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The problem of characterizing maximal non-Hamiltonian graphs may be naturally
extended to characterizing graphs that are maximal with respect to nontraceability
and beyond that to t-path traceability. We show how t-path traceability behaves
with respect to disjoint union of graphs and the join with a complete graph. Our
main result is a decomposition theorem that reduces the problem of characterizing
maximal t-path traceable graphs to characterizing those that have no universal
vertex. We generalize a construction of maximal nontraceable graphs by Zelinka
to t-path traceable graphs.

1. Introduction

The motivating problem for this article is the characterization of maximal non-
Hamiltonian (MNH) graphs. The first broad family of MNH graphs was given in
[Skupień 1979], and all MNH graphs with ten or fewer vertices were described
in [Jamrozik et al. 1982], a paper where Skupień and his coauthors gave three
constructions, called types A1, A2, A3, with a similar structure. Zelinka [1998]
gave two constructions of graphs that are maximal nontraceable; that is, they have
no Hamiltonian path, but the addition of any edge gives a Hamiltonian path. The
join of such a graph with a single vertex gives an MNH graph. Zelinka’s first
family produces, under the join with K1, the original MNH graphs of Skupień.
Zelinka’s second family is a broad generalization of the type A1, A2, and A3
graphs of [Jamrozik et al. 1982]. Further examples of infinite families of maximal
nontraceable graphs appeared in [Bullock et al. 2008].

In this article, we work with two closely related invariants of a graph G, µ̌(G) and
µ(G). The µ-invariant, introduced by Ore [1961] and also used by Noorvash [1975],
is the minimal number of paths in G required to cover the vertex set of G. We define
µ̌(G) to be the smallest integer ` such that the join of K` with G is Hamiltonian.
We show that µ̌(G)= µ(G) unless G is Hamiltonian, when µ̌(G)= 0. Maximal
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non-Hamiltonian graphs are maximal with respect to µ̌(G) = 1, and maximal
nontraceable graphs are maximal with respect to µ̌(G)= 2. It is useful to broaden
the perspective to study, for arbitrary t , graphs that are maximal with respect to
µ̌(G)= t , which we call t-path traceable graphs.

In Section 2 we show how the µ̌ and µ invariants behave with respect to disjoint
union of graphs and the join with a complete graph. Section 3 derives the main
result, a decomposition theorem that reduces the problem of characterizing maximal
t-path traceable graphs to characterizing those that have no universal vertex, which
we call trim. Section 4 presents a generalization of the Zelinka construction to
t-path traceable graphs.

2. Traceability and Hamiltonicity

It will be notationally convenient to say that the complete graphs K1 and K2 are
Hamiltonian. As justification for this view, consider an undirected graph as a
directed graph with each edge having a conjugate edge in the reverse direction.
This perspective does not affect the Hamiltonicity of a graph with more than three
vertices, but it does give K2 a Hamiltonian cycle. Similarly, adding loops to any
graph with more than two vertices does not alter the Hamiltonicity of the graph,
but K1, with an added loop, has a Hamiltonian cycle.

Let G be a graph. A vertex, v ∈ V (G), is called a universal vertex if deg(v)=
|V (G)|−1. A universal vertex is also known as a dominating vertex. Let G denote
the graph complement of G, having vertex set V (G) and edge set E(Kn) \ E(G).
We will use the disjoint union of two graphs, G t H and the join of two graphs
G ∗H . The latter is GtH together with the edges {vw | v ∈ V (G) and w ∈ V (H)}.

Definition 1. A set of s disjoint paths in a graph G that includes every vertex in G
is an s-path covering of G. We define the following invariants:

µ(G) :=min{ s ∈ N | there exists an s-path covering of G},

µ̌(G) :=min{ l ∈ N0 | Kl ∗G is Hamiltonian},

iH (G) :=
{

1 if G is Hamiltonian,
0 otherwise.

We will say G is t-path traceable when µ(G)= t . A set of t disjoint paths that
covers a t-path traceable graph G is a minimal path covering.

Note that Kr ∗ (Ks ∗G)= Kr+s ∗G. If G is Hamiltonian then so is Kr ∗G for
r ≥ 0 (in particular, this is true for G = K1 and G = K2).

We now present a series of lemmas that leads to the main result of this section,
which is a formula showing how the µ-invariant and µ̌-invariant behave with respect
to the disjoint union and the join with a complete graph.
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Lemma 2. µ̌(G)=min{ l ∈ N0 | K l ∗G is Hamiltonian}.

Proof. Since K l ∗G is a subgraph of Kl ∗G, a Hamiltonian cycle in K l ∗G would
also be one in Kl ∗G.

Let µ̌(G) = a. Suppose C is a Hamiltonian cycle in Ka ∗ G and write C as
v∼ P1∼Q1∼· · ·∼ Ps∼Qs∼v, where v is a vertex in G and the paths Pi in G and
Qi in Ka . If any Qi contains two vertices or more, say u andw1, . . . , wk with k≥ 1,
then we may simply remove all the vertices, except u, and end up with a Hamiltonian
graph on Ka−k . This contradicts the minimality of a = µ̌(G). Therefore, C must
not contain any paths of length greater than two in the subgraph Ka , and any
Hamiltonian cycle on Ka ∗G is also a Hamiltonian cycle on K a ∗G. �

Lemma 3. µ̌(G)= µ(G)− iH (G).

Proof. If G is Hamiltonian (including K1 and K2) then µ̌(G) = 0, µ(G) = 1
so the equality holds. Suppose G is non-Hamiltonian with µ(G) = t and t-path
covering P1, . . . , Pt . Let Kt have vertices u1, . . . , ut . In the graph Kt ∗G, there is a
Hamiltonian cycle: v1∼ P1∼ v2∼ P2∼· · ·∼ vt ∼ Pt ∼ v1. Thus µ̌(G)≤ t =µ(G).

Let µ̌(G)= a, so there is a Hamiltonian cycle in Ka ∗G. Removing the vertices
of Ka breaks the cycle into at most a disjoint paths covering G. Thus µ(G)≤ µ̌(G).

�

Lemma 4. µ(G t H)= µ(G)+µ(H) and

µ̌(G t H)= µ̌(G)+ µ̌(H)+ iH (G)+ iH (H).

Proof. A path covering of G may be combined with a path covering of H to create
one for GtH so µ(GtH)≤µ(G)+µ(H). Conversely, paths in a t-path covering
of G t H can be partitioned into those contained in G and those contained in H ,
giving a path covering of G and one of H . Consequently, µ(GtH)≥µ(G)+µ(H).

Since G t H is not Hamiltonian we have

µ̌(G t H)= µ(G t H)+ iH (G t H)

= µ(G)+µ(H)

= µ̌(G)+ iH (G)+ µ̌(H)+ iH (H). �

Lemma 5. For any graph G,

µ(Ks ∗G)=max{1, µ(G)− s},

µ̌(Ks ∗G)=max{0, µ̌(G)− s}.

In particular, if Ks ∗G is Hamiltonian then µ(Ks ∗G) = 1 and µ̌(Ks ∗G) = 0;
otherwise, µ(Ks ∗G)= µ(G)− s and µ̌(Ks ∗G)= µ̌(G)− s.

Proof. The formula for µ̌ is immediate when G is Hamiltonian since we have
observed that this forces Ks ∗ G to be Hamiltonian. Otherwise, it follows from
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Kr ∗ (Ks ∗G)= Kr+s ∗G: if µ̌(G)= a, then Kr ∗ (Ks ∗G) is Hamiltonian if and
only if r + s ≥ a.

The formula for µ may be derived from the result for µ̌ using Lemma 3. �

The main result of this section is the following two formulas for the µ and µ̌
invariants of the disjoint union of graphs, and the join with a complete graph.

Proposition 6. Let {G j }
m
j=1 be graphs. Then

µ

( m⊔
j=1

G j

)
=

m∑
j=1

µ(G j ),

µ̌

( m⊔
j=1

G j

)
=

m∑
j=1

µ̌(G j )+

m∑
j=1

iH (G j ).

Furthermore,

µ̌

(( m⊔
j=1

G j

)
∗ Kr

)
=max

{
0,

m∑
j=1

µ̌(G j )+

m∑
j=1

iH (G j )− r
}
.

Proof. We proceed by induction. The base case k = 2 is exactly Lemma 4. Assume
the formula holds for k graphs; we will prove it for k+ 1 graphs.

µ

( k+1⊔
j=1

G j

)
= µ

(( k⊔
j=1

G j

)
tGk+1

)
= µ

( k⊔
j=1

G j

)
+µ(Gk+1)

=

k∑
j=1

µ(G j )+µ(Gk+1)=

k+1∑
j=1

µ(G j ).

By Lemma 3 and the fact that disjoint graphs are not Hamiltonian, we have

µ̌

( m⊔
j=1

G j

)
= µ

( m⊔
j=1

G j

)
+ iH

( m⊔
j=1

G j

)

=

m∑
j=1

(
µ̌(G j )+ iH (G j )

)
=

m∑
j=1

µ̌(G j )+

m∑
j=1

iH (G j ).

Therefore, we have by Lemma 5,

µ̌

(( m⊔
j=1

G j

)
∗ Kr

)
=max

{
0, µ̌

( m⊔
j=1

G j

)
−r
}

=max
{

0,
m∑

j=1

µ̌(G j )+

m∑
j=1

iH (G j )− r
}
. �
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The following lemma will be useful in the next section. To express it succinctly,
we introduce the following Boolean condition. For a graph G and vertex v ∈ V (G),
T (v,G) is true if and only if v is a terminal vertex in some minimal path covering
of G.

Lemma 7. Let v ∈ V (G) and w ∈ V (H). Then we have

µ((G t H)+ vw)=
{
µ(G t H)− 1 if T (v,G) and T (w, H),
µ(G t H) otherwise.

Proof. Let µ(G)= c, µ(H)= d and µ((G t H)+ vw)= t . Clearly, t ≤ c+ d .
Let R1, . . . , Rt be a minimal path cover of (G t H)+ vw. If no Ri contains vw

then this is also a minimal path cover of (GtH) so t = c+d . Suppose R1 contains
vw and note that R1 is the only path with vertices in both G and H . Removing vw
gives two paths P ⊆ G and Q ⊆ H . Paths P and Q along with R2, . . . , Rt cover
G t H , so t + 1≥ c+ d . Thus, t can either be c+ d or c+ d − 1.

If t = c+d−1, then we have the minimal (t+1)-path covering P, Q, R2, . . . , Rt

of G t H , as above. We note that v must be a terminal point of P and w must be a
terminal point of Q, by construction. This path covering may be partitioned into a
c-path covering of G containing P and a d-path covering of H containing Q. Thus,
T (v,G) and T (w,G) hold.

Conversely, suppose T (u,G) and T (w, H) both hold. Let P1, . . . , Pc be a
minimal path of G with v a terminal vertex of P1 and let Q1, . . . , Qd be a minimal
path cover of H with w a terminal vertex of Q1. The edge vw knits P1 and Q1

into a single path and P1 ∼ Q1, P1, . . . , Pc, Q1, . . . , Qd is a c+ d − 1 cover of
(G t H)+ vw. Consequently, t ≤ c+ d − 1.

Thus, T (u,G) and T (w, H) both hold if and only if t = c+ d − 1. Otherwise,
t = c+ d. �

Corollary 8. Let v ∈ V (G) and w ∈ V (H). Then we have

µ̌((G t H)+ vw)=


µ̌(G t H)− 2 if G = H = K1,

µ̌(G t H)− 1 if T (v,G) and T (w, H),
µ̌(G t H) otherwise.

Proof. Let δ = 1 if T (v,G) and T (w, H) are both true and δ = 0 otherwise. Then

µ̌((G t H)+ vw)= µ((G t H)+ vw)− iH ((G t H)+ vw)

= µ((G t H)− δ− iH ((G t H)+ vw).

The final term is −1 if and only if G = H = K1. �
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3. Decomposing maximal t-path traceable graphs

In this section we prove our main result, a maximal t-path traceable graph may be
uniquely written as the join of a complete graph and a disjoint union of graphs that
are also maximal with respect to traceability, but which are also either complete or
have no universal vertex. We work with the families of graphs Mt for t ≥ 0 and Nt

for t ≥ 1:

Mt :=
{
G | µ̌(G)= t and µ̌(G+ e) < t, ∀e ∈ E(G)

}
,

Nt :=
{
G ∈Mt | G is connected and has no universal vertex

}
.

The set M0 is the set of complete graphs. The set M1 is the set of graphs with
a Hamiltonian path but no Hamiltonian cycle, that is, maximal non-Hamiltonian
graphs. For t >1, Mt is also the set of graphs G such µ(G)= t and µ(G+e)= t−1
for any e ∈ E(G). We will call these maximal t-path traceable graphs. A graph in
Nt will be called trim.

Proposition 9. For 0≤ r < t , G ∈Mt if and only if Kr ∗G ∈Mt−r .

Proof. We have µ̌(Kr ∗G)= µ̌(G)− r , by Lemma 5, so we just need to show that
Kr ∗G is maximal if and only if G is maximal. The only edges that can be added
to Kr ∗G are those between vertices of G, that is, E(Kr ∗G)= E(G). For such
an edge e,

µ̌((Kr ∗G)+ e)= µ̌(Kr ∗ (G+ e))= µ̌(G+ e)− r. (1)

Thus, µ̌(G+ e)= µ̌(G)− 1 if and only if µ̌((Kr ∗G)+ e)= µ̌(Kr ∗G)− 1. �

Note that the proposition is false for r = t > 0 since Kr ∗G will not be a complete
graph and M0 is the set of complete graphs. The proof breaks down in (1).

As a key step before the main theorem, the next lemma shows that in a maximal
graph, each vertex is either universal or it is a terminal vertex in a minimal path
covering (but not both).

Lemma 10. Let c ≥ 1 and G ∈Mc. For any two nonadjacent vertices v,w in G,
there is a c-path covering of G in which both v and w are terminal points of paths.
Moreover, a vertex v ∈ V (G) is a terminal point in some c-path covering if and
only if v is not universal.

Proof. Suppose c > 1 and let v,w be nonadjacent in G. Since G is maximal,
G+vw has a (c−1)-path covering, P1, . . . , Pc−1. The edge vw must be contained
in some Pi because G has no (c− 1)-path covering. Removing that edge gives a
c-path covering of G with v and w as terminal vertices. The special case c = 1 is
well known, adding the edge vw gives a Hamiltonian cycle, and removing it leaves
a path with endpoints v and w. A consequence is that any nonuniversal vertex is
the terminal point of some path in a c-path covering.
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Suppose P1, . . . , Pc is a c-path covering of G ∈Mc with v a terminal point of Pi .
Then v is not adjacent to any of the terminal points of Pj for j 6= i , for otherwise
two paths could be combined into a single one. In the case c = 1, v cannot be
adjacent to the other terminal point of P1, otherwise G would have a Hamiltonian
cycle. Consequently, a universal vertex is not a terminal point in a c-path covering
of G. �

Proposition 11. Let G ∈Mc and H ∈Md . The following are equivalent:

(1) G t H ∈Mc+d+iH (G)+iH (H).

(2) Each of G and H is either complete or has no universal vertex.

Proof. We have already shown that µ̌(G t H)= c+ d + iH (G)+ iH (H). We have
to consider whether adding an edge to G t H reduces the µ̌-invariant. There are
three cases to consider: the extra edge may be in E(G) or E(H) or it may join
a vertex in G to one in H . Since G is maximal, adding an edge to G is either
impossible, when G is complete, or it reduces the µ̌-invariant of G. This edge
would also reduce the µ̌-invariant of G t H by Lemma 4. The case for adding an
edge of H is the same. Consider the edge vw for v ∈ V (G) and w ∈ V (H). By
Corollary 8 the µ̌-invariant will drop if and only if v is the terminal point of a path
in a minimal path covering of G and similarly for w in H , that is, T (v,G) and
T (w, H). Clearly this holds for all vertices in a complete graph. Lemma 10 shows
that T (v,G) holds for G ∈Mc with c > 0 if and only if v is not a universal vertex
in G. Thus, in order for G t H to be maximal, G must either be complete or be
maximal itself and have no universal vertex, and similarly for H . �

Theorem 12. For any G ∈Mt , t > 0, G may be uniquely decomposed as

Kr ∗ (G1 t . . .tGm),

where r is the number of universal vertices of G, and each G j is either complete or
G j ∈ Nt j for some t j > 0. Furthermore t =

∑m
j=1 t j +

∑m
j=1 iH (G j )− r .

Proof. Suppose G ∈ Mt and let r be the number of universal vertices of G. Let
m be the number of components in the graph obtained by removing the universal
vertices from G, let G1, . . .Gm be the components and let µ̌(G j ) = t j . Then
G = Kr ∗ (G1 t . . .tGm).

Proposition 6 shows that t =
∑m

j=1 t j +
∑m

j=1 iH (G j )−r . By Proposition 9, we
have that G ∈Mt if and only if G1 t . . .tGm ∈Mt+r . Each Gi must be maximal,
otherwise the disjoint union would not be maximal (add an appropriate edge to a
Gi in Proposition 6). Inductively applying Proposition 11 to G1 t . . .tGm ∈Mt+r ,
where t + r =

∑m
j=1 t j +

∑m
j=1 iH (G j ), we have that each G j is complete or is

trim (G j ∈ Nt j for t j > 0). �
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4. Trim maximal t-path traceable graphs

Skupień [1979] discovered the first family of maximal non-Hamiltonian graphs,
that is, graphs in M1. These graphs are formed by taking the join of Kr with the
disjoint union of r +1 complete graphs [Marczyk and Skupień 1991]. The smallest
graph in N2 is shown in Figure 1. Chvátal [1973] identified its join with K1 as the
smallest maximal non-Hamiltonian graph that is not 1-tough, that is, not one of the
Skupień family. Jamrozik, Kalinowski and Skupień [1982] generalized this example
to three different families. Family A1 replaces each edge uivi in Figure 1 with an
arbitrary complete graph containing ui and replaces the K3 formed by the ui with
an arbitrary complete graph. The result — a type A1 graph — has four cliques, the
first three disjoint from each other but each intersecting the fourth clique in a single
vertex. An A1 graph is in N2 and its join with K1 gives a maximal non-Hamiltonian
graph. Family A2 is formed by taking the join with K2 of the disjoint union of a
complete graph and an A1 graph. Theorem 12 shows that the resulting graph is in
M1. Family A3 is a modification of the A1 family based on the graph in Figure 2,
which is in N2.

More than two decades later, Bullock, Frick, Singleton and van Aardt [2008]
recognized that two constructions of Zelinka [1998] give maximal nontraceable
graphs, that is, elements of M2. Zelinka’s first construction is like the Skupień
family: formed from r + 1 complete graphs followed by the join with Kr−1. The
Zelinka type II family contains graphs in N2 that are a significant generalization of
the graphs in Figures 1 and 2. In this section we generalize this family further to
get graphs in Nt for arbitrary t . Our starting point is the graph in Figure 3, which
is in N3.

Example 13. Consider Km with m = 2t −1 and vertices u1, . . . , um . Let G be the
graph containing Km along with vertices v1, . . . , v2t−1 and edges uivi . The case
with t = 3 and m = 5= 2t − 1 is Figure 3. We claim G ∈ Nt .

One can readily check that this graph is t-path covered using v2i−1 ∼ u2i−1 ∼

u2i ∼ v2i for i = 1, . . . , t − 1 and v2t−1 ∼ u2t−1 ∼ u2t ∼ · · · ∼ um . We check that
G is maximal. By the symmetry of the graph, we need only consider the addition

v1

v2

v3

u1

u2

u3

Figure 1. Smallest graph in N2.
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v1

u1

v2

u2

u3

u4

v3

v4

Figure 2. The join of this graph with K1 is the smallest graph in
the A3 family.

u1

u2

u3u4

u5

v1

v2

v3v4

v5

Figure 3. Whirligig in N3.

of the edge v1um or v1u2 or v1v2. In each case, the last and the first paths listed
above may be combined into one, either

v2t−1 ∼ u2t−1 ∼ · · · ∼ um ∼ v1 ∼ u1 ∼ u2 ∼ v2, or

v2t−1 ∼ u2t−1 ∼ · · · ∼ um ∼ u1 ∼ v1 ∼ u2 ∼ v2, or

v2t−1 ∼ u2t−1 ∼ · · · ∼ um ∼ u1 ∼ v1 ∼ v2 ∼ u2.

Thus, adding an edge creates a (t − 1)-path covered graph, proving maximality.

The next proposition shows that the previous example is the only way to have a
trim maximal t-path covered graph with 2t −1 degree-one vertices. We start with a
technical lemma.

Lemma 14. Let G be a connected graph and u1, v1, v2, v3∈V (G) with deg(vi )=1,
and u adjacent to v1 and v2 but not v3. Then µ(G)= µ(G+ uv3).

Proof. Let P1, . . . , Pr be a minimal path covering of G + uv3; it is enough to
show that there are r-paths covering G. If the covering doesn’t include uv3, then
P1, . . . , Pr also give a minimal path covering of G, establishing the claim of the
lemma. Otherwise, suppose uv3 is an edge of P1. We consider two cases.
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Suppose P1 contains the edge uv1 (or similarly uv2). Then P1 has v1 as a
terminal point and one of the other paths, say P2, must be a length-0 path containing
simply v2. Let Q be obtained by removing uv1 and uv3 from P1. Then v1 ∼ u ∼
v2, Q, P3, . . . , Pr , gives an r -path covering of G.

Suppose P1 contains neither uv1 nor uv2. Then each of v1 and v2 must be on a
length-0 path in the covering, say P2 and P3 are these paths. Furthermore u must
not be a terminal point of P1; if it were, the path could be extended to include v1 or
v2, reducing the number of paths required to cover G. Removing u from P1 yields
two paths, Q1, Q2. Then v1 ∼ u ∼ v2, Q1, Q2, P4, . . . , Pr gives an r-path cover
of G. This proves the lemma. �

Proposition 15. Let G ∈ Nt . The number of degree-one vertices in G is at most
2t − 1. This occurs if and only if the 2t − 1 vertices of degree-one have distinct
neighbors and removing the degree-one vertices leaves a complete graph.

Proof. Each degree-one vertex must be a terminal point in a path covering. So any
graph G covered by t paths can have at most 2t degree-one vertices. Aside from
the case t = 1 and G = K2, we can see that a graph with 2t degree-one vertices
cannot be maximal t-path traceable as follows. It is easy to check that a 2t star is
not t-path traceable (it is also not trim). A t-path traceable graph with 2t degree-one
vertices must therefore have an interior vertex w that is not connected to at least
one of the degree-one vertices v. Such a graph is not maximal because the edge
vw can be added leaving 2t − 1 degree-one vertices. This resulting graph cannot
be (t − 1)-path covered.

Suppose that G ∈ Nt with 2t − 1 degree-one vertices, v1, . . . , v2t−1. Lemma 14
shows that no two of the vi can be adjacent to the same vertex, for that would
violate maximality of G. So, the vi have distinct neighbors. Furthermore, all the
vertices except the vi can be connected to each other and a path covering will still
require at least t paths since there remain 2t − 1 degree-one vertices. This proves
the necessity of the structure claimed in the proposition. The previous example
showed that the graph is indeed in Nt . �

We can now generalize the Zelinka family.

Construction 16. Let U0,U1, . . . ,U2t−1 be disjoint sets of vertices and

U =
2t−1⊔
i=0

Ui .

Let mi = |Ui | and assume that for i > 0 the Ui are nonempty, so mi > 0. For
i = 1, . . . , 2t − 1 (but not i = 0) and j = 1, . . . ,mi , let Vi j be nonempty sets
of vertices disjoint from each other and from U . Form the graph W with vertex
set U t

(⊔2t−1
i=1

(⊔mi
j=1 Vi j

))
and edges uu′ for u, u′ ∈ U and uv for any u ∈ Ui
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U0

U1

U2

. .
.

U2t−3

U2t−2

U2t−1

V1,1 . . . V1,m1 V2t−3,1 . . . V2t−3,m2t−3

V2,1 . . . V2,m2 V2t−2,1 . . . V2t−2,m2t−2

V2t−1,1

...

V2t−1,m2t−1

Figure 4. Generalization of the whirligig, W .

and v ∈ Vi j with i = 1, . . . , 2t − 1 and j = 1, . . . ,mi and all edges within each
set Vi j . The cliques of this graph are KU and KUitVi j for each i = 1, . . . , 2t − 1
and j = 1, . . . ,mi .

The graph in Figure 2 has m0 = 0, m1 = m2 = 1 and m3 = 2, and the graph in
Figure 4 indicates the general construction.

Theorem 17. The graph W in Construction 16 is a trim, maximal t-path traceable
graph.

Proof. We must show that W is t-path covered and not (t − 1)-path covered, and
that the addition of any edge yields a (t − 1)-path covered graph. The argument is
analogous to the one in Example 13.

Let R be a Hamiltonian path in U0. For each i = 1, . . . , 2t−1 and j = 1, . . . ,mi ,
let Qi j be a Hamiltonian path in KVi j . Let Pi be the path

Pi : Qi1 ∼ ui1 ∼ Qi2 ∼ ui2 ∼ · · · ∼ Qimi ∼ uimi ,

and let
←−
Pi be the reversal of Pi .

Since there is an edge uimi u jm j there is a path Pi ∼
←−
P j for any i 6= j ∈

{1, . . . , 2t − 1}. Therefore the graph W has a t-path covering P2i−1 ∼
←−
P 2i for

i = 1, . . . , (t − 1), along with P2t−1 ∼ R. We leave to the reader the argument that
there is no (t − 1)-path cover.

To show W is maximal we show that after adding an edge e, we can join two
paths in the t-path cover above, with a bit of rearrangement. There are three types
of edges to consider, the edge e might join Vi j to Ui ′ for i 6= i ′; or Vi j to Vi j ′ for
j 6= j ′; or Vi j to Vi ′ j ′ for i 6= i ′. Because of the symmetry of W , we may assume
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i = 1 and j = 1 and that the vertex chosen from Vi j = V1,1 is the initial vertex of
Q1,1. Other simplifications due to symmetry will be evident in what follows.

In the first case there are two subcases — determined by i ′ ≥ 2t or not — and
after permutation, we may consider the edge e from the initial vertex of Q1,1 to the
terminal vertex of R, or to the terminal vertex of P2t−1. We can then join two paths
in the t-path cover: either P2t−1 ∼ R

e
∼ P1 ∼

←−
P 2 or P2t−1

e
∼ P1 ∼ R ∼

←−
P 2.

Suppose next that we join the initial vertex of Q11 with the terminal vertex of
Q12. We then rearrange P1 and join two paths in the t-path cover to get

P2t−1 ∼ R ∼ u1,1 ∼ Q1,1
e
∼ Q1,2 ∼ u1,2 ∼ · · · ∼ Q1m1 ∼ u1m1 ∼

←−
P 2.

Finally, suppose that we join the initial vertex of Q1,1 with the initial vertex of
Q2t−1,1. Then we rearrange to

←−
R ∼
←−
P 2t−1

e
∼ P1 ∼

←−
P 2. �
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