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Using ideal-splitting techniques, we prove a recursive formula relating the Betti
numbers of the secant powers of the edge ideal of a graph H to those of the join
of H with a finite independent set. We apply this result in conjunction with other
splitting techniques to compute these Betti numbers for wheels, complete graphs
and complete multipartite graphs, recovering and extending some known results
about edge ideals.

1. Introduction

Let R be a polynomial ring in finitely many variables over a base field K. One
approach to studying modules over R is by constructing free resolutions and studying
properties of these. If M is a finitely generated graded R-module, Hilbert’s syzygy
theorem implies that there exists a free resolution with only finitely many terms.
Furthermore, one can show that among these free resolutions, there is one which
is minimal (in a sense which will be made precise later), and thereby defines a
collection of integers, the Betti numbers of M . Of particular interest is the case when
the module in question is an ideal of R. Even more specifically, if G is a simple graph
with vertices v1, . . . , vn , its edge ideal, I (G), is the ideal in R = K[x1, . . . , xn]

generated by the monomials xi x j such that vivj is an edge of G. The edge ideal
was first defined by Villarreal [1995] and has attracted considerable interest as an
algebraic object which encodes combinatorial information. In recent years, much
attention has been devoted to studying the Betti numbers of edge ideals; see, for
example, [Emtander 2009; Francisco et al. 2009; Hà and Van Tuyl 2007; 2008;
Jacques 2004]. Betti numbers are also of interest in algebraic geometry [Sidman
and Vermeire 2009; 2011], as the edge ideal defines a (not necessarily irreducible)
variety in n-dimensional projective space over K.
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A more general problem is that of computing the Betti numbers of the secant
powers of the edge ideal. The actual definition of the secant powers of an ideal
is somewhat delicate, but the idea is not hard to grasp. The first secant power is
the ideal itself, and if V is the variety in n-dimensional projective space over K

defined by the ideal, then its r -th secant power is the ideal which defines the r -th
secant variety of V . The Betti numbers of secant powers of the edge ideal have
also been studied in the literature (see [Cranfill 2009; Rosen 2009], and especially
[Sidman and Vermeire 2009; 2011]) but not nearly as extensively as those of the
edge ideal. For convenience of reference, we will use the phrase “Betti numbers
of G” throughout this article as shorthand for “Betti numbers of the secant powers
of the edge ideal of G”.

In his Ph.D. thesis, Jacques [2004] studied and computed the Betti numbers
of the edge ideals corresponding to various classes of graphs, including cycles,
paths, forests, complete graphs, and complete bipartite graphs. His main tool was a
formula of Hochster [1977] which expresses the Betti numbers of a Stanley–Reisner
ring over a simplicial complex in terms of the (simplicial) homology of the complex.
Using this formula, Jacques was able to give exact computations of all the Betti
numbers of complete graphs and complete bipartite graphs. His techniques have
been applied in several works since (for example, [Emtander 2009]) and have proven
to be quite fruitful.

An alternative approach to computing Betti numbers of edge ideals was initiated
by Tài Hà and Van Tuyl [2007; 2008]; see in particular Theorems 3.6 and 4.6
of their 2007 paper. This technique, called ideal splitting, goes back to the work
of Eliahou and Kervaire [1990] in the ungraded case and Fatabbi [2001] in the
graded case. The idea is to decompose the (monomial) ideal under consideration
into simpler pieces, and make use of a formula relating the Betti numbers of the
pieces to the Betti numbers of the original ideal. The advantage of this approach
is that it obviates the need to compute simplicial homology groups and allows, at
least in some cases, for the calculation of Betti numbers by induction.

The present article is written in the spirit of [Hà and Van Tuyl 2007], but the
notion of ideal splitting is applied in a different way, and in a different setting.
Using a combinatorial description of higher secant ideals due to Sturmfels and
Sullivant [2006], we derive a recursive formula (Theorem 4.4) which allows us to
relate the Betti numbers of the join of a graph with a finite independent set to the
Betti numbers of the graph itself. Since complete graphs and complete bipartite
graphs can both be constructed by iterating this type of join operation, one can
use this formula to compute the Betti numbers of all the secant powers of their
edge ideals. In the process, we recover Jacques’s calculations (for the edge ideal
itself) by purely combinatorial means, without recourse to Hochster’s formula. We
emphasize that all our results are independent of the choice of base field K.
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2. Preliminaries

We now provide some background on minimal free resolutions; more detail may be
found in any standard book on the subject, for example [Eisenbud 1995].

Throughout this article, we fix a base field K. Let x1, . . . , xt be independent
indeterminates and R = K[x1, . . . , xt ]. Then R is an N-graded ring in the natural
way: R =

⊕
e Re, where Re is the K-vector space spanned by the monomials

in x1, . . . , xt of total degree e. Note also that R has a unique maximal ideal m
consisting of all elements of positive degree. For any integer d , we denote by R(d)
the graded ring whose degree-e part is Rd+e. An ideal I ⊆ R is called a monomial
ideal if it is generated by monomials.

Now suppose that I is an ideal of R. Because R/I is finitely generated as an
R-module, Hilbert’s syzygy theorem [Eisenbud 1995, Corollary 19.7] implies that
it has a finite resolution by free modules; that is, there exists an integer n ≤ t + 1,
finitely generated free R-modules F0, . . . , Fn , and R-module homomorphisms
φi : Fi → Fi−1, for i = 1, . . . , n, and φ0 : F0→ R/I such that

0→ Fn
φn
−→ Fn−1

φn−1
−−→· · · → F1

φ1
−→ F0

φ0
−→ R/I → 0

is an exact sequence.
It can be shown [Eisenbud 1995, Theorem 20.2] that R/I has a minimal free

resolution of the above form, meaning that φi (Fi ) ⊆ mFi−1 for i = 1, . . . , n.
Furthermore, any two minimal free resolutions of I are isomorphic (as chain
complexes), so the Fi are uniquely determined (as R-modules) up to isomorphism.
Thus, each free module Fi may be written

⊕
j R(− j)bi, j (I ) in such a way so as to

ensure that each of the maps φ1, . . . , φn is a homomorphism of graded R-modules.
Note that since Fi is finitely generated as an R-module, bi, j (I )=0 for all but finitely
many j . The numbers bi, j (I ) are called the (graded) Betti numbers of I. It is clear
that for any R and nonzero ideal I ⊆ R, we have b0,0(I )=1 and b0, j (I )=0 for j 6=0.

Since exactness is preserved under flat base change, we immediately have:

Proposition 2.1. If R′ is a flat graded R-algebra, then for any ideal I ,

bi, j (I ⊗R R′)= bi, j (I ).

We are interested in the case R=K[x1, . . . , xm], R′=K[x1, . . . , xm, y1, . . . , yn],
where x1, . . . , xn, y1, . . . , ym are independent indeterminates. In this situation,
I ⊗R R′ is simply the extension of the ideal I ⊆ R to the larger ring R′.

It is also worth recording a standard result which follows directly from the
construction of the Koszul complex:

Proposition 2.2 [Eisenbud 1995, Corollary 19.3]. For i ≥ 0, we have bi,i (m)=
(t

i

)
.

We will also be studying the secant powers of various monomial ideals in R.
Since the definition itself is rather complicated and formulated in greater generality
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than we will need, we omit it here and instead refer the interested reader to [Simis
and Ulrich 2000] or [Sturmfels and Sullivant 2006] for details. The points we
will need may be summarized as follows. There is an operation ∗ on ideals of R
called the join, which is both associative and commutative. If I is a ideal of R, we
define its secant powers by I {0} = m, I {1} = I , and, for r > 1, I {r} = I ∗ I {r−1}.
Moreover, if I is a monomial ideal, then there is a convenient method for computing
the generators of its secant powers in terms of its own generators (see [Simis and
Ulrich 2000, Proposition 3.1] for details). The “secant” terminology comes from
algebraic geometry: if one considers I as defining a variety V in n-dimensional
projective space over K, then I {r} defines the r -fold secant variety of V.

3. Edge ideals and splitting

In this section, we define the edge ideal of a graph and recall a result which allows
for a simple combinatorial description of a minimal generating set for each of
its secant powers. Throughout this article, all graphs are assumed to be simple,
with a finite vertex set. Given a subset S of vertices in a graph G, we denote
by GS the subgraph of G induced by S, i.e., the graph whose vertex set is S and
whose edge set consists of those edges of G, both of whose endpoints lie in S. We
denote by Km the complete graph on m vertices and by G the complement of a
graph G. If G and H are graphs with disjoint vertex sets, the join of G and H,
denoted G ∨ H, is the graph whose vertex set is V (G)∪ V (H), and whose edge
set is E(G)∪ E(H)∪ {uv : u ∈ V (G), v ∈ V (H)}. (This join operation on graphs
is not related to the join of ideals defined in Section 2.) Intuitively, one may think
of the join of two graphs as constructed by taking disjoint copies of each and
adding all possible edges with one endpoint in each of the two graphs. The join
operation on graphs is easily seen to be associative. Finally, we denote by χ(G)
the chromatic number of G; this is the smallest positive integer k such that there
exists an assignment of an integer from {1, . . . , k} to each vertex of G in such a
way that no two adjacent vertices are labeled with the same integer. For further
details on graph theory, we refer the reader to [West 1996] or any other standard
textbook on the subject.

Let G be graph with vertex set V (G) = {v1, . . . , vn}. Let x1, . . . , xn be inde-
pendent indeterminates, and let I (G) be the ideal of R = K[x1, . . . , xn] generated
by all monomials xi x j such that vivj is an edge of G; we call I (G) the edge
ideal of G. If S = {i1, . . . , im} ⊆ {1, . . . , n}, we denote by MS the monomial
xi1 · · · xim ∈ K[x1, . . . , xn]. We also define

Cr (G)=
{

S ⊆ V (G) : χ(GS)= r + 1 and χ(GT )≤ r for all proper T ⊆ S
}
.

Sturmfels and Sullivant have given a convenient combinatorial description of the
secant ideals I (G){r}.
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Theorem 3.1 [Sturmfels and Sullivant 2006, Theorem 3.2]. The ideal I (G){r} is
generated by {MS : S ⊆ V (G) and χ(GS)≥ r + 1}. A minimal generating set for
I (G){r} is given by Sr (G)= {MS : S ∈ Cr (G)}.

The following elementary fact about monomial ideals is well known:

Proposition 3.2. Suppose I and J are monomial ideals in a polynomial ring R
over a field, generated (respectively) by monomial sets A and B. Then I ∩ J is also
a monomial ideal in R and is generated by {lcm(a, b) : a ∈ A, b ∈ B}.

We now define the notion of a splittable ideal, due to Eliahou and Kervaire.

Definition 3.3 [Eliahou and Kervaire 1990]. A monomial ideal I in a polynomial
ring R (over a field) is called splittable if there exist ideals J and K of R and
minimal generating sets G(I ), G(J ), and G(K ) for I , J , and K (respectively), and
a generating set G(J ∩ K ) for J ∩ K such that:

(1) I = J + K .

(2) G(I ) is the disjoint union of G(J ) and G(K ).
(3) There are functions φ : G(J ∩K )→ G(J ) and ψ : G(J ∩K )→ G(K ) such that:

(a) For all u ∈ G(J ∩ K ), we have u = lcm(φ(u), ψ(u)).
(b) For every subset C ⊆ G(J ∩ K ), both lcm(φ(C)) and lcm(ψ(C)) strictly

divide lcm(C).

In this situation, we say that I = J+K is a splitting of I and refer to the pair (φ, ψ)
as a splitting function.

Remark. In the original formulation of this definition, the generating set for J ∩K
was also required to be minimal. However, since every generating set contains a
minimal generating set, the two formulations are in fact equivalent.

The following result of Fatabbi relates splittability to the computation of the
Betti numbers of the ideal in question.

Theorem 3.4 [Fatabbi 2001, Proposition 3.2]. Suppose I is a splittable monomial
ideal in a polynomial ring over a field, with splitting I = J + K . Then

bi, j (I )= bi, j (J )+ bi, j (K )+ bi−1, j (J ∩ K )

for all integers i ≥ 1 and j, provided we interpret b0, j (J ∩ K ) as 0.

4. Main result

The goal of this section is to develop a formula relating the Betti numbers of the
join of a graph H with an edgeless graph to those of H itself.

Let v1, . . . , vn be an ordering of the vertices in a graph H. Now let w1, . . . , wm

be new vertices and, for 1≤ `≤ m, define H` as the join of H with the edgeless
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graph on W = {w1, . . . , w`}. If we set H0 = H, then we may view each H`,
for 0≤ `≤m, as isomorphic to H ∨ K`. Now define R = R0 =K[x1, . . . , xn] and
R` = K[x1, . . . , xn, y1, . . . , y`] for 1≤ `≤ m.

Lemma 4.1. Suppose 1≤ `≤ m. Then the elements of Cr (H`) are of two types:

(i) subsets S ⊆ V (H) such that S ∈ Cr (H),

(ii) subsets of the form S′ ∪ {w}, where S′ ∈ Cr−1(H) and w ∈W.

Proof. For convenience, set H ′ = H`, and suppose S ∈ Cr (H ′). If S ⊆ V (H),
then clearly S ∈ Cr (H), so suppose S is not contained in V (H). We claim that S
contains exactly one of w1, . . . , w`. Suppose to the contrary that wi and wj are
both in S, where 1 ≤ i < j ≤ `, and let T = S − {wj }. Let f ′ : T → {1, . . . , t}
be a proper coloring of T. Since wi is adjacent to all vertices of T ∩ V (H), we
have f ′(wi ) 6= f ′(v) for all v ∈ T. Extend f ′ to a function f : S→ {1, . . . , t} by
setting f (wj ) = f ′(wi ). Since wj is not adjacent to any vertex of S ∩W but is
adjacent to all vertices in T ∩V (H), f is a proper t-coloring of S. This shows that
χ(H ′S)≤χ(H

′

T ). Since obviously χ(H ′T )≤χ(H
′

S), it follows that χ(H ′T )=χ(H
′

S),
contradicting the hypothesis S ∈ Cr (H ′). �

We refer to members of Cr (H`) as either of type (i) or type (ii), according to
their classification in Lemma 4.1.

Define A0,0= I (H){r}, and, for 1≤k≤`≤m, let Ak,` be the ideal of R` generated
by all MS such that S ∈Cr (H`) is of type (ii) and W∩S={w`}. Also define B0,0= 0
and Bk,`=

∑k
j=1 A j,` for 1≤ k≤ `≤m. Note further that if 0≤ k≤ `≤ `′≤m, then

by construction Ak,`′ = Ak,`⊗R` R`′ and Bk,`′ = Bk,`⊗R` R`′ , so Proposition 2.1
implies

bi, j (Ak,`)= bi, j (Ak,`′) and bi, j (Bk,`)= bi, j (Bk,`′). (1)

Lemma 4.2. For 1≤ k ≤ `≤ m, there are isomorphisms

Ak,` ∼= [I (H){r−1}
⊗R R`](−1) and Ak,` ∩ I (H){r} ∼= [I (H){r}⊗R R`](−1)

of graded R′-modules, and thus

bi, j (Ak,`)= bi, j−1(I (H){r−1}), bi, j (Ak,` ∩ I (H){r})= bi, j−1(I (H){r}).

Proof. By Lemma 4.1, Ak,` is generated by monomials of the form yk MS′ , where
S′ ∈ Cr−1(H). Thus, Ak,`= yk(I (H){r−1}

⊗R R′), which is isomorphic (as a graded
R′-module) to [I (H){r−1}

⊗R R′](−1). By Proposition 2.1,

bi, j (Ak,`)= bi, j−1(I (H){r−1}),

as predicted by the formula. Likewise, by Proposition 3.2, we see that Ak,`∩ I (H){r}

is generated by monomials of the form yk MS′ , where S′ ∈ Cr (H). Arguing as above,
we have Ak,` ∩ I (H){r} ∼= I (H){r}(−1), whence the result. �
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Lemma 4.3. Let r ≥ 1 and 1≤ k ≤ `≤ m. Then there are splittings

Bk,` = Bk−1,`+ Ak,`, Bk,` ∩ I (H){r} = Bk−1,` ∩ I (H){r}+ Ak,` ∩ I (H){r}.

Thus,

bi, j (Bk,`)= bi, j (Bk−1,`)+ bi, j−1(I (H){r−1})+ bi−1, j−1(Bk−1,`),

bi, j (Bk,` ∩ I (H){r})= bi, j (Bk−1,` ∩ I (H){r})+ bi, j−1(I (H){r})
+ bi−1, j−1(Bk−1,` ∩ I (H){r}).

Proof. We will prove the first formula, the second being similar, mutatis mutandis.
By Lemma 4.1, a set of minimal generators for Ak,` is given by yk MS′ , where
S′ ∈ Cr−1(H). By Proposition 3.2, a generating set for Bk−1,`∩ Ak,` is given by the
set of monomials yk MS′ , where S′ ∈ Cr (Hk−1). Now let µ(S′) = max{t : vt ∈ S′}
and choose T (S′)⊆ S′−{vµ(S′)} such that T (S′) ∈ Cr−1(Hk−1). Observe also that
Bk−1,` ∩ Ak,` ∼= Bk−1,`(−1).

We claim that the correspondence yk MS′ 7→ (MS′, yk MT (S′)) defines a splitting
function. The first and second conditions of Definition 3.3 are clearly satisfied.
For the last condition, let C = {yk MS′d : d ∈ D} (where D is some set indexing the
monomials) be a subset of the generating set for Bk−1,`∩Ak,` described above. Then
the first coordinate of the image of any element of C under the above function does
not involve the variable yk . Furthermore, the second coordinate does not involve
the variable xM , where M =maxd∈D µ(S′d ). This shows that Bk,` = Bk−1,`+ Ak,`

defines a splitting. The remaining formulas follow from Theorem 3.4. �

We now come to our main result.

Theorem 4.4. Let H be graph and r,m positive integers. Then for all j,

b1, j (I (Hm)
{r})= b1, j (I (H){r})+mb1, j−1(I (H){r−1}),

and for i ≥ 2,

bi, j (I (Hm)
{r})= bi, j (I (Hm−1)

{r})+ bi, j−1(I (H){r−1})+ bi−1, j−1(I (Hm−1)
{r}).

Proof. Let 1 ≤ ` ≤ m. The generators of I (H`){r} are described by Lemma 4.1:
J = I (H){r} is the ideal of R′ generated by the monomials MS , where S is of
type (i), and K = B`,` is the ideal generated by MS for S of type (ii). We claim that

I (H`){r} = I (H){r}+ B`,` (2)

is in fact a splitting.
It is clear from the above description of the generators of I (H`){r} that the second

condition of Definition 3.3 is satisfied, so it remains to construct a splitting function.
By Proposition 3.2 and Lemma 4.1, a generator MS ∈ G(J ∩ K ) is a monomial of
the form yj MS′ , where 1 ≤ j ≤ ` and S′ ∈ Cr (H). Let µ(S′) = max{i : vi ∈ S′};
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then choose T (S′) ⊆ S′ − {vµ(S′)} such that T (S′) ∈ Cr−1(H). We claim that
yj MS′ 7→ (MS′, yj MT (S′)) defines a splitting function.

As before, the first and second conditions of Definition 3.3 are clearly satisfied.
With notation as above, let C = {y jd MS′d : d ∈ D, 1 ≤ ja ≤ `} be a subset of the
generators of J ∩K . Now the monomial lcm(C) involves some indeterminate from
among y1, . . . , y`; however, the first coordinate of its image under the proposed
function does not involve any of the yj . Furthermore, the second coordinate does
not involve xN , where N = maxd∈D max{i : vi ∈ T (S′d)}, whereas lcm(C) does.
Thus, (2) is a splitting, as claimed.

Applying Theorem 3.4 to (2) implies

b1, j (I (Hm)
{r})= b1, j (I (H){r})+ b1, j (Bm,m).

By Lemma 4.3 and (1),

b1, j (Bm,m)= b1, j (Bm−1,m−1)+ b1, j−1(I (H){r−1}).

Applying this successively yields

b1, j (Bm,m)= b1, j (B0,0)+mb1, j−1(I (H){r−1})

= b1, j (I (H){r})+mb1, j−1(I (H){r−1}),

which establishes the first formula.
Now suppose i ≥ 2. Applying Theorem 3.4 to (2) with `= m yields

bi, j (I (Hm)
{r})= bi, j (I (H){r})+ bi, j (Bm,m)+ bi−1, j (Bm,m ∩ I (H){r}),

which by Lemma 4.3 may be rewritten as

bi, j (I (Hm)
{r})= bi, j (I (H){r})+ bi, j (Bm−1,m)+ bi, j−1(I (H){r−1})

+ bi−1, j−1(Bm−1,m)

+ bi−1, j (Bm−1,m ∩ I (H){r})+ bi−1, j−1(I (H){r})

+ bi−2, j−1(Bm−1,m ∩ I (H){r}).

Applying (1), this becomes

bi, j (I (Hm)
{r})= bi, j (I (H){r})+ bi, j (Bm−1,m−1)+ bi, j−1(I (H){r−1})

+ bi−1, j−1(Bm−1,m−1)+ bi−1, j (Bm−1,m−1 ∩ I (H){r})

+ bi−1, j−1(I (H){r})+ bi−2, j−1(Bm−1,m−1 ∩ I (H){r}). (3)

However, Theorem 3.4 applied to (2) with `= m− 1 yields

bi, j (I (Hm−1)
{r})=

bi, j (I (H){r})+ bi, j (Bm−1,m−1)+ bi−1, j (Bm−1,m−1 ∩ I (H){r}). (4)
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Subtracting (4) from (3), we obtain

bi, j (I (Hm)
{r})− bi, j (I (Hm−1)

{r})

= bi, j−1(I (H){r−1})+ bi−1, j−1(Bm−1,m−1)

+ bi−1, j−1(I (H){r})+ bi−2, j−1(Bm−1,m−1 ∩ I (H){r}).

= bi, j−1(I (H){r−1})+ bi−1, j−1(Bm−1,m−1+ I (H){r})

= bi, j−1(I (H){r−1})+ bi−1, j−1(I (Hm−1)
{r}). �

5. Applications

In this section, we apply Theorem 4.4 to calculate the Betti numbers for some
common classes of graphs. To illustrate the key ideas, we begin with the relatively
simple case of wheels, and then proceed to the case of complete graphs. Both of
these calculations only use the case m = 1 of Theorem 4.4 and yield fairly elegant
formulas for the Betti numbers. We conclude with the case of complete multipartite
graphs, which is technically more complicated. Note that from the discussion of
Section 2, we always have b0,0 = 1 and b0, j = 0 for j 6= 0; hence we will focus
on bi, j when i ≥ 1.

Wheels. For an integer n ≥ 3, the n-cycle, denoted Cn , is the graph on vertices
v1, . . . , vn whose edges are vnv1 and vivi+1, where 1 ≤ i ≤ n− 1. The n-wheel,
denoted Wn , is the join of Cn with K1. To compute the Betti numbers of Wn using
Theorem 4.4, we will need the Betti numbers of Cn . For the edge ideal, these were
calculated by Jacques [2004, Theorem 7.6.28]: when j < n and 2i ≥ j ,

bi, j (I (Cn))=
n

n− 2( j − i)

( j−i
2i− j

)(n−2( j−i)
j−i

)
.

Moreover, if n= 3m+1 or n= 3m+2, then b2m+1,n(I (Cn))= 1, and if n= 3m,
then b2m,n(I (Cn))=2; all other Betti numbers of I (Cn) are 0. Now if n is even, then
χ(Cn)=2, so I (Cn)

{r}
=0 for r ≥2. If n is odd, then χ(Cn)=3, so by Theorem 3.1,

we have I (Cn)
{2} is generated by the single monomial x1 · · · xn . As such, we have

I (Cn)
{2} ∼= R(−n); hence its only nonzero Betti number is b1,n

(
I (Cn)

{2}
)
= 1.

Clearly I (Cn)
{r}
= 0 for r ≥ 3.

We now turn to the computation of the Betti numbers of Wn , n≥ 3. In the interest
of making the presentation more readable, we will express the Betti numbers of Wn

in terms of those of Cn and other directly computable quantities. We begin with
the edge ideal of Wn .

By Theorem 4.4 and Proposition 2.2,

b1, j (I (Wn))= b1, j (I (Cn))+ b1, j−1(I (Cn)
{0})=

{
2n if j = 2,
0 if j 6= 2.
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If i≥2, we have bi, j (I (Wn))=bi, j (I (Cn))+bi, j−1(I (Cn)
{0})+bi−1, j−1(I (Cn)), so

bi. j (I (Wn))=

{
bi,i+1(I (Cn))+ bi−1,i (I (Cn))+

(n
i

)
if j = i + 1,

bi, j (I (Cn))+ bi−1, j−1(I (Cn)) if j 6= i + 1.

Turning our attention to the second secant ideal of Wn , we have

b1, j (I (Wn)
{2})= b1, j (I (Cn)

{2})+ b1, j−1(I (Cn)),

and for i ≥ 2,

bi, j (I (Wn)
{2})= bi, j (I (Cn)

{2})+ bi, j−1(I (Cn))+ bi−1, j−1(I (Cn)
{2}).

Thus, when n is even, bi, j (I (Wn)
{2})= bi, j−1(I (Cn)) for all i ≥ 1. When n is odd,

we have bi, j (I (Wn)
{2})= bi, j−1(I (Cn))+εi, j , where ε1,n = ε2,n+1= 1 and εi, j = 0

otherwise.
When n is even, I (Wn)

{r}
= 0 when r ≥ 3. Finally, when n is odd, the only

subgraph of Wn of chromatic number 4 is Wn itself, so b1,n+1
(
I (Wn)

{3}
)
= 1 is the

only nonzero Betti number of I (Wn)
{3}, and of course I (Wn)

{r}
= 0 when r ≥ 4.

Complete graphs. Since Kn = Kn−1 ∨ K1, Theorem 4.4 provides a means of
calculating its Betti numbers recursively. In fact, there is an elegant formula in closed
form which recovers and extends Jacques’s computation [2004, Theorem 5.1.1] in
the case of the edge ideal.

Theorem 5.1. Suppose n, i are positive integers and r is a nonnegative integer.
Then

bi,i+r (I (Kn)
{r})=

( i+r−1
r

)( n
i+r

)
.

If j 6= i + r , then bi, j (I (Kn)
{r})= 0.

Proof. We prove both assertions by induction on n. If n=1, then R=K[x1], so when
r = 0 and i = 1, we have I (K1)

{0}
=m= (x1). Also, we have b1,1

(
I (K1)

{0}
)
= 1

and bi, j
(
I (K1)

{0}
)
= 0 for j 6= i , which agrees with the expression on the right

side of the asserted equality. When r ≥ 1 or i ≥ 2, we have I (K1)
{r}
= 0. Since

i + r ≥ 2, we also have
( 1

i+r

)
= 0.

Now suppose (by induction) that the formulas hold for n− 1. If i ≥ 2, then by
Theorem 4.4

bi, j (I (Kn)
{r})= bi, j (I (Kn−1)

{r})+ bi−1, j (I (Kn−1)
{r−1})+ bi−1, j−1(I (Kn−1)

{r}).

If j 6= i+r , all terms on the right vanish by the induction hypothesis. If j = i+r ,
the induction hypothesis, in conjunction with the well-known combinatorial identity(m+1

k+1

)
=

( m
k+1

)
+

(m
k

)
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implies

bi,i+r (I (Kn)
{r})

=

( i+r−1
r

)(n−1
i+r

)
+

( i+r−2
r−1

)( n−1
i+r−1

)
+

( i+r−2
r

)( n−1
i+r−1

)
=

( i+r−1
r

)(n−1
i+r

)
+

[( i+r−2
r−1

)
+

( i+r−2
r

)]( n−1
i+r−1

)
=

( i+r−1
r

)(n−1
i+r

)
+

( i+r−1
r

)( n−1
i+r−1

)
=

( i+r−1
r

)[(n−1
i+r

)
+

( n−1
i+r−1

)]
=

( i+r−1
r

)( n
i+r

)
.

Finally, in the case i = 1, we have

b1, j (I (Kn)
{r})= b1, j (I (Kn−1)

{r})+ b1, j−1(I (Kn−1)
{r−1}).

If j 6= 1+ r , then both terms on the right vanish by induction. If j = 1+ r , the
induction hypothesis implies

b1,1+r (I (Kn)
{r})= b1,1+r (I (Kn−1)

{r})+ b1,r (I (Kn−1)
{r−1})

=

(n−1
r+1

)
+

(n−1
r

)
=

( n
r+1

)
.

This completes the inductive step. �

Complete multipartite graphs. If m ≥ 2 and n1, . . . , nm are positive integers,
then the complete multipartite graph Kn1,...,nm may be defined as the m-fold join
Kn1∨·· ·∨Knm . It is easily seen that χ(Kn1,...,nm )= m. Jacques has computed the
Betti numbers of the edge ideal of a complete bipartite graph; since its higher secant
powers all vanish, there is nothing more to be done in this case.

Theorem 5.2 [Jacques 2004, Theorem 5.2.4].

bi, j (I (Kn1,n2))=

{∑
k,`≥1:k+`=i+1

(n1
k

)(n2
`

)
if j = i + 1,

0 if j 6= i + 1.

If m ≥ 3, we may realize Kn1,...,nm as Kn1,...,nm−1 ∨ Knm and use Theorem 4.4 to
perform a recursive computation, ultimately expressing everything in terms of the
quantities appearing in Theorem 5.2. Unfortunately, there does not seem to be a
nice formula in closed form. Nevertheless, it is quite easy to establish the following:

Proposition 5.3. Let m ≥ 2. If j 6= i + r , then bi, j (I (Kn1,...,nm )
{r})= 0.
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Proof. We proceed by induction on m. The base case (m = 2) is Theorem 5.2.
Suppose now that the result is known for all positive values k ≤ m − 1. If i 6= 2,
then using Theorem 4.4, we have

bi, j (I (Kn1,...,nm−1,1)
{r})= bi, j (I (Kn1,...,nm−1)

{r})+ bi, j−1(I (Kn1,...,nm−1)
{r−1})

+ bi−1, j−1(I (Kn1,...,nm−1)
{r}).

If j 6= i + r , then all three terms on the right vanish by induction, and the result
holds when nm = 1. Now suppose the result holds when nm = k ≥ 1. Then

bi, j (I (Kn1,...,nm−1,k+1)
{r})= bi, j (I (Kn1,...,nm−1,k)

{r})+ bi, j−1(I (Kn1,...,nm−1)
{r−1})

+ bi−1, j−1(I (Kn1,...,nm−1,k)
{r}).

Again, all terms on the right vanish showing that the result holds for nm = k+ 1.
The argument for i = 1 is similar. �

We conclude this discussion by giving a clean computation of the simplest
nontrivial example in this family — the Betti numbers of the second secant power
of the edge ideal of a complete tripartite graph — using a different type of edge-
splitting argument. In preparation for the calculation, we introduce a counting
function. For i ≥ 1, m ≥ 2 and t ≤ m, define

P(i, t; n1, . . . , nm)=
∑

1≤ j1<···< jt≤m
α1+···+αt=i+1, αk>0

(n j1
α1

)
· · ·

(n jt
αt

)
.

If we consider m bins with respective capacities n1, . . . , nm , the function defined
above counts the number of ways of distributing i + 1 balls among exactly t of
these bins.

The Betti numbers of the edge ideal of the complete multipartite graph were also
computed by Jacques:

Theorem 5.4 [Jacques 2004, Theorem 5.3.8]. Suppose i,m ≥ 1. Then

bi,i+1(I (Bn1,...,nm ))=

m∑
t=2

(t − 1)P(i, t; n1, . . . , nm).

We now have the tools necessary for our calculation.

Proposition 5.5. Suppose i ≥ 1. Then

bi,i+2
(
I (Bn1,n2,n3)

(2))
= P(i + 1, 2; n1, n2, n3)+ 2P(i + 1, 3; n1, n2.n3)

− P(i + 1, 2; n1, n3)− P(i + 1, 2; n2, n1+ n3).

Proof. For convenience, let I= I (Bn1,n2,n3)⊆K[x1, . . . , xn1, y1, . . . , yn2, z1, . . . , zn3],
J be the ideal generated by the various products xi zk , where 1≤ i≤n1 and 1≤k≤n3,
and K be the ideal generated by the products xi yj and yj zk , where 1 ≤ i ≤ n1,
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1 ≤ j ≤ n2, and 1 ≤ k ≤ n3. By Proposition 3.2, J ∩ K is generated by the
products xi yj zk , where i , j , and k are as above. By Theorem 3.1, we see that in fact
I {2} = J ∩ K . Furthermore, the map xi yj zk 7→ (xi zk, xi yj ) is a splitting function,
and thus witnesses that I = J + K is a splitting.

By Theorem 3.4, we have

bi, j (I {2})= bi, j (J ∩ K )= bi+1, j (I )− bi+1, j (J )− bi+1, j (K ).

Now I = I (Bn1,n2,n3), J = I (Bn1,n3), and K = I (Bn2,n1+n3), so by Theorem 5.4,
we have

bi,i+2(I {2})= P(i + 1, 2; n1, n2, n3)+ 2P(i + 1, 3; n1, n2.n3)

− P(i + 1, 2; n1, n3)− P(i + 1, 2; n2, n1+ n3). �

The key insight here was to identify the secant ideal as the intersection of two
ideals which (along with their sum) are better understood, and to apply the ideal
splitting formula in reverse. Unfortunately, this technique does not seem to extend
to a more general setting.
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