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Muckenhoupt and reverse Hölder classes of weights play an important role in
harmonic analysis, PDEs and quasiconformal mappings. In 1974, Coifman and
Fefferman showed that a weight belongs to a Muckenhoupt class Ap for some
1 < p < ∞ if and only if it belongs to a reverse Hölder class RHq for some
1 < q < ∞. In 2009, Vasyunin found the exact dependence between p, q
and the corresponding characteristic of the weight using the Bellman function
method. The result of Coifman and Fefferman works for the dyadic classes of
weights under an additional assumption that the weights are dyadically doubling.
We extend Vasyunin’s result to the dyadic reverse Hölder and Muckenhoupt
classes and obtain the dependence between p, q, the doubling constant and the
corresponding characteristic of the weight. More precisely, given a dyadically
doubling weight in RH d

p on a given dyadic interval I , we find an upper estimate
on the average of the function wq (with q < 0) over the interval I . From the
bound on this average, we can conclude, for example, that w belongs to the
corresponding Ad

q1
-class or that w p is in Ad

q2
for some values of qi . We obtain our

results using the method of Bellman functions. The main novelty of this paper is
how we use dyadic doubling in the Bellman function proof.

1. Definitions and main results

We will be dealing with a family of dyadic intervals on the real line,

D :=
{
[n2−k, (n+ 1)2−k

] : n, k ∈ Z
}
.

For an interval J , let D(J ) stand for the family of all its dyadic subintervals,
D(J ) :={I ∈D : I ⊂ J } and let Dn(J ) stand for the family of all dyadic subintervals
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of J of length exactly 2−n
|J |. For a locally integrable function f , let 〈 f 〉I stand

for the average of f over the interval I ,

〈 f 〉I :=
1
|I |

∫
I

f (x) dx,

where |I | is the Lebesgue measure of I .
Let w be a weight; i.e., w is a locally integrable, almost everywhere nonnegative

function which is not identically zero. Since we will be dealing mostly with averages,
we define the dyadic doubling constant of the weight w to be

Dbd(w) := inf
I∈D

{
C : 〈w〉I ∗ 6C〈w〉I

}
=

1
2 inf

I∈D

{
C :

∫
I ∗
w(x) dx 6C

∫
I
w(x) dx

}
,

where I ∗ is the dyadic “parent” of the interval I , i.e., the smallest dyadic interval
that strictly contains the interval I . If the dyadic doubling constant of the weight w
is bounded by Q, we will say that w ∈Dbd,Q . Note also that any weight is positive
almost everywhere; therefore the dyadic doubling constant defined this way is
always greater than 1

2 .
Our main assumption is that a weight w belongs to the dyadic reverse Hölder

class on the interval J with the corresponding constant bounded by δ:

w ∈ RH δ,d
p (J ) ⇐⇒ [w]RH δ,d

p (J ) := sup
I∈D(J )

{
C : 〈w p

〉
1/p
I
6 C〈w〉I

}
6 δ.

We define Aδ,dq (J ) to be the class of the dyadic Muckenhoupt weights on the
interval J with the corresponding constant bounded by δ:

w ∈ Aδ,dq (J ) ⇐⇒ [w]Aδ,dq (J ) := sup
I∈D(J )

〈w〉I 〈w
−1/(q−1)

〉
q−1
I
6 δ.

Given a dyadically doubling weight w ∈ RH δ,d
p (J ), our goal in this paper is to

bound the averages involved in the definitions of w ∈ Ad
q1

and w p
∈ Ad

q2
,

〈w〉J 〈w
−1/(q1−1)

〉
q1−1
J

and 〈w p
〉J 〈w

−p/(q2−1)
〉
q2−1
J

.

Note that the quantities 〈w〉J and 〈w p
〉J are involved in the definition of RH δ,d

p (J );
therefore for our goals, it is enough to bound 〈wq

〉J from above for q < 0.
It is a well-known fact that w ∈ Ad

q for some 1< q <∞ implies that w is a dyad-
ically doubling weight; it is also known that in the dyadic case, the reverse Hölder
classes RH d

p contain weights that are not dyadically doubling (see [Buckley 1990]).
In fact, if w ∈ RH δ,d

p (J ), nothing prevents w from being close or even equal to 0 on,
say, the left half of J ; the local RH d

p (J )-constant can be defined for such weights.
There is no way to define an Ad

q(J )-constant for such a weight, and even the quantity
〈wq
〉J is undefined for q < 0, which is the case considered in this paper. What

prevents this from happening is the doubling assumption that does not allow 〈w〉J
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to be too far from 〈w〉
J±

, and therefore if w is equal to 0 on any dyadic subinterval
of J then w has to be identically 0 on the whole interval J (which is not permitted).

We are ready to define the Bellman function for our problem: for p > 1, q < 0
and Q > 2, let

B(x1, x2; p,q,δ,Q):= sup
w∈RH δ,d

p (J ),Dbd (w)6Q

{
〈wq
〉J :w is s.t. 〈w〉J =x1, 〈w

p
〉J =x2

}
.

The parameters p, q , δ and Q will be fixed throughout the paper, so we will skip them
and write B(x1, x2). Note also that by a rescaling argument, B does not depend on
the interval J . The constant Q corresponds to the doubling constant of the weight w.
We know that for any weight, we have Dbd(w) > 1

2 . We take Q > 2 for technical
reasons (we need it in the proof), so one may think of Q as being the maximum
of the doubling constant of the weight w and 2; that is, Q :=max{Dbd(w), 2}.

Then for the given p, q, δ, and Q, we have that B is defined on the domain

Uδ :=
{
Ex = (x1, x2) : ∃w ∈ RH δ,d

p s.t. Dbd(w)6 Q and x1 = 〈w〉J , x2 = 〈w
p
〉J

}
.

In order to state the main theorem, we need to define functions u±p (t). Let u±p (t)
be two solutions (positive and negative) of the equation

(1− pu)1/p(1− u)−1
= t, 06 t 6 1. (1-1)

For Q > 2, we define ε(p, δ, Q) as follows. Let

H := H(p, Q)=
Q p
− 1

Q− 1
and ε :=

H
p

(
p− 1
H − 1

)(p−1)/p

δ.

Then we can define

s±(ε) := u±
(

1
ε

)
and r± := u±

(
y1/p

εx

)
.

Note that since u+(t) is a decreasing function and in our domain

1
ε
6

y1/p

εx
,

we have that r+∈[0, s+]. Similarly, since u−(t) is an increasing function, we have
that r−∈[s−, 0].

Theorem 1.1 (main theorem). Let p> 1, q < 0, Q > 2 and δ > 1; let s− := s−(ε)
for ε(p, δ, Q) defined above. If q ∈ (1/s−, 0) then

B(x1, x2; p, q, δ)6 xq
1

1− qr−

1− qs−

(
1− s−

1− r−

)q

= xq/p
2

1− qr−

1− qs−

(
1− ps−

1− pr−

)q/p

.
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The proof of Theorem 1.1 can be found in Section 2.
Note that the result from [Vasyunin 2008] assumes that the reverse Hölder

inequality for the weight w holds for any interval I ⊂ J , while our Theorem 1.1
only uses dyadic subintervals I ∈ D(J ) and the doubling constant. Therefore our
result is more general (in the sense that if a weight is in the continuous reverse
Hölder class, it has to be in the dyadic class and it has to be doubling, so our
theorem applies). Unfortunately, we lose the sharpness. Note also that Theorem 1.1
is not a straight-forward extension of Vasyunin’s result because it fails in the case
when the weight w is not dyadically doubling. The latter is easy to see: in his thesis,
Buckley gave examples of weights in RHp-classes that are not dyadically doubling
and therefore do not belong to any of the Ad

p.
Let us consider the following simple example. Let w(x) = χJ+(x). Then

w ∈ RH d,21−1/p

p (J ) for all 1 < p <∞. At the same time, it is clearly impossible
to bound 〈wq

〉J for q < 0. Note that this weight is not dyadically doubling, so the
doubling assumption in Theorem 1.1 is necessary, and we have to find a way to
use doubling in the Bellman function argument. Most of Vasyunin’s proof works
in the dyadic setting; it is Lemma 4 in his paper that fails and does not have a full
size dyadic analogue. We replace Lemma 4 using a technique from [Pereyra 2009]
to incorporate the doubling property of the weight in the Bellman function proof.

As a consequence of Theorem 1.1, we obtain the following corollary.

Corollary 1.2 (RHp vs. Aq ). Letw be a reverse Hölder dyadically doubling weight
with [w]RHd

p
= δ and Q := max{Dbd(w), 2}. Let ε(p, δ, Q) be defined as above.

Let s−= s−(ε). Then:

(i) For every q1 > 1− s−, we have w ∈ Ad
q1

, and moreover,

[w]Ad
q1
6

(
q1− 1

q1− 1+ s−

)q1−1

.

(ii) For every q2 > 1− ps−, we have w p
∈ Ad

q2
, and moreover,

[w p
]Ad

q2
6

(
q2− 1

q2− 1+ ps−

)q2−1

.

Above, s−(ε) is the negative solution of the equation (1− ps−)1/p(1− s−)−1
= 1/ε.

A result similar to the second part of the above corollary was used in [Beznosova
et al. 2014] (without a proof) for the sharp norms of t-Haar multiplier operators.
The difference is that in [loc. cit.], the ε was taken to be ε1 = Qδ, which is an upper
bound for our ε(p, δ, Q).

The proof of Corollary 1.2 is very simple. Note that since r− ∈ [s−, 0], we have
1− r− 6 1− s−; therefore

1− s−

1− r−
> 1.



MUTUAL ESTIMATES FOR RHd
p AND Ad

q CONSTANTS FOR DOUBLING WEIGHTS 311

So, since q < 0, we have that (
1− s−

1− r−

)q

6 1.

We also have that (
1− ps−

1− pr−

)q/p

6 1

since p is positive. At the same time, since both q and r− are negative, qr− is
positive and 1− qr− 6 1. Therefore, for our choice of parameters, we have that

〈wq
〉J 6

min{〈w〉q
J
, 〈w p
〉
q/p
J
}

1− qs−
.

Using this rough estimate in the definition of the corresponding Muckenhoupt
constant, we get the desired bounds.

2. Proof of Theorem 1.1

In this section, we essentially follow the proof from [Vasyunin 2008]. Unfortunately,
we cannot use the full proof from Vasyunin’s paper since it relies on Lemma 4 from
his paper, which fails in the dyadic case. We will sketch the proof, referring to
Vasyunin’s results whenever possible, and replace his Lemma 4 with our dyadically
doubling analogue, Lemma 2.4.

We fix p > 1, , q < 0, Q > 2, δ > 1 and let

B(x1, x2; p,q,δ,Q):= sup
w∈RH δ,d

p (J ),Dbd (w)6Q

{
〈wq
〉J :w is s.t. 〈w〉J =x1, 〈w

p
〉J =x2

}
and

Bmax = Bmax(x1, x2; p, q, δ, Q) := xq
1

1− qr−

1− qs−

(
1− s−

1− r−

)q

be defined on the domains

Uδ =
{
Ex = (x1, x2) : ∃w ∈ RH δ,d

p s.t. Dbd(w)6 Q and x1 = 〈w〉J , x2 = 〈w
p
〉J

}
and

�ε :=
{
Ex = (x1, x2) : xi > 0, x p

1 6 x2 6 ε
px p

1

}
respectively. Please note that Uδ and �ε here are two domains defined in two
different ways. In Lemma 2.4, we show that one is contained in the other and any
line segment that connects points in Uδ that correspond to the same weight and
dyadic interval has to lie inside the enlarged domain �ε. This part is the main
difference between the continuous and the dyadic case.



312 OLEKSANDRA V. BEZNOSOVA AND TEMITOPE ODE

Note that

xq
1

1− qr−

1− qs−

(
1− s−

1− r−

)q

= xq/p
2

1− qr−

1− qs−

(
1− ps−

1− pr−

)q/p

by the definitions of s− and r−.
Our goal is to show that B 6 Bmax. We will prove it using the Bellman function

method. The proof consists of the following parts, which we will now state in the
form of lemmata.

Lemma 2.1. If the function Bmax, defined above, is concave on the domain �δ , i.e.,

Bmax

(
x−+ x+

2

)
>

Bmax(x−)+ Bmax(x+)
2

(2-1)

for any x+ and x− such that there exists a weight w ∈ RH δ,d
p with Dbd(w) 6 Q,

where x+ = (〈w〉
J+
, 〈w p
〉
J+
) and x− = (〈w〉

J−
, 〈w p
〉
J−
), then Theorem 1.1 holds.

Lemma 2.2. The function Bmax is locally concave on the domain �ε; i.e., its
Hessian matrix

d2 Bmax =

{
∂2 Bmax

∂x1∂x2

}
is not positive definite.

Lemma 2.3. Let xo, x+, x− ∈ Uδ, where xo
=

1
2(x
+
+ x−) and the line segment

connecting x+ and x− lies completely inside the larger domain �ε. Suppose that
the function Bmax is locally convex on �ε; i.e., on �ε we have that the Hessian
d2 Bmax is not positive definite. Then the inequality (2-1) holds.

Lemma 2.4. Let xo, x+, and x− be three points in �δ with the property that
xo
=

1
2(x
+
+ x−) such that there is a weight w ∈ RH δ,d

p with Dbd(w) 6 Q and a
dyadic interval I such that

xo
1 = 〈w〉I , xo

2 = 〈w
p
〉I ,

x±1 = 〈w〉I± , x±2 = 〈w
p
〉
I±
.

Then the line segment connecting x+ and x− lies completely inside the larger
domain �ε.

Proof of Lemma 2.1. First, observe that if a weight w is constant on the interval J ,
say w = c, then 〈wq

〉J = 〈w〉
q
J
= 〈w p

〉
q/p
J

; therefore in this case, B 6 Bmax.
Now let w be a step function. Note that for any dyadic interval I , we have that
〈w〉I =

1
2

(
〈w〉

I+
+〈w〉

I−
)

and 〈w p
〉I =

1
2

(
〈w p
〉

I+
+〈w p

〉
I−
)
. This, together with
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the concavity of Bmax, gives

|J |Bmax
(
〈w〉J , 〈w

p
〉J

)
> |J−|Bmax

(
〈w〉

J−
, 〈w p
〉
J−
)
+ |J+|Bmax

(
〈w〉

J+
, 〈w p
〉
J+
)

> |J−−|Bmax
(
〈w〉

J−−
, 〈w p
〉
J−−

)
+ |J−+|Bmax

(
〈w〉

J−+
, 〈w p
〉
J−+

)
+ |J+−|Bmax

(
〈w〉

J+−
, 〈w p
〉
J+−

)
+ |J++|Bmax

(
〈w〉

J++
, 〈w p
〉
J++

)
> · · ·>

∑
I∈Dn(J )

|I |Bmax
(
〈w〉I , 〈w

p
〉I

)
.

Now note that since w is a step function, it has at most finitely many jumps. Let
the number of jumps be m. For n large enough, in the last formula we have that w
is constant on 2n

− m subintervals I ∈ Dn(J ) (we will call these subintervals
“good”) and has jump discontinuities on the other m subintervals (we will call these
subintervals “bad”). On good subintervals, w is constant, so for such intervals, we
have that |I |Bmax(〈w〉I , 〈w

p
〉I ) > |I |〈w

q
〉I . For the bad intervals, we know that

Bmax is a continuous function and the set of points {x = (〈w〉I , 〈w
p
〉I ) : I ∈ D(J )}

is a compact subset of �ε, so Bmax(〈w〉I , 〈w
p
〉I ) for bad intervals {Ik}k=1,...,m are

bounded by a uniform constant M . So the whole sum differs from |J |〈wq
〉J by at

most M
∑

I bad |I |, which tends to 0 as n→∞.
This implies that 〈w〉J 6 Bmax(〈w〉J , 〈w

p
〉J ) for all step functions w.

Next we extend this result to all weights wm that are bounded from above and
from below, say m6w6M . We take a sequence of step functionswn that pointwise
converge to wm . By the Lebesgue dominated convergence theorem, Lemma 2.1
should hold for wm .

The result of [Reznikov et al. 2010] extends our argument to an arbitrary weightw,
which completes the proof of the Lemma 2.1. �

Proof of Lemma 2.2. We want to show that the matrix of second derivatives of Bmax

is not positive definite. We will just refer to [Vasyunin 2008], where it is shown in
a more general case. �

Proof of Lemma 2.3. For the fixed points xo, x+ and x− in the domain Uδ ⊂ �ε

with xo
=

1
2(x
−
+ x+) and such that the line segment connecting x+ and x−

lies inside the domain �ε, we introduce the function b(t) := B(xt), where
xt :=

1
2(1+ t)x++ 1

2(1− t)x−. Note that defined this way, B(xo) = b(0), while
B(x+)= b(1) and B(x−)= b(−1). Note also that

b′′(t)=
[

dx
dt

dy
dt

]
d2 Bmax

[
dx
dt
dy
dt

]
.

So, since −d2 Bmax is not negative definite, −b′′(t)> 0 for all −16 t 6 1.
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On the other hand,

Bmax(xo)−
Bmax(x+)+Bmax(x−)

2
= b(0)−

b(1)+b(−1)
2

=−
1
2

∫ 1

−1
(1−|t |)b′′(t)dt.

The second part of the above formula is a simple calculus exercise of integrating by
parts twice.

Clearly, since −b′′(t) is nonnegative,

Bmax(xo)−
Bmax(x+)+ Bmax(x−)

2
> 0,

which completes the proof of Lemma 2.3. �

Proof of Lemma 2.4. Let xo, x+ and x− be three points in

Uδ :=
{
Ex = (x1, x2) : ∃w ∈ RH δ,d

p ∩DbQ,d s.t. x1 = 〈w〉J , x2 = 〈w
p
〉J

}
that correspond to the same weightw and interval I ; i.e., there is a weightw∈ RH δ,d

p
with Dbd(w)6 Q and a dyadic interval I such that

xo
1 = 〈w〉I , xo

2 = 〈w
p
〉I ,

x±1 = 〈w〉I± , x±2 = 〈w
p
〉

I±
.

Note that the reverse Hölder property for the weight w implies that x p
1 6 x2 6 δ px p

1
for all three points xo, x+ and x−, and the fact that w is almost everywhere positive
implies that x1, x2 > 0. At the same time, the fact that w is dyadically doubling
with a doubling constant at most Q implies that

xo
1 6 Qx±1 , x±1 6 2xo

1 , and x∓1 6 (Q− 1)x±1 .

Without loss of generality, we will assume that x−1 < x+1 . Then we know that
xo

1 6 Qx−1 , x+1 6 2xo
1 and x+1 6 (Q− 1)x−1 .

Therefore

Uδ ⊂�δ :=
{
Ex = (x1, x2) : x p

1 6 x2 6 δ
px p

1

}
⊂�ε,

and the points xo, x+ and x− ∈Uδ are such that

xo
=

1
2(x
+
+ x−), x−1 < xo

1 < x+1 ,

xo
1 6 Qx−1 , x+1 6 2xo

1 , x+1 6 (Q− 1)x−1 .

We need to show that the line interval connecting x+ and x− lies inside the do-
main �ε.

First observe that the worst case scenario is when the central point xo and one of
the endpoints lie on the upper boundary of Uδ , x2 = δ

px p
1 , while the other endpoint

lies on the lower boundary of Uδ, x2 = x p
1 . There are two possibilities, so let us

consider the two cases separately.
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Case 1: xo and x− are on the upper boundary and x+ is on the lower boundary.
This means that

xo
= (xo

1 , δ
p(xo

1 )
p), x− = (x−1 , δ

p(x−1 )
p), x+ = (x+1 , (x

+

1 )
p).

We need to minimize the function f (x)= x1/p
2 x−1

1 over the line that passes through
the points xo, x+ and x−. We are not going to use all of the conditions on our
points. To simplify the problem, we will drop the condition that the point x+ is on
the lower boundary. We will only be using the points xo and x− and we will use
the fact that xo

1 6 Qx−1 .
Again, in the worst case, which may be unattainable, xo

1 = Qx−1 . The line through
the points x− = (x−1 , δ

p(x−1 )
p) and xo

= (Qx−, Q pδ p(x−1 )
p) has slope

δ p(x−1 )
p(Q p

− 1)
Q− 1

.

Therefore the equation is

x2− δ
p(x−1 )

p
− δ p(x−1 )

p−1 Q p
− 1

Q− 1
(x1− x−1 )= 0.

So we need to solve the optimization problem
f (x)= x1/p

2 x−1
1 →max,

x2− δ
p(x−1 )

p
− δ p(x−1 )

p−1 Q p
− 1

Q− 1
(x1− x−1 )= 0.

The problem can be solved, for example, using method of Lagrange multipliers. If
we let H := (Q p

− 1)/(Q− 1) then

fmax =

(
p− 1
H − 1

)(p−1)/p H
p
δ,

which is exactly our choice of ε.

Case 2: xo and x+ are on the upper boundary and x− is on the lower boundary. In
this case, we will drop the condition that x− is on the lower boundary. Since the
coordinates of our points are positive,

xo
1 =

x+1 + x−1
2

>
x+1
2
,

so x+1 6 2xo
1 . Therefore this case is similar to Case 1 with Q = 2. Since Q > 2,

this case is covered as well. This is the only place where we use that Q > 2.
This completes the proof of Lemma 2.4 and Theorem 1.1. �
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