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On predictive probability matching priors

Trevor J. Sweeting1

University College London

Abstract: We revisit the question of priors that achieve approximate match-
ing of Bayesian and frequentist predictive probabilities. Such priors may be
thought of as providing frequentist calibration of Bayesian prediction or sim-
ply as devices for producing frequentist prediction regions. Here we analyse
the O(n−1) term in the expansion of the coverage probability of a Bayesian
prediction region, as derived in [Ann. Statist. 28 (2000) 1414–1426]. Unlike
the situation for parametric matching, asymptotic predictive matching priors
may depend on the level α. We investigate uniformly predictive matching pri-
ors (UPMPs); that is, priors for which this O(n−1) term is zero for all α. It
was shown in [Ann. Statist. 28 (2000) 1414–1426] that, in the case of quantile
matching and a scalar parameter, if such a prior exists then it must be Jeffreys’
prior. In the present article we investigate UPMPs in the multiparameter case
and present some general results about the form, and uniqueness or otherwise,
of UPMPs for both quantile and highest predictive density matching.
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1. Introduction

Prior distributions that match posterior predictive probabilities with the corre-
sponding frequentist probabilities are attractive when a major goal of a statistical
analysis is the construction of prediction regions. Such priors provide calibration
of Bayesian prediction or may be viewed as a Bayesian mechanism for producing
frequentist prediction intervals.

It is known that exact predictive probability matching is possible in cases in
which there exists a suitable transformation group associated with the model. The
general group structure for parametric models starts with a group of transforma-
tions on the sample space under which the statistical problem is invariant. This
group of transformations then gives rise to a group G of transformations on the pa-
rameter space. From an “objective Bayes” point of view, it makes sense to choose
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a prior distribution that is (relatively) invariant under this group. In particular,
this will ensure that initial transformation of the data will make no difference to
predictive inferences. The two fundamental invariant measures on the group G are
the left and right Haar measures. The left (right) Haar measure is the unique left-
(right-)translation invariant measure on G, up to a positive multiplicative constant.
These measures give rise to invariant left and right Haar priors on the parameter
space. In the decision-theoretic development, under suitable conditions it turns out
that the right Haar prior gives rise to optimal invariant decision rules for invariant
decision problems; see, for example, [1]. The left Haar prior, however, which coin-
cides with Jeffreys’ invariant prior, often gives inadmissible rules in multiparameter
cases. These facts provide strong motivation for the use of the right Haar prior. In
relation to predictive inference, following earlier work in [10] and [11] this intuition
was further reinforced in [13], where it was shown that if such a group structure
exists then the associated right Haar prior gives rise to exact predictive matching
for all invariant prediction regions. Thus the predictive matching problem is solved
for models that possess a suitable group structure when the prediction region is
invariant.

When exact matching is not possible one can instead resort to asymptotic ap-
proximation and investigate approximate predictive matching. This question was
explored in [4] for the case of n independent and identically distributed (i.i.d.) ob-
servations. For regular parametric families the difference between the frequentist
and posterior predictive probabilities is O(n−1) and a concise expression for this
difference was obtained in [4] by using the auxiliary prior device introduced by P.
J. Bickel and J. K. Ghosh in [3]. This technical device has proved to be extremely
valuable for the theoretical comparison of Bayesian and frequentist inference state-
ments, or simply as a Bayesian device for obtaining frequentist results. It has been
particularly useful for deriving probability matching priors (see, for example, [8],
[9] and the review in [5]) and for studying properties of sequential tests ([16]).

In order to find an approximate predictive probability matching prior, one sets
the O(n−1) discrepancy to zero and attempts to solve the resulting partial differen-
tial equation (PDE); a number of examples are given in [4]. We briefly review the
main results in [4] in Section 2. Two main issues arise from this analysis. Firstly,
the PDE for a predictive matching prior may be difficult to solve analytically. The
second, and more fundamental, issue is that, except in special cases, the resulting
matching prior will depend on the desired predictive probability level α. If there
does exist a prior that gives rise to predictive probability matching for all α then
we shall refer to it as a uniformly predictive matching prior (UPMP). Of course, in
the case of a transformation model and an invariant prediction region we already
know from [13] that the right Haar prior must be a solution of the PDE. It is in-
structive to demonstrate this directly and this is done in the Appendix for quantile
matching. Since the definition of the right Haar prior depends on a specific group
of transformations on the parameter space, we need to study the effect of parame-
ter transformation on the quantities appearing in the PDE. For this reason, it is
natural to regard Fisher’s information, g, as a Riemannian metric tensor so that
transformational properties of g and the other quantities that appear in the PDE
can be studied.

In the case of quantile matching and a single real parameter, it has already been
shown in [4] that if there exists a UPMP then it must be Jeffreys’ invariant prior.
This result therefore extends the exact Haar prior result for transformation models
to the most general models for which approximate uniform matching is possible.
However, it is clear from examples discussed in [4] and from the general theory for
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transformation models in [13] that this result will not hold in the multiparameter
case. For example, the unique UPMP for the normal model with unknown mean and
variance is the right Haar prior, or Jeffreys’ independence prior, whereas Jeffreys’
prior is the left Haar prior.

The main purpose of the present article is to investigate the general form of
UPMPs whenever they exist. In particular, we explore the uniqueness or otherwise
of the right Haar prior as a UPMP for quantile matching in the case of a transfor-
mation model. Although UPMPs can exist outside of transformation models, such
situations would seem to occur rarely. The main results are given in Section 3 and 4.
In Section 3 we explore the form of the UPMP for quantile matching. In addition to
confirming that the right Haar prior is a UPMP in suitable transformation models,
as discussed above, we obtain the general form of the UPMP whenever one exists
and show that this prior is unique. In particular, it follows that for transformation
models there are no priors other than the right Haar prior that give approximate
uniform predictive quantile matching. In Section 4 we consider probability match-
ing based on highest predictive density regions, which are particularly relevant for
multivariate data. The scalar parameter case is clear-cut and was essentially treated
in [4], where it was shown that if there exists a UPMP then it is unique. However,
unlike quantile matching, this UPMP is not necessarily Jeffreys’ prior. The situ-
ation is less straightforward in the multiparameter case. We show that, under a
certain condition, if there exists a UPMP then it is unique. If this condition is not
satisfied then either there will be no UPMP or there will exist an infinite number
of UPMPs. This section provides predictive versions of results for highest posterior
density regions obtained by J. K. Ghosh and R. Mukerjee in [8] and [9]. We end
with some discussion in Section 5.

2. Review of predictive probability matching priors

We begin by introducing the notation and reviewing the main results in [4] on pre-
dictive probability matching priors. We consider only the case of i.i.d. observations
in this article, but the results would be expected to hold more generally under
suitable conditions. Suppose then that X1, X2, . . . is a sequence of independent ob-
servations having the same distribution as the (possibly vector-valued) continuous
random variable X with density f(·; θ), where θ = (θ1, . . . , θp) ∈ Ω is an unknown
parameter and Ω is an open subset of �p. Consider the problem of predicting the
next observation, Xn+1, based on the first n observations, d = (X1, X2, . . . , Xn).
We assume regularity conditions on f and π, as detailed in [4]. In particular, the
support of X is assumed to be independent of θ.

Consider first the case of univariate X. Let q(π, α, d) denote the 1−α quantile of
the posterior predictive distribution of Xn+1 under the prior π. That is, q(π, α, d)
satisfies the equation

(2.1) Pπ(Xn+1 > q(π, α, d)|d) = α.

Let q(θ, α) be the 1 − α quantile of f(·; θ); that is

(2.2)
∫ ∞

q(θ,α)

f(u; θ)du = α.

Write ∂t = ∂/∂θt and let ft(u; θ) = ∂tf(u; θ). Define

(2.3) μt(θ, α) =
∫ ∞

q(θ,α)

ft(u; θ)du.
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Finally, let g(θ) be the per observation Fisher information matrix, which we assume
to be non-singular for all θ ∈ Ω, and let gst and gst be the (s, t)th elements of g
and g−1 respectively.

Using the approach of [3] and [7] in which an auxiliary prior is introduced and
finally allowed to converge weakly to the degenerate measure at θ, it follows from
equations (3.3) and (3.4) in [4] that

(2.4) Pθ(Xn+1 > q(π, α, d)) = α − ∂s{gst(θ)μt(θ, α)π(θ)}
nπ(θ)

+ o(n−1).

Here and elsewhere we use the summation convention. We will say that π is a level-α
predictive probability matching prior if it satisfies the equation

(2.5) ∂s{gst(θ)μt(θ, α)π(θ)} = 0.

From (2.4), such a prior π matches the Bayesian and frequentist predictive proba-
bilities to o(n−1). Clearly, in general a solution of (2.5) will depend on the particular
level α chosen. This is demonstrated in [4] for the specific example in which the
observations are from a N(θ, θ) distribution. Recalling the discussion in Section 1,
we refer to a prior for which (2.5) holds for all α as a uniformly predictive matching
prior (UPMP). In the case p = 1, it was shown in [4] that if there exists a UPMP
then this prior must be Jeffreys’ prior. As noted in [4], when no UPMP exists
then the formula on the left-hand side of (2.5) may still be useful for comparing
alternative priors.

Moving to the multiparameter case, examples in [4] illustrate that the above
result on Jeffreys’ prior no longer holds. An illustration of this is Example 2 in
[4], which is the location-scale model f(x; θ) = θ−1

2 f∗(θ−1
2 (x − θ1)). In this case

there exists a UPMP given by π(θ) ∝ θ−1
2 , which is the right Haar prior for this

model under the location-scale transformation group, whereas Jeffreys’ prior is the
left-invariant prior π(θ) ∝ θ−2

2 under this group.
In the case where X is possibly vector-valued, the coverage properties of highest

predictive density regions are investigated in [4]. This investigation mirrors that in
[8] and [9] for highest posterior density regions. Let m(θ, α) be such that∫

A

f(u; θ)du = α,

where A = A(θ, α) = {u : f(u; θ) ≥ m(θ, α)} and define

ξj(θ, α) =
∫

A

fj(u; θ)du.

Let H(π, α, d) be the level-α highest predictive density region under the prior π.
Then, as for quantile matching, it follows from the results in Section 5 of [4] that

Pθ(Xn+1 ∈ H(π, α, d)) = α − ∂s{gst(θ)ξt(θ, α)π(θ)}
nπ(θ)

+ o(n−1).

Thus π is a level-α predictive probability matching prior if and only if it satisfies
the equation

(2.6) ∂s{gst(θ)ξt(θ, α)π(θ)} = 0.

Once again we see that in general the solution π will depend on the level α. Examples
are given in [4] in which there are no priors that satisfy (2.6) for all α. Moreover,
even in the case p = 1, if there does exist a unique prior satisfying (2.6) for all α
then it is not necessarily Jeffreys’ prior.
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3. UPMPs: quantile matching

As discussed in Section 2 we know that when p = 1 and a UPMP exists for quantile
matching as in (2.1), then it must be Jeffreys’ prior. However, it need not be Jeffreys’
prior when p > 1. Under a suitable group structure on the model, the results in [13]
imply that the associated right Haar prior gives exact predictive matching, since
the prediction region here is invariant. Thus in these cases the right Haar prior
must also be a solution of equation (2.5). It is instructive to demonstrate directly
that this is indeed the case.

First note from the product rule that equation (2.5) is equivalent to

(3.1) gst(θ)μt(θ, α)∂sλ(θ) + ∂s{gst(θ)μt(θ, α)} = 0,

where λ(θ) = log π(θ). Suppose that there exists a group G of bijective transforma-
tions on the sample space under which the statistical problem is invariant. Further
assume, as in [13], that G = Ω, a locally compact topological group. In this case
the distribution of X under θ is the same as that of θX under e, the identity ele-
ment of the group, with θ regarded as an element of the transformation group G.
Then there exist unique (up to a multiplicative constant) left-invariant and right-
invariant Haar measures on G, giving left and right Haar priors on the parameter
space. In the following we denote the right Haar prior density on Ω by πH . The
proof of the following theorem is given in the Appendix.

Theorem 3.1. Under the above group structure the right Haar prior satisfies equa-
tion (3.1).

Two questions naturally arise. First, if the above group structure exists then
can there be UPMPs other than the right Haar prior? The answer to this question
turns out to be “no,” as follows from Theorem 3.2 below. Second, if the above group
structure does not exist can there still be a UPMP? The answer to this question is
“yes.” An example in the case p = 1 is given in Section 3 of [4] for which there is
no suitable group structure but there is still a unique UPMP, which must of course
be Jeffreys’ prior.

We now establish the general form of the UPMP whenever it exists and show that
it is unique. This is a multiparameter version of Theorem 1 in [4]. Let F (x; θ) be
the distribution function of X, l(x; θ) = log f(x; θ) and write Fs(x; θ) = ∂sF (x; θ),
ls(x; θ) = ∂s log f(x; θ). Define the functions

(3.2) hr = gst

∫
(Fslr − Frls)

∂lt
∂x

dx,

where the integration is over the (common) support of F (x; θ). Finally write λJ =
log πJ , where πJ (θ) ∝ |g(θ)|1/2 is Jeffreys’ prior.

Theorem 3.2. Suppose that there exists a UPMP, π, for quantile matching. Then
π is the unique UPMP and the partial derivatives of λ = log π are given by

(3.3) ∂rλ(θ) = ∂rλ
J(θ) + hr(θ).

Proof. We begin by expressing g(θ) in terms of the functions μt(θ; α) defined at
(2.3). By differentiation of equation (2.2) with respect to α we see that −f(q; θ)∂q/
∂α = 1, while differentiation of equation (2.3) gives

(3.4) ∂μj(θ, α)/∂α = −fj(q; θ)∂q/∂α = lj(q; θ),
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on substitution of ∂q/∂α from the previous relation. It follows that

(3.5) gij(θ) =
∫

li(q; θ)lj(q; θ)f(q; θ)dq =
∫ 1

0

(
∂μi(θ, α)

∂α

)(
∂μj(θ, α)

∂α

)
dα.

Suppose that there exists a UPMP π. Differentiation of equation (3.1) with
respect to α and multiplication by ∂μr/∂α gives the equation

gst ∂μt

∂α

∂μr

∂α
∂sλ +

∂μr

∂α
∂s

{
gst ∂μt

∂α

}
= 0.

Since this relation must hold for all 0 < α < 1, integration over 0 < α < 1 gives

(3.6) gst

{∫ 1

0

∂μt

∂α

∂μr

∂α
dα

}
∂sλ +

∫ 1

0

∂μr

∂α
∂s(gst ∂μt

∂α
)dα = 0.

But from (3.5) the left-hand side of (3.6) is gstgtr∂sλ = δs
r∂sλ = ∂rλ, where δs

r is
the Kronecker delta function. Also, since ∂s(gstgtr) = ∂s(δs

r) = 0, the product rule
gives

0 = gst

∫ 1

0

∂s

(
∂μr

∂α

)
∂μt

∂α
dα +

∫ 1

0

∂μr

∂α
∂s

(
gst ∂μt

∂α

)
dα

so that (3.6) becomes

∂rλ = gst

∫ 1

0

∂s

(
∂μr

∂α

)
∂μt

∂α
dα.

This expression gives the partial derivatives of λ = log π and, furthermore, estab-
lishes that π is the unique UPMP. We now show that this expression is equivalent
to (3.3).

We first obtain the partial derivatives of λJ . From a standard result for the
derivative of a matrix determinant, we have

∂rλ
J =

1
2
∂r log |g| =

1
2
gst∂rgst

=
1
2
gst∂r

∫ 1

0

(
∂μs

∂α

) (
∂μt

∂α

)
dα = gst

∫ 1

0

∂r

(
∂μs

∂α

)(
∂μt

∂α

)
dα,

again using (3.5). The difference between the rth partial derivatives of λ and λJ is
therefore

(3.7) ∂rλ − ∂rλ
J = gst

∫ 1

0

∂

∂α
(∂rμs − ∂sμr)

∂μt

∂α
dα.

Differentiation of (2.2) with respect to θr gives, writing q = q(θ, α), qrf(q; θ) +
μr(θ, α) = 0, from which we obtain

∂rμs(θ, α) =
∫ ∞

q

frs(u; θ)du − fs(q; θ)qr =
∫ ∞

q

frs(u; θ)du − ls(q; θ)μr(θ, α).

Furthermore, we have

∂

∂α
{ls(q; θ)μr(θ, α)} =

∂q

∂α

∂ls(q; θ)
∂q

μr(θ, α) + ls(q; θ)lr(q; θ).
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It now follows from these two relations that

∂

∂α
(∂rμs − ∂sμr) =

∂q

∂α

(
∂lr(q; θ)

∂q
μs −

∂ls(q; θ)
∂q

μr

)
.

Substituting into equation (3.7) gives

(3.8) hr = gst

∫ (
Fs

∂lr
∂q

− Fr
∂ls
∂q

)
ltdq

on the change of variables from α to q, using equation (3.4) and on noting that
μs(θ, α(q, θ)) = −Fs(q; θ). Next note that the indefinite integral

∫
Fs(q; θ)

∂lr(q; θ)
∂q

dq = Fs(q; θ)lr(q; θ) −
∫

ls(q; θ)lr(q; θ)dq

from which it follows by an integration by parts that (3.8) is equivalent to (3.2), as
required.

In the case p = 1 we have hr = 0 so the unique UPMP is Jeffreys’ prior, as given
in Theorem 1 of [4]. For the location-scale model f(x; θ) = θ−1

2 f∗(θ−1
2 (x − θ1))

discussed in Section 1, it can be verified that the solution to (3.3) is π(θ) ∝ θ−1
2 ,

which is the right Haar prior for this model under the location-scale transformation
group. In general a necessary condition for there to be a UPMP is that hr be a
derivative field. The condition is not sufficient, however, as Jeffreys’ prior always
satisfies equation (3.3) in the case p = 1 but we know from [4] that Jeffreys’ prior is
not necessarily a UPMP. When p > 1 the condition that hr be a derivative field is
a very strong one when the model is not transformational. We have been unable to
construct a two-dimensional example that is not transformational and that satisfies
this condition. Even given a model satisfying this condition, the resulting prior may
still not satisfy (2.5) for all α. Thus it would seem that UPMPs rarely exist outside
of transformation models. The major point of Theorem 3.2, however, is to show
that if a UPMP does exist then it is unique.

Note that, whether or not a UPMP exists, when hr is a derivative field then
(3.2) defines a unique prior π which, from the proof of the Theorem 3.2, satisfies
the equation

∫ 1

0

(
∂μr

∂α

) (
∂ε
∂α

)
dα = 0, where ε(θ, α) is the O(n−1) error term (2.4).

Assuming that ∂μr/∂α is well behaved at α = 0 and α = 1, integration by parts
shows that this is equivalent to

∫ 1

0

∂2μr

∂α2
ε dα = 0

for all θ and r. These relations give some sort of average prediction error, but it is
unclear what precise interpretation can be given to them.

Finally, when there exists a suitable group structure as discussed earlier then we
know that ∂iλ must be ∂iλ

H . Furthermore, since Jeffreys’ prior is the left Haar
prior, it follows that hi(θ) = ∂i log Δ(θ−1), where Δ is the modulus of Ω and θ−1

is the group inverse of θ.

4. UPMPs: highest predictive density region matching

We consider now the case where X is possibly vector-valued. The question of the
existence of UPMPs for highest predictive density regions in this case is not so
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straightforward as the quantile matching case discussed in Section 3. In particular,
if there exists a suitable group structure, as in Section 3, since the prediction region
H(π, α, d) defined in Section 1 is not invariant under transformation of X (unless
the group is affine), the associated right Haar prior is not necessarily a UPMP. We
also know that when a UPMP does exist it may not be unique. This was illustrated
in Example 4 in [4] of the bivariate normal model with unknown covariance matrix;
we will return to this example in Example 1 below.

The scalar parameter case is straightforward, however. For each α the prior

π(θ) ∝ g(θ){ξ1(θ, α)}−1

is the unique solution to (2.6). It follows that there exists a UPMP prior if and only
if ξ1(θ, α) = Q(θ)R(α), as was noted in [4] where examples are given in which this
condition does and does not hold. Unlike the case of quantile matching, however,
the unique solution when it exists is not necessarily Jeffreys’ prior. For example,
in [4] it is shown that a unique UPMP exists for the N(θ, θ) model but this is not
Jeffreys’ prior.

The multiparameter case is more difficult. The simplest situation is when ξt(θ, α)
is of the form

(4.1) ξt(θ, α) = Qt(θ)R(α).

Then every UPMP will be a solution of the Lagrange PDE

(4.2) ∂s{gst(θ)Qt(θ)π(θ)} = 0.

This equation may have no solutions or an infinite number of solutions.

Example 1. Consider the bivariate normal model with zero means and unknown
standard deviations σ1, σ2 and correlation coefficient ρ. Let Σ be the covariance
matrix of X. We work with the orthogonal parameterisation

T−1 =
(

θ1 0
θ2θ3 θ2

)
,

where Σ = TT ′ and T is the left Cholesky square root of Σ. It can then be shown
that the information matrix is

g(θ) = diag(2θ−2
1 , 2θ−2

2 , θ−2
1 θ2

2).

Furthermore, by transforming to Z = T−1X, it can be shown that

m(θ, α) = θ1θ2(1−α)/(2π), ξ1(θ, α) = θ−1
1 R(α), ξ2(θ, α) = θ−1

2 R(α), ξ3(θ, α) = 0,

where R(α) = −(1−α) log(1−α). Thus ξt(θ, α) is of the form (4.1). Therefore the
UPMP priors are all the solutions of the PDE (4.2) with Q1(θ) = θ−1

1 , Q2(θ) = θ−1
2

and Q3(θ) = 0. The general solution is found to be

π(θ) ∝ θ−2
1 h(θ−1

2 θ1, θ3),

where h is an arbitrary positive function. Notice that the leading term θ−2
1 is

|g(θ)|1/2, so Jeffreys’ prior is a UPMP. In terms of (σ1, σ2, ρ) we have

θ1 = σ−1
1 , θ2 = σ−1

2 (1 − ρ2)−1/2, θ3 = −ρσ−1
1 σ2
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with Jacobian of transformation σ−3
1 σ−1

2 (1 − ρ2)−3/2. With suitable re-expression
of h we find that

(4.3) π(σ1, σ2, ρ) ∝ πJ(σ1, σ2, ρ)H(σ−1
1 σ2, (1 − ρ2)1/2),

where πJ (σ1, σ2, ρ) ∝ σ−1
1 σ−1

2 (1 − ρ2)−3/2 is Jeffreys’ prior and H is an arbitrary
positive function. This is a very wide class of priors. In particular, taking h(x, y) =
xayb, we see that all priors of the form πJ (σ1, σ2, ρ)(σ−1

1 σ2)a(1− ρ2)b are UPMPs.
Taking a = 1, b = 1/2 we obtain σ−2

1 (1 − ρ2)−1, which can be shown to be the
right Haar prior arising from the group of transformations T−1X on the sample
space, where T is a lower triangular matrix with positive diagonal elements. This
group is isomorphic to Ω and since in this case the region A is invariant it follows
from [13] that this prior must be a UPMP. Similarly, all right Haar priors arising
from transformations of the form T−1MX, with M a fixed non-singular matrix,
are included in (4.3).

We now return to the general analysis of equation (2.6). In Theorem 4.1 below,
when we say that the functions ξt(θ, α) are linearly independent we shall mean that
they are linearly independent as functions of α for fixed θ.

Theorem 4.1. Suppose that the functions ξt(θ, α) are linearly independent and
that there exists a UPMP, π, for highest predictive density region matching. Then
π is the unique UPMP and the partial derivatives of λ = log π are given by

(4.4) ∂jλ = −brigij

∫ 1

0

∂ξr

∂α
∂s

(
gst ∂ξt

∂α

)
dα,

where (bri(θ)) is the inverse of the non-singular matrix function (bij(θ)) with (i, j)th
element

(4.5) bij(θ) =
∫ 1

0

(
∂ξi(θ, α)

∂α

)(
∂ξj(θ, α)

∂α

)
dα.

Proof. We begin by showing that the matrix (bij(θ)) is non-singular for all θ ∈ Ω
if and only if the functions ξt(θ, α) are linearly independent. From the definition
(4.5), we see that in general (bij(θ)) is positive semidefinite and is therefore singular
for all θ ∈ Ω if and only if, for each θ, there exist functions xt(θ), not all zero, for
which bij(θ)xi(θ)xj(θ) = 0. This is equivalent to the condition

∫ 1

0

(
∂xt(θ)ξt(θ, α)

∂α

)2

dα = 0,

which in turn holds if and only if ∂(xt(θ)ξt(θ, α))/∂α = 0 for all θ and α. Since
ξt(θ, 1) = 0 it follows that a necessary and sufficient condition for the singularity
of (bij(θ)) is the existence of xt(θ), not all zero, such that xt(θ)ξt(θ, α) = 0 for all
θ and α. That is, the functions ξt(θ, α) are linearly dependent.

We now apply the product rule to (2.6) to give equation (3.1) with μt replaced
by ξt. Exactly as in the proof of Theorem 3.2, we differentiate this equation with
respect to α, multiply by ∂ξr/∂α and integrate over 0 < α < 1 to give

gstbtr∂sλ +
∫ 1

0

∂ξr

∂α
∂s

(
gst ∂ξt

∂α

)
dα = 0.

Finally, under the condition of the theorem the matrix (bij(θ)) is non-singular
and equation (4.4) follows on multiplying both sides of the above expression by
brigij .
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In the case p = 1 we know that a UPMP exists if and only if ξ1(θ, α) = Q(θ)R(α),
in which case

b11(θ) = {Q(θ)}2

∫ 1

0

{R(α)}2dα.

Equation (4.4) then becomes dλ/dθ = d log(g−1θ)/dθ, giving π(θ) ∝ {Q(θ)}−1g(θ)
in agreement with the earlier discussion. In the multiparameter case, unlike The-
orem 3.2, there does not appear to be any simple further development of (4.4).
Returning to the univariate location-scale model f(x; θ) = θ−1

2 f∗(θ−1
2 (x − θ1)), it

can be verified that the functions ξt(θ, α) are linearly independent and, as in Sec-
tion 3, that the right Haar prior π(θ) ∝ θ−1

2 under the location-scale transformation
group is the solution to (4.4). When p > 1 the condition that the right-hand side of
(4.4) be a derivative field is very strong when the model is not transformational and
we have been unable to find a two-dimensional example that is not a transformation
model satisfying this condition. Again, as in Section 3, even for such an example the
resulting prior may still not satisfy (2.6) for all α. Thus it would seem that unique
UPMPs rarely exist outside of transformation models. As with Theorem 3.2, the
major point of Theorem 4.1 is to show that, under the conditions of the Theorem,
if a UPMP does exist then it is unique.

Note that when p > 1 Theorem 4.1 does not apply to the case (4.1) since the
functions ξt(θ, α) are linearly dependent and hence the matrix (bij(θ)) is singular.
A more general sufficient condition for linear dependence of the ξt(θ, α) is

(4.6) ξt(θ, α) = Ut(θ)S(θ, α).

Note that this is also a necessary condition for linear dependence in the case p = 2.
Suppose that (4.6) holds and that there exists a UPMP π. Then from equation

(2.6) we see that

gstUt∂sλ + gstUt∂s log S + ∂s(gstUt) = 0

for all α, which implies that the function gst(θ)Ut(θ)∂s log S(θ, α) must be free
from α. Since no boundary conditions are imposed on the solutions to the resulting
Lagrangian PDE, it follows that π must be one of an infinite number of solutions.
Thus, under condition (4.6), either there is no UPMP or there is an infinite number
of UPMPs. Note that (4.1) is a special case of (4.6).

It might appear at first sight that it is also possible to have an infinite number
of UPMPs in the case of quantile matching, which would contradict the result of
Theorem 1. However, using a parallel argument to that given above, we see that the
structure (4.6) for μt(θ, α) cannot occur, as this would imply singularity of Fisher’s
information matrix.

Finally, the case

(4.7) ξt(θ, α) = Qt(θ)Rt(α),

which is a generalisation of the simple case (4.1), is of some interest. It is easily
seen that in this case the linear independence of the functions ξt(θ, α) is equivalent
to the linear independence of the functions Rt(α). Furthermore, the matrix (bij(θ))
will be non-singular for all θ if and only if the matrix with (i, j)th element

aij =
∫ 1

0

(
∂Ri

∂α

)(
∂Rj

∂α

)
dα

is positive definite. This turns out to be the case for the location-scale models
discussed earlier.
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Example 2. Consider the multivariate location model with density f(x; θ) =
f∗(x1−θ1, . . . , xp −θp). The region A here is invariant under the group of transfor-
mations x+ a, a ∈ Rp and it follows from [13] that the right Haar prior is an exact
UPMP. Here the right Haar prior is also Jeffreys’ prior, both being constant. We
now investigate conditions under which this is the unique UPMP. As in [4], we find
that m(θ, α) = m(α), free from θ, and ξt(θ, α) = Rt(α), which is of the form (4.7)
with Qt(θ) = 1 for all t. It follows from the above discussion that Jeffreys’ prior is
the unique UPMP if and only if the functions Rt(α) are linearly independent. In
that case, since both gst and ξt are free from θ, the right-hand side of (4.4) is zero
and, again, the unique UPMP is the uniform prior.

For many standard models, however, the functions Rt(α) will be linearly de-
pendent. Suppose, for example, that f∗ is elliptically symmetric, so that f∗(z) =
H(z′Cz) for some positive definite matrix C. Then it can be checked that Rt(α) =
QtR(α), which is of the form (4.1) with Qt free from θ. The functions Rt(α) are
clearly linearly dependent and hence, since we know that there exists at least
one UPMP, there will be an infinite number of UPMPs. For example, in the
case where f∗ is spherically symmetric, we have Qt = Q and the Lagrange PDE
(4.2) becomes

∑
s ∂sλ = 0. The solutions of this equation are of the form π(θ) ∝

exp{h(θ2−θ1, . . . θp−θ1)}, where h is an arbitrary function. In particular, all priors
of the form π(θ) ∝ exp(

∑
i aiθi) with

∑
i ai = 0 will be uniformly matching in this

case.
A similar analysis may be carried out for the multiparameter location-scale model

with different location parameters, as described in [4]. Whether or not the scale pa-
rameters are assumed to be equal, there is an appropriate group of transformations
for which the corresponding right Haar prior will be a UPMP. In either case ξt(θ, α)
is again of the form (4.7) so that whether or not the right Haar prior is the unique
UPMP will depend on the linear independence or otherwise of the functions Rt(α).

When the model has no suitable group structure, we conjecture that the functions
ξr(θ, α) will always be linearly independent. To see the plausibility of this, note that
the ξr(θ, α) are linearly dependent if and only if there exist functions xt(θ), not all
zero, such that

∫
A
{xt(θ)lt(x; θ)}f(x; θ)dx = 0 for all θ and α. Since the density

f(x; θ) cannot be standardised by transformation, the only way that this would
seem to be possible is if xt(θ)lt(x; θ) = 0 for all theta. However, it is easily seen
by partial differentiation w.r.t θs that this condition leads to g being singular. This
analysis therefore suggests that if the model is not transformational then there will
either be no UPMP or a unique UPMP, which is then given by (4.4).

5. Discussion

Although it is known that exact matching of invariant prediction regions is achieved
by the right Haar prior under a suitable group structure on the model, we have
seen in Section 3 that there can be other priors that achieve approximate uniform
predictive quantile matching, and that uniformly matching priors can exist when
there is no suitable group structure, although these are rare. In common with other
work on probability matching priors, predictive matching priors arise as solutions
to a particular PDE, which in general can be very difficult to solve. However, in the
case of uniform quantile matching, if a UPMP exists then it is unique and explicit
formulae for its partial derivatives are available from Theorem 3.2.

Except in special cases, derivation of the UPMP for quantile matching via equa-
tion (3.3), or even verifying that the derivatives in (3.3) are consistent, will be
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intractable. An attractive alternative would be to use a data-dependent approxi-
mation of the UPMP based on a local prior of the form

∂rλ(θ, θ0) = ∂rλ
J(θ) + hr(θ0).

See [14] for a derivation of data-dependent matching priors for marginal posterior
distributions. Furthermore, since a data-dependent prior of this form will always
exist, there may be cases for which it will be uniformly matching even when there
is no α-free solution of (2.5). Although the posterior distribution arising from such
a prior would not always have a strict Bayesian interpretation, use of the corre-
sponding predictive distribution could provide a useful mechanism for constructing
frequentist prediction regions with good coverage properties. It would be of inter-
est to conduct simulation experiments in order to assess the predictive coverage
afforded by such priors.

The case of highest predictive density regions is more complex. As discussed
in Section 4, there will either be a unique solution or else there will be infinitely
many solutions, depending on the linear independence or otherwise of the functions
ξr(θ, α). Thus in any particular example it is necessary to examine carefully the
structure of the functions ξr(θ, α). If the statistical model has a suitable group
structure then this task is usually eased. One could also investigate local priors
when the matrix (bij(θ)) is invertible.

In the case of univariate observations, the results provide some guidance on the
choice of objective prior if the main goal is to carry out Bayesian prediction and
low predictive coverage probability bias is desired. In relation to the determination
of an objective prior, for multivariate data the situation is less clear. When the
functions ξr(θ, α) are linearly dependent, as often occurs in transformation models,
there will usually be an infinite number of UPMPs. Thus other considerations will
need to be invoked in order to narrow down the choice of prior. For example, one
might consider priors that are simultaneously predictive and posterior probability
matching, reference priors ([2]) or priors that are minimax under suitable decision
rules; in particular, for minimax prediction loss see, for example, [12] and [15].

Appendix: Proof of Theorem 3.1

Proof. Let a ∈ Ω and consider the transformation φ = aθ. Let J(θ, a) = ∂φ/∂a be
the Jacobian matrix of this transformation for fixed θ. Then the right Haar prior is
πH(θ) ∝ |J(θ, e)|−1, where |J(θ, a)| is the determinant of J(θ, a); see, for example,
[1].

Write φ̃r
s(θ, a) = ∂φr(θ, a)/∂as and define φ̃r

s(θ) = φ̃r
s(θ, e), where e is the identity

element of the group, so that πH(θ) ∝ |(φ̃r
s(θ))|−1. Finally, let (as

r(θ)) be the matrix
inverse of (φ̃r

s(θ)). A standard result for the derivative of a matrix determinant then
gives

(5.1) ∂sλ
H(θ) = −au

r (θ)∂sφ̃
r
u(θ),

where λH(θ) = log πH(θ).
Define φr

s(θ, a) = ∂sφr = ∂φr/∂θs, with matrix inverse θs
r(θ, a) = ∂θs/∂φr.

Since the definition of the right Haar prior depends on a specific group of transfor-
mations on the parameter space, it is natural to regard Fisher’s information as a
Riemannian metric tensor associated with the differentiable manifold of probability
densities f(·; θ), θ ∈ Ω. This facilitates the study of the transformational properties
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of the quanitities gst(θ) and μt(θ, α) appearing in the PDE (3.1). First, from the
invariance of the problem under G and the contravariant tensorial property of gst,
we have ḡij(φ) = gst(θ)φi

sφ
j
t , where ḡij is the inverse Fisher information in the φ-

parameterisation. Again using the invariance properties, it is seen that μ̄j(φ, α) =
μk(θ, α)θk

j , where μ̄j(φ, α) is the function (2.3) in the φ-parameterisation. Now write
us(θ, α) = gst(θ)μt(θ, α) and ūs(φ, α) = ḡst(φ)μ̄t(φ, α). Then

ūi(φ, α) = gst(θ)μk(θ, α)φi
sφ

j
tθ

k
j

= gst(θ)μk(θ, α)φi
sδ

k
t = us(θ, α)φi

s,(5.2)

where δk
t is the Kronecker delta function.

Now differentiate both sides of (5.2) with respect to ar to give

(5.3) ∂sū
i(φ, α)φ̃r

s(θ, a) = us(θ, α)∂φi
s(θ, a)/∂ar = us(θ, a)∂sφ

i
r(θ, a).

Finally, setting a = e and multiplying both sides of (5.3) by ar
i (θ) gives

(5.4) ∂su
i(θ, α)ar

i (θ)φ̃
s
r(θ) = us(θ, α)ar

i (θ)∂sφ̃
i
r(θ).

Since (as
r(θ)) is the matrix inverse of (φ̃r

s(θ)), the left-hand side of (5.4) is
∂su

i(θ, α)δs
i = ∂su

s(θ, α), whereas the right-hand side is −us(θ, α)∂sλ
H(θ) from

(5.1). It follows that the right Haar prior πH is a solution of equation (3.1) and
hence of equation (2.5).
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