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Fuzzy set representation of a prior

distribution

Glen Meeden1,∗

University of Minnesota

Abstract: In the subjective Bayesian approach uncertainty is described by a
prior distribution chosen by the statistician. Fuzzy set theory is another way
of representing uncertainty. Here we give a decision theoretic approach which
allows a Bayesian to convert their prior distribution into a fuzzy set member-
ship function. This yields a formal relationship between these two different
methods of expressing uncertainty.
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1. Introduction

For a subjective Bayesian uncertainty about the unknown parameter or state of na-
ture can be expressed through a prior distribution. If θ denotes a typical parameter
value and Θ the set of all possible parameter values then the prior distribution over
Θ summarizes their knowledge and beliefs about the parameter.

Fuzzy set theory, introduced in Zadeh [7], is another approach to representing
uncertainty. A fuzzy set A, a subset of Θ, is characterized by its membership func-
tion. This is a function defined on Θ whose range is contained in the unit interval.
At a point θ the value of the membership function is a measure of how much we
think θ belongs to the set A. Statisticians have been slow to embrace fuzzy set
theory. Taheri [6] gives a review of applications of fuzzy set theory concepts to
statistical methodology. Bayesians have shown less interest in fuzzy ideas than fre-
quentists. Singpurwalla and Booker [5] have proposed a model which incorporates
fuzzy membership functions into a subjective Bayesian setup. However, they do not
give membership functions a probabilistic interpretation. In the imprecise or vague
approach to Bayesian statistics a decision maker selects a family of possible prior
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distributions to represent their prior beliefs. de Cooman [2] presents an uncertainty
model for vague probability assessments that is closely related to Zadeh’s approach
[7].

The concept of confidence intervals is a frequentist approach to expressing un-
certainty about an unknown parameter given data. It has long been recognized that
naive users have difficulty interpreting confidence intervals. They have a tendency
to give a probabilistic interpretation to the observed confidence interval.

It has also long been known that for discrete data conventional confidence inter-
vals, which we will also call “crisp” confidence intervals, using a term from fuzzy
set theory, can perform poorly. A recent article [1] reviews the problems with crisp
confidence intervals for binomial models. Because of the inherent flaws in crisp con-
fidence intervals for discrete problems a new confidence interval notion has been
suggested called fuzzy confidence intervals [3]. Given the data a fuzzy confidence
interval is just the membership function of the set of plausible or reasonable values
for θ. One way to think about such membership functions is that they are gen-
eralizations of randomized intervals where no randomization is ever implemented.
They argued that fuzzy confidence intervals overcome the difficulties of the usual
crisp intervals for discrete probability models.

In terms of frequency of coverage discrete data Bayesian credible intervals will
suffer from the same problem that conventional intervals do. This should be of
concern to objective Bayesians who want their intervals to have good frequentist
properties. One way to approach this problem is to find a method that allows them
to use their posterior to get a sensible fuzzy interval instead of the usual Bayesian
credible interval.

Here we consider a no data statistical decision problem where the set of possible
decisions is the class of all membership functions defined on Θ. We then define a
family of loss functions. These functions measure the loss incurred when a probabil-
ity distribution is replaced by a fuzzy membership function. For any loss function
in the family and a given prior distribution we solve the resulting no data decision
problem. This gives a method for converting a prior or posterior into a fuzzy mem-
bership function. For a given fuzzy membership function we also study the problem
of identifying the family of prior distributions whose common solution to the no
data decision problem is this function. This sets up a formal relationship between
the two theories.

2. Fuzzy set theory

We will only use some of the basic concepts and terminology of fuzzy set theory,
which can be found in the most elementary of introductions to the subject [4].

A fuzzy set A in a space Θ is characterized by its membership function, which is
a map IA : Θ → [0, 1]. The value IA(θ) is the “degree of membership” of the point θ
in the fuzzy set A or the “degree of compatibility . . . with the concept represented
by the fuzzy set.” See ([4], p. 75). The idea is that we are uncertain about whether
θ is in or out of the set A. The value IA(θ) represents how much we think θ is in
the fuzzy set A. The closer IA(θ) is to 1.0, the more we think θ is in A. The closer
IA(θ) is to 0.0, the more we think θ is not in A.

A fuzzy set whose membership function only takes on the values zero or one is
called crisp. For a crisp set, the membership function IA is the same thing as the
indicator function of an ordinary set A. Thus “crisp” is just the fuzzy set theory
way of saying “ordinary,” and “membership function” is the fuzzy set theory way of
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saying “indicator function.” The complement of a fuzzy set A having membership
function IA is the fuzzy set B having membership function IB = 1 − IA.

If IA is the membership function of a fuzzy set A, the γ-cut of A ([4], Section 5.1)
is the crisp set

γIA = {θ : IA(θ) ≥ γ}.

Clearly, knowing all the γ-cuts for 0 ≤ γ ≤ 1 tells us everything there is to know
about the fuzzy set A. The 1-cut is also called the core of A, denoted core(A) and
the set

supp(A) =
⋃
γ>0

γIA = {θ : IA(θ) > 0}

is called the support of A ([4], p. 100). A fuzzy set is said to be convex if each γ-cut
is convex ([4], pp. 104–105).

3. A decision problem

For simplicity we assume that Θ is an interval of real numbers and the prior π is a
continuous probability density function defined on it.

Let A be the class of all measurable membership functions defined on Θ. Then
A is the space of possible decisions or actions with a typical member denoted by A.
Given a prior density π on Θ we want to find the membership function or fuzzy set
A which best represents π. We do this by defining a loss function and then solving
the no data decision problem.

Our loss function will depend on four known parameters which are specified by
the statistician. They are a1 ≥ 0, a2 ≥ 0, b1 ≥ 0 and b2 ≥ 0 where at least one of
the ai’s and at least one of the bi’s must be strictly positive. Then the loss incurred
when action A is taken and θ is the true state of nature is given by

(1) L(A, θ) = a1{1 − IA(θ)} +
a2

2
{1 − IA(θ)}2 +

∫
Θ

{
b1IA(θ) +

b2

2
(IA(θ))2

}
dθ.

To understand this loss function remember that we want to find the fuzzy set
or membership function A which best represents the set of sensible or reasonable
parameter values under our prior π. Hence if θ is the true parameter point we
want IA(θ) to be close to 1. This explains the presence of the first two terms in
equation (1). But on the other hand we do not want the fuzzy set to be too large.
This is controlled by the last term in the equation which is a measure of the overall
size of the fuzzy set.

We now find the solution for this no data decision problem.

Theorem 1. Let π(θ) be a prior density on Θ. Then for the loss function of
equation (1) the fuzzy set membership A which satisfies

∫
Θ

L(A, θ)π(θ) dθ = inf
A′∈A

∫
Θ

L(A′, θ)π(θ) dθ

is given by

(2) IA(θ) =

⎧⎪⎨
⎪⎩

0, for 0 ≤ π(θ) < b1/(a1 + a2),
(a1+a2)π(θ)−b1

a2π(θ)+b2
, for b1/(a1 + a2) ≤ π(θ) ≤ (b1 + b2)/a1,

1, for π(θ) > (b1 + b2)/a1.
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Proof. Note that we can write
∫

Θ

L(A′, θ)π(θ) dθ =
∫

Θ

{
a1{1 − IA′(θ)} +

a2

2
{1 − IA′(θ)}2

}
π(θ)+

b1IA′(θ) +
b2

2
(IA′(θ))2

}
dθ

so that to find the solution it is enough to minimize the integrand of the previous
equation for each fixed value of θ. But for a fixed θ the integrand is just a quadratic
function of IA′(θ) and a simple calculus argument completes the proof.

The theorem remains true when a1 = 0 if we assume dividing by zero yields
infinity.

Note that the solution is unchanged if the loss function is multiplied by a positive
number. Without loss of generality we could set one of the four parameters defining
the loss function equal to one but having four parameters will be convenient in the
following discussion.

As with any decision problem the solution depends strongly on the loss function.
We believe our family of loss functions is flexible and captures some of the important
aspects of the problem. Finding a good fuzzy set to summarize our information
about a parameter is much like finding a good credible set. We want it to include
the likely values but without it getting to large. The loss function in equation (1)
is essentially the sum of two quadratic functions. The first part is quadratic in
non-membership in the set of likely values while the second part is quadratic in
a measure of the size of the set. If we just include the linear terms in each part
then the optimal solution will always be a crisp set. It is necessary to include the
quadratic terms to get a true fuzzy set as a solution.

We see from equation (2) that the optimal membership function is related to the
prior π in a sensible fashion. The solution is 1 where the prior is large, 0 where the
prior is small and a rescaling between the two cases. Note that for a given bounded
π if b1 is chosen large enough then the solution to our decision problem is the
membership function which is identically zero. On the other hand if π is bounded
away from zero and a1 is chosen large enough then the solution to our decision
problem is the membership function which is identically one.

4. Relating priors and fuzzy sets

We have considered the problem of converting a prior distribution into a fuzzy
membership function. In some situations it could be of interest to be able to move
in the other direction. That is, transform the uncertainty expressed in a fuzzy
membership function into the Bayesian paradigm. One way to do this would be to
find a loss function and prior for which the solution to our decision problem is the
fuzzy membership function in hand. This suggests the following three questions.

• For a specified fuzzy membership function, IA, and a specified loss function
does there exist a prior density function for which the solution to our decision
problem is IA?

• For a specified fuzzy membership function, IA, does there exist a loss function
and a prior density function for which the solution to our decision problem is
IA?

• If a solution does exist for question 1 is it unique?
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We see from equation (2) that for IA to be a solution for π we must have

(3) π(θ) =
b1 + b2IA(θ)

a1 + a2(1 − IA(θ))
for θ where 0 < IA(θ) < 1

From this we see that the answer to our first question is no. This is because when
Θ is unbounded π in the previous equation need not be integrable and even when it
is it need not integrate to one. The answer to the second question is yes whenever
IA(θ) is integrable. Since in this case we can always select b1 ≥ 0 and b2 > 0 to
make π(θ) of equation (3) a density. When a solution exists it need not be unique.

For a simple example we set a2 = 0 and let the other three parameters be
positive. Consider the special case where Θ is bounded. If we set

(4) r1 = b1/a1 and r2 = (b1 + b2)/a1

we find that

(5) a1 = b2/(r2 − r1) and b1 = r1/(r2 − r1)

and the solution from equation (2) has the form

(6) IA(θ) =

⎧⎪⎨
⎪⎩

0, for 0 ≤ π(θ) < r1,

(π(θ) − r1)/(r2 − r1), for r1 ≤ π(θ) ≤ r2,

1, for π(θ) > r2.

Now let IA be given and assume that the length of Θ is �. If r1 < 1/� then there
exist a unique r2 > r1 such that

(7) πA,r1(θ) = (r2 − r1)IA(θ) + r1 for θ ∈ Θ

is a prior distribution over Θ. Moreover we can find values for a1, b1 and b2 which
satisfy equation (4). With this loss function IA will be the solution to our decision
problem when the prior is πA,r1 . Furthermore if the sets where IA(θ) = 0 and
IA(θ) = 1 each have positive Lebesgue measure then it will not be the unique prior
with this property. Any prior density π satisfying

π(θ) ≤ r1 when IA(θ) = 0,

π(θ) = πA,r1(θ) when 0 < IA(θ) < 1,(8)
π(θ) ≥ r2 when IA(θ) = 1

will also be a solution for our decision problem.
Among the set of possible solutions the one in equation (7) has two nice proper-

ties. First of all it is continuous whenever IA(θ) is continuous. Secondly it treats the
members of {θ : IA(θ) = 1} similarly and the members of {θ : IA(θ) = 0} similarly.
More importantly, this identification of a fuzzy membership function with a class
of prior distributions demonstrates that we can give roughly equivalent expressions
of uncertainty in the Bayesian and fuzzy paradigms.

Finally, we address the question of uniqueness. The previous discussion indicates
that if we want uniqueness we should consider membership functions which never
take on zero or one as a possible value. Let IA be such a membership function and
let a1 > 0 and a2 > 0 be fixed and suppose Θ is the unit interval. Then integrating
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equation (3) we have
∫ 1

0

π(θ) dθ = b1

∫ 1

0

1
a1 + a2(1 − IA(θ))

dθ + b2

∫ 1

0

IA(θ)
a1 + a2(1 − IA(θ))

dθ

= b1c1(a1, a2) + b2c2(a1, a2).

Hence π will be a probability density function whenever

b1 ∈ [0, 1/c1(a1, a2)] and b2 = (1 − b1c1(a1, a2))/c2(a1, a2).

To better understand the relationship between IA and its corresponding prior
we consider a simple example. Let

(9) IA(θ) = 6.075 θ2(1 − θ) for θ ∈ [0, 1].

We consider two different choices of the ai’s and for each case two different choices
of b1. For the first case a1 = 1 and a2 = 7. The maximum possible value for b1 is 3.40
and our two choices for the bi’s are b1 = 0.01, b2 = 5.15 and b1 = 3.35, b2 = 0.072.
In the second case a1 = 4 and a2 = 2. The maximum possible value for b1 is 4.91
and our two choices for the bi’s are b1 = 0.01, b2 = 9.02 and b1 = 4.50, b2 = 0.76.
For each of the four combinations we found the unique prior whose solution to
the decision problem yields the fuzzy membership function of equation (9). The
membership function along with the four priors are shown in the figure.

The membership function is the solid curve. The two curves with the two largest
maximums are the solutions for the first case where a1 = 1 and a2 = 7. Of the two
solutions the one with b1 = 0.01 has the largest maximum. The other two curves are
the solutions for the second case. Again the solution for b1 = 0.01 has the largest of
the two maximums. These curves demonstrate what a closer inspection of equation
(3) yields. For a fixed a1 and a2 the solution becomes less concentrated about its
mode as b1 increases from zero to its maximum value. Also the solution becomes
less concentrated about its mode as we increase a1 and decrease a2. But in all cases
the priors do reflect the shape of their common solution.

An interesting consequence of this unique correspondence is that it gives a way
to update a large class of fuzzy membership functions given data. Suppose an
expert has selected a fuzzy membership function to represent their uncertainty.
The statistician then selects appropriate values of the ai’s and the bi’s and uses
equation (3) to transform it into a prior. Then given the data they find the posterior
distribution which is then converted back to a fuzzy membership function using the
theorem with the ai and bi values.

This result is somewhat surprising since a fuzzy membership function must sat-
isfy less conditions then a probability density function since it need not be inte-
grable. At first glance the previous example where a membership function corre-
sponded to a family of priors seems more reasonable. To get the unique correspon-
dence, however, we made two fairly strict assumptions. The function in equation
(3) needed to be integrable and the range of the membership function had to lay
in the open unit interval. Both these conditions on the membership function seem
not so surprising if we hope to convert it to a probability density function.

5. Some final remarks

Mainline statistics has shown little interest in fuzzy set theory. This is especially
true for most Bayesians since they believe that they already have a good way to
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Fig 1. A plot of the fuzzy membership function (the solid line) in equation (9) and four priors
whose common solution for four loss functions is the fuzzy membership function. The two priors
for the a1 = 1 and a2 = 7 case are the ones with the two largest maximums. The other two priors
are for the two a1 = 4 and a2 = 2 cases.

express uncertainty. Here we have argued that Bayesians should be more interested
in fuzzy set theory. For discrete data, just as for frequentists, there are certain
advantages to considering interval estimates as fuzzy sets. We noted that our scheme
for converting a prior density into a fuzzy membership function could also be used
to relate some fuzzy membership functions to prior densities. In some cases a fuzzy
membership function will correspond to a family of densities while under more
restricted conditions it will correspond to a unique density. The relationship seems
intuitively sensible and as far as we know it is the first simple formal correspondence
between the two theories which until now have lived in different worlds.

A copy of Geyer and Meeden [3] and related material can be found at http//:
www.stat.umn.edu/˜glen/papers/.
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