles. Lower panels: pressures
in the interstitial regions.

the construction of the model, the solution at reference can be obtained trivially,
and thus no root-finding is necessary for this step.

3. Results

3.1. Selected case studies. In the first set of simulations, we investigate how the
pressures in the interstitial regions P1 and P2 are affected by the arterial blood
pressure Pa for selected choices of the flexibility parameters when Pa varies in
the range 80–180 mmHg. In particular, we make the following choices for the
flexibility parameters:

Case 1: 3G1 =3G2 =3G3 =3G4 =3G5 = 0,

Case 2: 3G1 =3G2 =3G3 =3G4 =3G5 = 1,

Case 3: 3G1 =3G2 =3G3 =3G4 =3G5 = 4,

Case 4: 3G3 = 0 and 3G4 = 0.27 and 3G5 = 0.2.

Figure 4 shows key solution values.
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Case 1 corresponds to a kidney with rigid compartments. In this case, pressure
does not affect the volume of the compartments except for the two afferent arteri-
oles V6 and V12. For example, at elevated Pa , the pressure differences along the
afferent arterioles Pc4 − Pc5 and Pc3 − Pc10 increase. As a result, the arterioles
constrict in order to maintain constant blood flow; see (12) and (13). Given that
total kidney volume V0, given by (20), does not change, the reduction in afferent
arteriole volume increases the volume of the interstitial regions V1 and V2 given
by (18). In turn, increases in interstitial volumes reduce the protein concentrations
C1 and C2 by (16) and (17) and the oncotic pressures π1 and π2 that promote uptake
J9 and J16 of interstitial fluid by (4) and (5). However, due to tubular reabsorp-
tion J22–J34, the flow of fluid into the interstitial spaces is kept constant; see (14)
and (15). Thus, in order to maintain a constant uptake and avoid accumulation of
interstitial fluid, P1 and P2 increase. Vice versa, a decrease in Pa has the opposite
effect and results in a decrease of P1 and P2. Because the total volume of the
afferent arterioles is only a minor fraction of the volume of the interstitial regions
(∼ 2%, see Table 2), even large changes in R6 and R12 induce small changes in
π1 and π2. Therefore, the total change in P1 and P2, across the full range of Pa

variation, is in the order of 0.1 mmHg (see blue curves in Figure 4).
Case 2 corresponds to a kidney with distensible compartments. This case is

similar to Case 3; however, the changes in P1 induced by the constriction of the
afferent arterioles is followed by an expansion of the renal capsule (20), which in-
creases whole kidney volume V0. In this case, the cortical and medullary interstitial
volumes V1 and V2 increase to a larger extent compared with Case 1 in order to
accommodate the expansion of V0. As a result, interstitial protein concentrations
C1 and C2, and oncotic pressures π1 and π2 drop by larger amounts than in Case 1.
Consequently, significant drops in P1 and P2 follow (see orange curves in Figure 4).

Case 3 corresponds to a kidney with very flexible compartments and renal cap-
sule. Through the same effects as in Cases 1 and 2, changes in arterial pressure Pa

lead to similar changes in P1 and P2. Because in this case the expansion of whole
kidney volume V0 is greater than in Case 2, due to the increased flexibility of the
renal capsule s0, the interstitial pressures are affected to a greater extent (see yellow
curves in Figure 4).

Case 4 shows a different behavior that corresponds to a kidney with a flexible
capsule but relatively rigid compartments. As in all cases, Pa affects severely
the pressures in the preafferent arteriole vascular compartments P3, P4, and P5 —
see (11) — which are not regulated by the active constriction/dilation of the afferent
arterioles. As a result, whenever Pa increases, P3, P4, and P5 also increase, leading
to an increase of the associated preafferent arteriole vascular volumes V3, V4, and
V5. Note that the increase of V3, V4, and V5 opposes the reduction of V6 and V12

caused by constriction of the afferent arterioles. In this particular case, opposite to
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what happens in Cases 1–3, the increase of the total volume of the preafferent arte-
riole compartments V3, V4, and V5 exceeds the reduction of the total volume of the
afferent arterioles V6 and V12. As a result, the interstitial regions are compressed,
which in turn leads to increases of the protein concentrations C1 and C2 and oncotic
pressures π1 and π2. Because the uptake of interstitial fluid is maintained constant,
this leads to reductions of P1 and P2. Finally, the reductions of P1 and P2 are further
amplified by constriction of the renal capsule that follows the reduction of P1.

3.2. Sensitivity analysis. From the previous section, it is apparent that the predic-
tions of the model depend on the choice of the flexibility parameters 3g, which
are not well-characterized (Section 2.2). To assess the degree to which different
choices affect the pressures in the interstitial regions P1 and P2, we sample the pa-
rameter space. For each sample point, we evaluate the model solution at an elevated
arterial blood pressure Pa . For all simulations, we keep Pa constant at 180 mmHg.

3.2.1. Summary statistics. The model utilizes five factors that correspond to the
flexibility parameters associated with the histological groups of Section 2.2. We
use a sample size of N = 41 · 103 and perform sampling with the Monte Carlo
method. The resulting probability densities and cumulative distributions of P1 and
P2 are shown in Figure 5.

As can be seen in Figure 5, the model predicts mostly increased P1 and P2 at
elevated Pa . However, the uncertainty in the flexibility parameters 3g induces a
significant degree of variability for both pressures. The mean values of P1 and
P2 are 9.1 and 8.6 mmHg, and the standard deviations are 4.1 and 3.7 mmHg,
respectively. Both pressure distributions are heavily skewed towards large values.

Interestingly, the model also predicts low or even negative pressures. Negative
pressure values indicate that the pressures in the interstitial regions fall below the
pressure in the space surrounding the kidney Pext

0 , which in this study is set to
0 mmHg. In summary, 84% of P1 and 77% of P2 values at Pa = 180 mmHg are
above the corresponding values at Pa = 100 mmHg, and 16% of P1 and 11% of P2

values lie below 0 mmHg or above 15 mmHg.
Scatter plots between the input factors 3g and the computed pressures P1 and

P2 are shown in Figure 6. Only 3G4 shows a clear influence on P1 and P2, with
high values of 3G4 being associated generally with higher interstitial pressures.
No apparent trend can be identified for the rest of the factors. Linear regressions
between the computed pressures and the input factors (shown by the dashed lines
in Figure 6) yield low R2. Precisely, values of R2 for 3G4 equal 0.25 for P1 and
0.16 for P2. The rest of the factors yield R2 for 0.02 or less. Such low R2 indicate
strong nonlinear dependencies of the interstitial pressures on the input factors, a
behavior that most likely stems from the inverse-forth-power in the Poiseuille law
given by (11).
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Figure 5. Probability densities of P1, left panels, and P2, right
panels, at elevated arterial blood pressure (Pa = 180 mmHg) as
estimated by model simulations. Vertical lines indicate the values
at the reference arterial blood pressure (Pa = 100 mmHg).

Correlation coefficients computed between the input factors 3g and the com-
puted pressures P1 and P2 are shown in Figure 7, left panels. As is suggested by
Figure 6, 3G4 is positively correlated (weakly) with P1 and P2. From the rest of
the factors,3G1,3G3, and3G5 are negatively correlated with P1 and P2 to an even
weaker extent than for 3G4, and 3G2 shows no correlation with either P1 or P2.

In contrast to the apparent lack of any trend between the computed pressures P1

and P2 and the input factors 3G4, the model predicts a high degree of correlation
between P1 and P2. The associated correlation coefficient reaches as high as 0.95
(Figure 7 right panels), which indicates that P1 and P2 are predicted to change in
tandem in a seemingly linear way.

3.2.2. Sensitivity indices. To better characterize the contribution of the individual
factors 3g in the variance of P1 and P2, we calculate their first- and total-order
sensitivity indices shown in (24) and (25). Details on the adopted computational
methods can be found in Section 2.3.
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Figure 7. Correlation coefficients between the input factors 3g

and the computed pressures in the cortical and medullary intersti-
tial spaces P1 and P2, respectively.

Figure 8 shows the computed indices. Evidently, the flexibility of the preafferent
arteriole vascular segments (group G4) accounts for most of the variation in P1 or
P2 with respect to either the first- or total-order indices. The postafferent arteriole
vasculature (group G5) has the second-most significant contribution. Groups G1–
G3 have only minor contributions according to the first-order sensitivity indices.
However, this is not the case with the total-order indices, which indicate that G1
and G3 are involved to a significant degree in interactions. On the contrary, the
glomeruli (group G2) have only a minor involvement in interactions.
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For all groups, it is observed that T 1
g < T 2

g and T 1
g − S1

g < T 2
g − S2

g , which
indicate that the medullary pressure P2 is more susceptible to interactions than
cortical pressure P1. This behavior is expected, given that the afferent arterioles
(compartments 6 and 12), which initiate the changes in P1 and P2, are located
exclusively in the cortex, while the medulla is susceptible mostly to secondary
interactions initiated by the expansion/constriction of the renal capsule.

4. Conclusions

We developed a multicompartmental computational model of the rat kidney. The
model is constructed using conservation laws (2) and (7), fluid dynamics (11),
simplified pressure-volume relationships (10) and (20), and constitutive equations
specific to the physiology of the kidney (3) and (14) and (15).

We assigned values to the model parameters (Tables 1 and 2) using experimen-
tal measurements when such measurements were available and previous modeling
studies when direct measurements were not available. However, the data required
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for the flexibility parameters σi are sparse and do not suffice for an accurate esti-
mation of their values. To that end, we chose to model these parameters as random
variables with probability distributions that permit values spanning multiple orders
of magnitude (Section 2.2 and Figure 3).

To determine the probability distributions of the random variables, we defined
five histological groups within the model kidney. Group G1 models thick and rel-
atively inflexible structures, for which we used pressure-mass data obtained from
whole kidneys in dogs [Hebert et al. 1975; Zhu et al. 1992]. Group G2 models the
glomeruli, for which we used pressure-volume data measured in rats [Cortes et al.
1996]. Group G3 models the various segments of the nephrons and the proximal
parts of the collecting duct, for which we used pressure-radius measurements of the
rat proximal tubule [Cortell et al. 1973]. Groups G4 and G5 model the blood ves-
sels, for which we used pressure-volume measurements of the systemic circulation
measured in rats [Yamamoto et al. 1983]. We combined the postafferent arteriole
vasculature in one group (group G5), despite that it consists of segments of the
arterial and venous vascular trees [Kriz and Bankir 1988]. We were motivated
to do so by the fact that these vascular segments have considerably thinner walls
and therefore should be considerably more flexible than the preafferent arteriole
segments [Rhodin 1980].

Output from the model leads to a range of predictions depending on the choices
of the flexibility values. Generally, increased arterial blood pressure is predicted
to increase the pressure in both interstitial spaces (Figure 5). As arterial blood
pressure increases from 100 mmHg to 180 mmHg, interstitial pressures are pre-
dicted to increase on average by ∼ 3 mmHg. Changes of similar magnitude have
been observed in the kidneys of rats [Garcia-Estan and Roman 1989; Khraibi et al.
2001; Skarlatos et al. 1994; Khraibi 2000] and dogs [Majid et al. 2001; Granger
and Scott 1988]. Upon a limited number of flexibility choices, however, the model
predicts decreased interstitial pressures as a result. Furthermore, the model predicts
a tight correlation between the cortical and the medullary pressures (Figure 7, right
panels) which is also in agreement with the experimental observations reported in
[Garcia-Estan and Roman 1989]. Concerning the four case studies of Section 3.1,
Cases 2 and 3 are in best agreement with the experimental observations in [Garcia-
Estan and Roman 1989; Khraibi et al. 2001; Skarlatos et al. 1994; Khraibi 2000;
Majid et al. 2001; Granger and Scott 1988]. In contrast, Case 4 deviates from the
experimental observations.

As arterial blood pressure Pa increases, mainly two distinct pathways that lead
to interstitial pressure P1 and P2 changes can be identified (Figure 9). The first
pathway (denoted with red) leads to an increase of interstitial pressure upon con-
striction of the afferent arterioles. The second pathway (denoted with blue) leads
to a decrease of interstitial pressure upon dilation of the preafferent arteriole blood
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Figure 9. A summary of the mechanism relating arterial blood
pressure Pa and interstitial pressures P1 and P2. Changes in Pa are
transmitted to P1 and P2 primarily by two pathways: one is medi-
ated by afferent arteriole volumes (V6, V12) which is marked with
red arrows, the other is mediated by preafferent arteriole volumes
(V3, V4, V5) and is marked with blue arrows. The two pathways
have competing effects. Secondary interactions are denoted with
dashed lines. For simplicity, some of the secondary interactions
are omitted.

vessels. Primarily, both pathways lead to changes in interstitial volumes V1 and V2,
which are subsequently transmitted to protein concentrations C1 and C2, oncotic
pressures π1 and π2, and finally to P1 and P2. The two pathways have competing
effects; the first leads to changes of P1 and P2 towards the same direction as Pa ,
while the second leads to changes of P1 and P2 towards the opposite direction of Pa .
It is important to note that, in general, both pathways are active. However, the
model results (Figure 5) indicate that under most circumstances the first pathway
dominates over the second.

The model predictions appear particularly sensitive to the flexibility of the preaf-
ferent arteriole blood vessels (histological group G4) (Figure 8). Such behavior is
attributed mostly to the fact that blood pressure is only regulated by the affer-
ent arterioles, which are located after these vessels [Sgouralis and Layton 2015].
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The lack of pressure regulation, in the preafferent arteriole compartments, leads
to larger internal pressure P int

i changes upon increases in arterial pressure Pa than
in the rest of the compartments. For example, as Pa increases from 100 mmHg to
180 mmHg, assuming an increase in the interstitial pressures of∼ 5 mmHg, we see
that the compartments of group G4 are stretched by a pressure difference of ∼ 70–
75 mmHg, while the walls of the rest of the compartments are stretched by a pres-
sure difference of∼5 mmHg. Thus, in view of the pressure-volume relations given
by (10), the resulting change in total kidney volume V0, which mediates the changes
in interstitial pressures, is mostly affected by sG4 rather than sG1, sG2, sG3, or sG5.

The model developed in this study uses several simplifications. For example,
the current model assumes perfect autoregulation of blood flow for equations (12)
and (13), which limits its applicability to cases with arterial blood pressures be-
tween 80 mmHg and 180 mmHg [Sgouralis and Layton 2015]. The model does not
account for the differences in tubular reabsorption, e.g., coefficients fi in (3), oc-
curring between diuretic and antidiuretic animals or for pressure-diuretic responses
[Cowley 1997; Moss and Thomas 2014]. Furthermore, the model assumes linear
pressure-volume relationships for (10) and (20). Lifting those limitations requires
a more detailed model, the development of which will be the focus of future stud-
ies. Despite these limitations, the present model could be a useful component in
comprehensive models of renal physiology.
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