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We observe structure in the sequences of quotients and remainders of the Eu-
clidean algorithm with two families of inputs. Analyzing the remainders, we
obtain new algorithms for computing modular inverses and representing prime
numbers by the binary quadratic form x2

+ 3xy+ y2. The Euclidean algorithm
is commenced with inputs from one of the families, and the first remainder less
than a predetermined size produces the modular inverse or representation.

1. The algorithms

Intuitively, the iterative nature of the Euclidean algorithm makes the sequences of
quotients and remainders “sensitive to initial conditions”. A small perturbation to
the inputs can induce a chain reaction of increasingly large perturbations in the
sequence of quotients and remainders, leading to considerable alterations to both
the lengths of the sequences and their entries. Later entries are especially prone to
change because of cumulative effects.

Our first result, Theorem 8, provides a surprising example of regularity under
perturbation. When v is a solution of the congruence v2

+ v− 1≡ 0 (mod u), we
show that the Euclidean algorithm with u and v− 1 always takes one step fewer
than the Euclidean algorithm with u and v. The sequences of quotients in both cases
are almost identical, differing only in their middle one or two entries. (They are
also symmetric outside of those middle entries.) We also obtain explicit formulas
for the remainders of the Euclidean algorithm with u and v − 1 in terms of the
remainders produced by u and v.

From these formulas we obtain a new algorithm for representing prime numbers
by the indefinite quadratic form x2

+ 3xy+ y2. When such a representation exists,
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the algorithm produces one with x > y > 0. Lemma 3 at the end of this section
shows this representation is unique.

Algorithm 1. Let p be a prime number congruent to 1 or 4 modulo 5. To compute
the unique representation p = b2

+ 3bc + c2 with b > c > 0, first compute a
solution v to the congruence v2

+ v− 1≡ 0 (mod p), then perform the Euclidean
algorithm with p and v. The first remainder less than

√
p/5 is c, and the remainder

just preceding is either b or b+ c.

This algorithm is similar to earlier algorithms that use the Euclidean algorithm to
produce representations by binary quadratic forms [Brillhart 1972; Cornacchia 1908;
Hardy et al. 1990a; 1990b; Matthews 2002; Wilker 1980]. Of these, [Matthews
2002] is the only one to produce representations by forms with positive discriminant,
namely, the forms x2

−wy2 with w = 2, 3, 5, 6, or 7. The algorithm we present is
a new contribution to this body of work.

We study a second family of inputs to the Euclidean algorithm, pairs u > v for
which (v±1)2≡ 0 (mod u). This condition implies that there must exist a, b, and c
with u = ab2 and v = abc± 1. Theorems 9 and 10 give an explicit description of
the quotients and remainders of the Euclidean algorithm with u and v in terms of
the quotients and remainders of the Euclidean algorithm with b and c.

The relationship between the quotients of the Euclidean algorithm with b and c
and with ab2 and abc±1 is essentially the “folding lemma” for continued fractions,
first explicated independently in [Mendès France 1973; Shallit 1979]. This lemma
has inspired a significant body of work concerning the quotients of continued
fractions. These works give attention only to continued fractions — the remainders
in the Euclidean algorithm are never explicitly considered. The description of the
entire Euclidean algorithm with ab2 and abc±1 in Theorems 9 and 10 is new. They
are unified by Theorem 11, which arithmetically characterizes the quotient pattern
that will appear in the Euclidean algorithm with u and v when (v±1)2≡ 0 (mod u).

Analysis of the remainders leads to another new algorithm, this time for modular
inversion.

Algorithm 2. If m and n are relatively prime positive integers, then the multiplica-
tive inverse of m modulo n is the first remainder less than n when the Euclidean
algorithm is performed with n2 and mn+ 1.

A similar algorithm was obtained by Seysen [2005]. In his algorithm, an integer f
is arbitrarily chosen with f > 2n, and the Euclidean algorithm is run with f n and
f m + 1. The algorithm is stopped at the first remainder r less than f + n, and
the modular inverse of m modulo n is then r − f (which can be negative). If f
were allowed to equal n, then this would be similar indeed to the algorithm above.
However, Seysen’s algorithm does not work generally in this case. For instance,
with n = 12 and m = 5, Seysen’s algorithm with f = 12 would say to run the
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Euclidean algorithm with 144 and 61, stopping at the first remainder less than 24.
This remainder is 22, and Seysen’s algorithm would output 10, which is not an
inverse for 5 modulo 12. Our algorithm above instead produces the inverse 5.

The inputs to Algorithm 2 are less than half the size of the inputs to Seysen’s.
But Seysen’s algorithm has the flexibility arising from choosing the factor f . It
would be interesting to see if both algorithms can fit in a common framework.

Our results are a new contribution to the literature on algorithmic number theory,
but we believe the modular inversion algorithm also has pedagogical value. Students
are less prone to mistakes working by hand with the new algorithm rather than the
extended Euclidean algorithm or Blankinship’s matrix algorithm [1963]. The new
algorithm might seem nonintuitive, but our proof is elementary and is an amalgam of
topics encountered by a student learning formal reasoning: the Euclidean algorithm,
congruences, and mathematical induction.

We conclude this section with the result guaranteeing the uniqueness of the
representation produced by Algorithm 1.

Lemma 3. If p is a prime number congruent to 1 or 4 modulo 5, then there is a
unique pair of positive integers b > c satisfying

p = b2
+ 3bc+ c2.

Proof. We work in the field Q(
√

5). The algebraic integers in this field are

O =
{1

2 m+ 1
2 n
√

5 : m, n,∈ Z,m ≡ n mod 2
}
.

Denote by τ the nontrivial automorphism of Q(
√

5) and by N the norm map Nγ =
γ γ τ. The unit ε= 3

2+
1
2

√
5 generates the group of units of norm 1 in Z[

√
5]. The map

(b, c) 7→
(
b+ 3

2 c
)
+
( 1

2 c
)√

5

gives a bijection between all pairs of integers (b, c) with b2
+ 3bc+ c2

= p and all
elements of O of norm p. The condition b> c> 0 for a pair with b2

+3bc+c2
= p

is equivalent to the corresponding element 1
2 x + 1

2 y
√

5 of O satisfying x > 5y > 0.
By quadratic reciprocity, p splits in Q(

√
5). The ring O is a principal ideal

domain, so we may pick a generator γ of one of the prime ideals dividing p.
Multiplying γ by 1

2 +
1
2

√
5 if necessary, we may assume γ has norm p.

There is therefore at least one algebraic integer with norm p of the form
1
2 x + 1

2 y
√

5. Among all such elements, let α be one for which x is positive and
is as small as possible (i.e., α has minimal positive trace). Replacing α by ατ if
necessary, we may assume also that y is positive. The lemma will be proved by
showing that α is the unique element 1

2 x+ 1
2 y
√

5 in O with norm p and x > 5y > 0.
Define an , bn as the integers for which

αεn
=

1
2an +

1
2 bn
√

5.
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Then
(αε−1)τ = 1

4(3a0− 5b0)+
1
4(a0− 3b0)

√
5.

If we suppose a0−3b0<0, then 1
4(5b0−3a0)>−

1
3a0. If 5b0−3a0 were negative,

then (αε−1)τ would have norm p and smaller positive trace than α, a contradiction.
Thus, again by our choice of α, we have 1

2(5b0−3a0)≥ a0; hence a0≤ b0. But then

Nα = 1
4(a

2
0 − 5b2

0)≤−b2
0 < 0,

which contradicts the assumption that α has norm p.
It must be then that a0 − 3b0 > 0, and thus, 3a0 − 5b0 > 0. Again using our

assumption on α, we have 1
2(3a0− 5b0) ≥ a0. It follows that a0 ≥ 5b0 > 0 (and,

in fact, a0 > 5b0 since p 6= 5).
It remains to show that α is the unique algebraic integer 1

2 x + 1
2 y
√

5 with
norm p satisfying x > 5y > 0. Suppose x and y are integers and set 1

2w+
1
2 z
√

5=( 1
2 x+ 1

2 y
√

5
)
ε. It is readily checked that if x>0 and y>0, thenw>0 and z>0 and

w< 5z. It follows that all for all n≥ 0, we have an > 0 and bn > 0, but an > 5bn only
when n = 0. Recall that αε−1

=
1
2a−1+

1
2 b−1
√

5. From the above two paragraphs,
we have a−1 > 0 and b−1 < 0. If we set 1

2w
′
+

1
2 z′
√

5=
( 1

2 x + 1
2 y
√

5
)
ε−1 and if

x > 0 and y < 0, then w′ > 0 and y′ < 0. Thus, an > 0 and bn < 0 for all n ≤−1.
The numbers in O of norm p are exactly ± 1

2an ±
1
2 bn
√

5 for n in Z. It follows
that the only possible element 1

2 x+ 1
2 y
√

5 with norm p and x > 5y> 0 other than α
is 1

2a−1−
1
2 b−1
√

5= 1
4(3a0−5b0)+

1
4(a0−3b0)

√
5. But 3a0−5b0 > 5(a0−3b0)

implies that a0 < 5b0, which we know is not true. The uniqueness is proved. �

2. Euclidean algorithm background

For positive integers u > v, the sequence of equations of the Euclidean algorithm
when commenced by dividing v into u has the form

u = q1v+ r1,

v = q2r1+ r2,

r1 = q3r2+ r3,

...

rs−3 = qs−1rs−2+ rs−1,

rs−2 = qsrs−1+ rs,

(1)

with rs−1 = gcd(u, v) and rs = 0. We define

r−1 = u and r0 = v.

Because rs−1 < rs−2, it follows that qs ≥ 2.
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Our study of the Euclidean algorithm is streamlined by allowing it to unfold
in two different ways. These parallel the two continued fraction expansions of a
rational number. The expansion of u/v with final quotient ≥ 2 is the sequence of
quotients of the Euclidean algorithm with u and v. We will modify the Euclidean
algorithm to make it produce the other expansion. If the Euclidean algorithm with u
and v is written as (1), we replace the final equation by the two equations

rs−2 = (qs−1− 1)rs−1+ rs−1, rs−1 = 1 · rs−1+ 0. (2)

This modification changes the length parities of the sequences of quotients and
remainders.

Definition. If u and v are positive integers and δ= 0 or 1, we denote by EA(u, v, δ)
the sequence of equations of the Euclidean algorithm when commenced with u
and v. When δ = 0, we use whichever of the standard or modified Euclidean
algorithms takes an even number of steps, and when δ = 1, whichever takes an odd
number. When considering only the standard algorithm, we write simply EA(u, v).
We denote the i-th equation by EAi (u, v, δ) or EAi (u, v) and call the associated
sequences (qi ) and (ri ) the sequence of quotients and sequence of remainders.

Reasoning about the Euclidean algorithm is facilitated by continuants. Properties
of continuants can be found in Section 6.7 of the book by Graham, Knuth, and
Patashnik [Graham et al. 1989].

Definition. Associated with a sequence (q1, . . . , qs) of integers, we define a doubly
indexed sequence of continuants

qi, j = qiqi+1, j + qi+2, j and qi+1,i = 1, qi+2,i = 0 (3)

for 1≤ i ≤ j + 2≤ s+ 2. When a more explicit description of the qi is required,
we will use alternate notation (for i ≤ j):

[qi , . . . , q j ] := qi, j .

The properties of continuants that we will need are the recursion (3) and the
surprising symmetry

[qi , . . . , q j ] = [q j , . . . , qi ],

which can be proved by induction. An illuminating combinatorial proof is in
[Benjamin et al. 2000]. From the symmetry of continuants and recurrence (3) we
obtain the alternate recurrence

qi, j = q jqi, j−1+ qi, j−2. (4)

Lemma 4. Let u and v be relatively prime integers. If (qi )
s
i=1 and (ri )

s
i=−1 are the

sequences of quotients and remainders of EA(u, v, δ) and qi, j are the continuants
corresponding to the sequence of quotients, then

ri = qi+2,s

for i =−1, . . . , s. In particular, u = q1,s and v = q2,s .
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Proof. Because u and v are relatively prime, we have rs−1 = 1 = qs+1,s and
rs = 0 = qs+2,s . The formula ri = qi+2,s follows from the observation that the
recurrence (3) with j = s is the same recurrence satisfied by the remainders. �

The continuants q1,i have a prominent role in studying the Euclidean algorithm.
They are the numerators of the convergents of the simple continued fraction expan-
sion of u/v, and they are the absolute values of coefficients commonly computed
as part of the extended Euclidean algorithm. We therefore make the following
definition.

Definition. Let q1, q2, . . . , qs be the sequence of quotients of EA(u, v, δ) with
associated continuants qi, j . We define the Bézout coefficients of u and v by

βi = q1,i

for −1≤ i ≤ s.

The following lemmas reveal a close connection between the sequence of re-
mainders of EA(u, v, δ) and the corresponding Bézout coefficients. Each makes a
fine exercise in mathematical induction.

Lemma 5. If (qi )
s
i=1 and (ri )

s
i=−1 are the sequences of quotients and remainders

of EA(u, v, δ) and (βi )
s
i=−1 are the Bézout coefficients, then

vβi ≡ (−1)iri (mod u) for −1≤ i ≤ s.

Proof. The cases i = −1 and i = 0 simply say that 0 ≡ −u (mod u) and v ≡
v (mod u). Further, if the congruence holds for i −1 and i with 0≤ i ≤ s−1, then

vβi+1 = vqi+1βi + vβi−1

≡ (−1)i qi+1ri + (−1)i−1ri−1 (mod u)

= (−1)i+1ri+1.

The lemma follows by induction. �

Lemma 6. If (qi )
s
i=1 and (ri )

s
i=−1 are the sequences of quotients and remainders

of EA(u, v, δ) and (βi )
s
i=−1 are the Bézout coefficients, then u = βiri−1+ βi−1ri

for 0≤ i ≤ s.

Proof. For i = 0, the equation is just u = u. Assume that u = βiri−1+ βi−1ri for
some i with 0≤ i ≤ s− 1. Then using (4),

u = βi (qi+1ri + ri+1)+ (βi+1− qi+1βi )ri = βi+1ri +βiri+1.

The lemma follows by induction. �

We now discuss background for studying structure in the Euclidean algorithm
quotients. Fix a positive integer k. In recent work [Smith 2015], it was proved that
if v with 0< v < u satisfies the congruence

v2
+ kv± 1≡ 0 (mod u),
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then the sequence of quotients of EA(u, v, δ) (with δ = 0 if the plus sign is used in
the above congruence and δ= 1 otherwise) fits one of a finite list of “end-symmetric”
patterns. The list of patterns depends only on k. We will use this result only when
k = 1, 2, or 3.

Lemma 7. The sequence of quotients of EA(u, v, 1) when v2
+v−1≡ 0 (mod u)

has the form

q1, . . . , qs−1, qs + (−1)s+1, 1, qs, qs−1, . . . , q1

for some positive integers q1, . . . , qs .
When v2

+ 3v+ 1 ≡ 0 (mod u), then EA(u, v, 0) has quotient sequence of the
form

q1, . . . , qs−1, qs + (−1)s+1
· 3, qs, qs−1, . . . , q1

for some positive integers q1, . . . , qs .
When v2

+ (−1)δ2v+ 1≡ 0 (mod u), that is, when

(v+ (−1)δ)2 ≡ 0 (mod u), (5)

then EA(u, v, 0) has quotient sequence fitting one of the patterns

q1, . . . , qs−1, qs − (−1)s+δ, qs + (−1)s+δ, qs−1, . . . , q1,

q1, . . . , qs−1, qs + 1, x, 1, qs, qs−1, . . . , q1,

q1, . . . , qs−1, qs − 1, 1, x, qs, qs−1, . . . , q1

(6)

for some positive integers q1, . . . , qs and x.

The patterns (6) are well known, being related to paper-folding sequences and
folded continued fractions [Shallit 1979; van der Poorten 2002]. What seems to be
new is their appearance in the quotients of the Euclidean algorithm with u and v
when v satisfies (5). Theorem 11 gives an arithmetical criteria for deciding which
of the patterns (6) describes the simple continued fraction expansion of u/v.

3. Explicating the Euclidean algorithm

Suppose u and v are positive integers with u >v and v2
+v−1≡ 0 (mod u). Then

v− 1 satisfies the congruence v2
+ 3v+ 1≡ 0 (mod u). According to Lemma 7,

EA(u, v, 1) has sequence of quotients of the form q1, . . . , qs+δ1, 1, qs+δ0, . . . , q1,
while EA(u, v − 1, 0) has sequence of quotients of the form q̃1, . . . , q̃s + δ1 · 3,
q̃s + δ0 · 3, . . . , q̃1. In both cases, δ1 = 1 if s is odd and 0 if s is even, while δ0 = 1
if s is even and 0 if s is odd. There is no a priori reason for the sequence of qi

to equal the sequence of q̃i . Nevertheless, that is the conclusion of the following
theorem, which also gives explicit formulas for the remainders of EA(u, v− 1, 0)
in terms of the remainders of EA(u, v, 1).
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Theorem 8. Let u and v be positive integers u > v, with v2
+ v− 1≡ 0 (mod u).

Write the sequence of quotients of EA(u, v, 1) as

q1, . . . , qs + δ1, 1, qs + δ0, . . . , q1.

Let (ri )
2s+1
i=−1 be the sequence of remainders, and for i =−1, . . . , s− 1, set

ti = ri + (−1)i+1r2s−i .

Then EA(u, v− 1, 0) is the sequence of 2s equations

ti−2 = qi · ti−1 + ti for 1≤ i ≤ s− 1,

ts−2 = (qs + δ1 · 3) · ts−1 + rs+1,

ts−1 = (qs + δ0 · 3) · rs+1+ rs+2,

ri−1 = q2s+1−i · ri + ri+1 for s+ 2≤ i ≤ 2s.

Proof. A quick check verifies that t−1= u and t0= v−1, which begin the remainder
sequence of EA(u, v − 1, 0). Because the sequence (ri )

2s+1
i=1 is decreasing, it is

clear that the purported quotients and remainders are all positive. We check that
the purported remainders form a strictly decreasing sequence (except that the final
two may be equal when EA(u, v − 1, 0) is computed using the modification (2)
of the Euclidean algorithm.) This is apparent for rs+1, . . . , r2s+1. Also, ts−1 ≥

rs−1−rs+1= rs ≥ rs+1. (The equality is because the middle quotient of EA(u, v, 1)
is 1. The final equality is strict unless u = 5 and v = 2.)

We must show ti > ti+1 for 1≤ i ≤ s− 2. From the division algorithm, we have
ri ≥ ri+1+ ri+2 for −1≤ i ≤ 2s− 1. Thus, for −1≤ i ≤ s− 3, we have

ri − ri+1 ≥ ri+2 ≥ ri+3+ ri+4 > r2s−i + r2s−i−1.

It follows that ti > ti+1 for 1 ≤ i ≤ s − 3. The above chain of inequalities also
holds with the final inequality replaced by an equality when i = s− 2. The second
inequality is strict when i = s− 2 unless qs + δ0 = 1, which only happens if s is
odd. But in that case, ts−2 = rs−2+ rs+2 > rs−1− rs+1 = ts−1 holds anyway.

To ensure the equations in the theorem are the steps of EA(u, v−1, 0), it remains
to check the algebraic validity of each step. The theorem will then follow from the
uniqueness of the quotients and remainders.

The equation ti−2 = qi · ti−1+ ti is equivalent to

(−1)i+1(ri−2− qiri−1− ri )= r2s−i − qir2s+1−i − r2s+2−i .

The expression on the left is 0. Also, examining the pattern of the sequence of
quotients of EA(u, v, 1), we see that q2s+2−i = qi for i = 1, . . . , s− 1. Thus, the
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(2s−i+1)-th step of EA(u, v, 1) is

r2s−i = qir2s+1−i + r2s+2−i , (7)

and the right side is also 0. Substituting 2s+ 1− i for i in (7), we find as well that
ri−1 = q2s+1−iri + ri+1 for s+ 2≤ i ≤ 2s, which verifies steps i = s+ 2 through
i = 2s in the theorem.

We now check the middle pair of equations. We know that the s-th through
(s+2)-th equations of EA(u, v, 1) are

rs−2 = (qs + δ1)rs−1+ rs,

rs−1 = rs + rs+1, (8)

rs = (qs + δ0)rs+1+ rs+2.

Assume first that s is odd so that δ1 = 1 and δ0 = 0. The equation

ts−2 = (qs + δ1 · 3)ts−1+ rs+1

is equivalent to

rs−2 = (qs + 3)(rs−1− rs+1)+ rs+1− rs+2.

Substituting in turn rs+2=rs−qsrs+1 and rs+1=rs−1−rs from (8), this is equivalent
to

rs−2 = (qs + 3)(rs−1− rs+1)+ rs+1− rs + qsrs+1

= (qs + 3)rs + rs−1− 2rs + qsrs−1− qsrs

= (qs + 1)rs−1+ rs,

which is the first of equations (8).
If, instead, s is even, so δ1 = 0 and δ0 = 1, then ts−2 = (qs + δ1 · 3)ts−1+ rs+1 is

equivalent to
rs−2 = qs(rs−1+ rs+1)+ rs+1+ rs+2.

Substituting in turn rs+2= rs−qsrs+1−rs+1 and rs+1= rs−1−rs , this is equivalent
to

rs−2 = qs(rs−1+ rs+1)+ rs − qsrs+1

= qs(2rs−1− rs)+ rs − qsrs−1+ qsrs

= qsrs−1+ rs,

which is the first of equations (8).
The verification that ts−1 = (qs+ δ0 ·3) · rs+1+ rs+2 is entirely similar, using the

latter two equations of (8). �

Proof of Algorithm 1. Let the quotients and remainders of EA(u, v, 1) be written
as in Theorem 8. Suppose first that s is odd. Applying Lemma 6 with i = s to



550 CHRISTINA DORAN, SHEN LU AND BARRY R. SMITH

EA(u, v, 1), we have u = [q1, . . . , qs−1, qs + 1]rs−1 + [q1, . . . , qs−1]rs . By the
symmetry of continuants and recurrence (4), it follows that

u = [qs + 1, qs−1, . . . , q1]rs−1+ [qs−1, . . . , q1]rs

= [qs−1, . . . , q1](rs−1+ rs)+ [qs, . . . , q1]rs−1.

Now use the “end-symmetric” form of the quotient sequence of EA(u, v, 1) and
Lemma 4 to obtain

u = rs+1(rs−1+ rs)+ rsrs−1.

Substituting out rs−1 using the middle of equations (8) gives

u = r2
s + 3rsrs+1+ r2

s+1.

Suppose now that s is even. Applying Lemma 6 with i = s to EA(u, v, 1) in this
case gives u = [q1, . . . , qs]rs−1+ [q1, . . . , qs−1]rs . Again using the recurrence (4),
it follows that

u = [qs + 1, qs−1, . . . , q1]rs−1+ [qs−1, . . . , q1](rs − rs−1),

and Lemma 4 shows
u = rsrs−1+ rs+1(rs − rs−1).

Substituting with (8) once more gives

u = (rs − rs+1)
2
+ 3(rs − rs+1)rs+1+ r2

s+1.

Thus, in either case, rs+1 = c in the unique representation p = b2
+ 3bc+ c2 with

b> c> 0. If s is odd, then rs = b, and if s is even, then rs = b+c. The inequalities
5b2 > b2

+ 3bc+ c2 > 5c2 show that

b+ c > b >
√

p
5
> c.

Therefore regardless of whether s is odd or even, c is the first remainder smaller
than
√

p/5. �

Fix anew positive integers b and c with gcd(b, c)= 1. We next give an explicit
description of the quotients and remainders of EA(b2, bc ± 1) in terms of the
quotients, remainders, and Bézout coefficients of EA(b, c). The algorithm for
computing inverses in modular arithmetic falls out of this description.

Theorem 9. Let b > c > 1 be integers with gcd(b, c)= 1. Let (qi )
s
i=1 and (ri )

s
i=−1

be the sequences of quotients and remainders of the standard (i.e., unmodified)
Euclidean algorithm with b and c, let (βi )

s
i=−1 be the corresponding Bézout coeffi-

cients, and set ti = ri b± (−1)iβi for −1≤ i ≤ s−1. Then EA(b2, bc±1, 0) is the
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sequence of 2s equations

ti−2 = qi · ti−1 + ti for 1≤ i ≤ s− 1,

ts−2 = (qs ± (−1)s) · ts−1 +βs−1,

ts−1 = (qs ± (−1)s−1) ·βs−1 +βs−2,

β2s+1−i = q2s+1−i ·β2s−i +β2s−1−i for s+ 2≤ i ≤ 2s.

Proof. The proof can be conducted in an analogous manner to the proof of Theorem 8.
One readily checks that the first two remainders are t−1 = b2 and t0 = bc± 1. The
observation qs ≥ 2 was made in the first paragraph of Section 2, so the purported
quotients are all positive. So are the remainders since b ≥ βi for −1≤ i ≤ s− 1.

For s + 2 ≤ i ≤ 2s, the equation β2s+1−i = q2s+1−i · β2s−i + β2s−1−i follows
from (4). For 1≤ i ≤ s− 1, the equality ti−2 = qi ti−1+ ti can be deduced from the
equation EAi (b, c) and (4). To verify the middle two equations, we first note that
because b and c are relatively prime, we have rs−1 = 1, ts−1 = b± (−1)s−1βs−1,
and qs = rs−2. The equations can then be verified using Lemma 6 with u= b, v= c,
and i = s− 1:

(qs ± (−1)s)ts−1+βs−1 = (rs−2± (−1)s)b± (−1)s−1rs−2βs−1

= rs−2 b± (−1)s−2βs−2

= ts−2

and
(qs ± (−1)s−1)βs−1+βs−2 = rs−2βs−1± (−1)s−1βs−1+βs−2

= b± (−1)s−1βs−1

= ts−1.

Finally, the remainders form a decreasing sequence. For −1 < i < s − 1, the
inequality (ri−ri+1)b>βi+βi+1 follows from Lemma 6 and implies ti > ti+1. The
inequality βs−1 < ts−1 follows from the equation ts−1 = (qs± (−1)s−1)βs−1+βs−2

verified in the last paragraph. And βi−1 < βi for 0 ≤ i ≤ s follows from the
recurrence (4). �

Proof of Algorithm 2. When m = 1, the algorithm is easily validated. If m > n,
then the third step of EA(n2,mn+ 1) will be division of rn+ 1 into n2, where r is
the remainder when m is divided by n. Thus, it suffices to assume n > m > 1, so
also s > 1.

Theorem 9 implies the first remainder less than n in EA(n2,mn + 1) is βs−1

when s is odd and ts−1 when s is even. We apply Lemma 5 to EA(n,m) to find
mβs−1 ≡ (−1)s−1 (mod n). Thus when s is odd, the product of m and the first
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remainder less than n is
mβs−1 ≡ 1 (mod n).

When s is even, the product is

mts−1 = mn−mβs−1 ≡ 1 (mod n). �

We now give a complete description of EA(ab2, abc± 1) for positive integers
a ≥ 2, b, and c and gcd(b, c)= 1.

Theorem 10. Let a, b, c, and k be integers with b> c> 1, gcd(b, c)= 1, and a≥ 2.
Let (qi )

s
i=1 and (ri )

s
i=−1 be the sequences of quotients and remainders in EA(b, c),

let (βi )
s
i=−1 be the corresponding Bézout coefficients, and set ti = abri + (−1)i+kβi

for−1≤ i ≤ s−1. If (−1)s+k
=−1, then EA(ab2, abc+(−1)k, 0) is the sequence

of 2s+ 2 equations

ti−2 = qi · ti−1 + ti for 1≤ i ≤ s− 1,

ts−2 = (qs − 1) · ts−1 + (ts−1− b),

ts−1 = 1 · (ts−1− b) + b,

ts−1− b = (a− 1) · b +βs−1,

b = qs ·βs−1 +βs−2,

β2s+3−i = q2s+3−i ·β2s+2−i +β2s+1−i for s+ 4≤ i ≤ 2s+ 2.

When (−1)s+k
= 1, steps s through s+ 3 change to

ts−2 = qs · ts−1 + b,

ts−1 = (a− 1) · b + (b−βs−1),

b = 1 · (b−βs−1)+βs−1,

b−βs−1 = (qs − 1) ·βs−1 +βs−2.

Proof. It follows as in the proof of Theorem 9 that the purported quotients and
remainders are positive (excluding the final remainder). The equations β2s+3−i =

q2s+3−i ·β2s+2−i +β2s+1−i and ti−2 = qi ti−1+ ti can be deduced as in the proof of
Theorem 9. The equations ts−1 = 1 · (ts−1−b)+b and b= 1 · (b−βs−1)+βs−1 are
clearly true. Lemma 4 shows that βs = b. Thus, the equations b = qs ·βs−1+βs−2

and b−βs−1 = (qs − 1)βs−1+βs−2 are consequences of (4).
Since gcd(b, c)= 1, we have rs−1= 1, ts−1= ab−(−1)s+kβs−1, and qs = rs−2.

From this, we obtain the equations ts−1−b= (a−1)b+βs−1 when (−1)s+k
=−1

and ts−1 = (a− 1)b+ (b−βs−1) when (−1)s+k
= 1.
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When (−1)s+k
=−1, the s-th equation is valid since

(qs − 1)ts−1+ (ts−1− b)= qs(ab+βs−1)−βs

= abrs−2+ (βs −βs−2)−βs,

= ts−2.

Similarly, when (−1)s+k
= 1,

qs ts−1+ b = qs(ab−βs−1)+ b

= abrs−2− (βs −βs−2)+βs

= ts−2.

When (−1)s+k
=−1, the inequality ts−1− b < ts−1 is clear and the inequality

b < ts−1 − b follows from the assumption that a ≥ 2. When (−1)s+k
= 1, the

inequality b< ts−1 follows from the assumption that a ≥ 2 and from b= βs >βs−1.
The inequality b− βs−1 < b is clear, and the inequality βs−1 < b− βs−1 follows
from b = qsβs−1+βs−2 and qs ≥ 2. That ti < ti−1 and βi > βi−1 for 1≤ i ≤ s− 1
follows as in the proof of Theorem 9. �

To conclude, we provide an arithmetical characterization of which quotient
pattern will appear when performing the Euclidean algorithm with u and v with
(v± 1)2 ≡ 0 (mod u).

Theorem 11. Let u be a positive integer and write u = ab2, where a is the square-
free part of u. Assume v with 0< v < u satisfies (v+ (−1)δ)2 ≡ 0 (mod u). Then
there is an integer c such that

v = abc+ (−1)δ+1.

Let q1, . . . , qs be the quotient sequence of the simple continued fraction expansion
of b/c.

The continued fraction expansion of u/v with even length has quotient sequence
fitting the first of the patterns (6) if and only if gcd(b, c)= a = 1. Otherwise, it fits
one of the other patterns with x = gcd(b, c)2 · a− 1. The second pattern appears if
s+ δ is odd, and the third if s+ δ is even.

Proof. By assumption, there exists some integer w such that (v+ (−1)δ)2 = uw.
Consideration of prime factorizations shows that a is also the square-free part of w,
say w = ac2. Then v = abc+ (−1)δ+1.

If gcd(b, c)= d and we set ã = ad2, b̃ = b/d , and c̃ = c/d, then

u = ãb̃2, v = ãb̃c̃+ (−1)δ+1, and gcd(b̃, c̃)= 1.

Theorem 11 now follows from Theorem 9 and Theorem 10. �
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