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Probability theory and its models

Paul Humphreys1

University of Virginia

Abstract: This paper argues for the status of formal probability theory as
a mathematical, rather than a scientific, theory. David Freedman and Philip
Stark’s concept of model based probabilities is examined and is used as a bridge
between the formal theory and applications.

1. Introduction

David Freedman’s work has an unusual breadth, ranging from monographs in math-
ematical probability through results in theoretical statistics to matters squarely in
applied statistics. Over the years, we have had many philosophically flavored dis-
cussions about each of these areas and the content of some of these discussions can
be distilled into three questions. First, is probability theory a mathematical theory
or does it, in virtue of its wide applicability in various areas of science, count as
scientific? Secondly, how do we get from the abstract theory of probability to the
world? Thirdly, what, if any, are the correct interpretations of probability? Ma-
terial to answer the second of these questions can be found in Freedman’s many
publications on statistical models, such as Freedman [7, 8]. Some answers to the
third question are directly addressed in Freedman [6]. The answer to the first ques-
tion may seem obvious to those who work in mathematical probability and it is to
Freedman – probability theory is a part of pure mathematics. Ultimately, I think
that this is the correct answer but I do not think that it is quite as obvious as it
might appear. In what follows I shall try to provide a unified approach to all three
questions.2

2. The status of probability theory

My first question is a little blunt but the founder of modern probability theory
addressed it succinctly. For Kolmogorov, probability theory was to be a part of
mathematics: “The author set himself the task of putting in their natural place,
among the general notions of modern mathematics, the basic concepts of probability
theory. . . ” (Kolmogorov [15], p. v).3 It is sometimes suggested that in construct-
ing the measure theoretic account of probability, Kolmogorov solved one half of
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Hilbert’s sixth problem, but this is incorrect, for in the process of solving part of
the problem, Kolmogorov transformed it. Hilbert’s own formulation of the sixth
problem makes this quite clear: “The investigations on the foundations of geome-
try suggest the problem: To treat in the same manner, by means of axioms, those
physical sciences in which mathematics plays an important part; in the first rank
are the theory of probabilities and mechanics. As to the axioms of the theory of
probabilities, it seems to me desirable that their logical investigation should be ac-
companied by a rigorous and satisfactory development of the method of mean values
in mathematical physics, and in particular in the kinetic theory of gases.” Hilbert
[10], (emphasis added). This clearly indicates that for Hilbert at least, probability
was viewed as a part of science, not of mathematics.4

As judges of what counted as mathematics the credentials of Hilbert and Kol-
mogorov are impeccable, and so probability theory must at some point have made
the transition from science to mathematics. The task is to clearly show how em-
pirical content is associated with probability theory while allowing it to retain its
status as a part of pure mathematics. One way to reject the view that probability
theory itself has empirical content is to view the measure-theoretic formulation of
probability theory as a purely formal theory, as a symbolic system that has no
interpretation but that imposes formal constraints on the properties of measures,
random variables, and other items in the domain of the theory. If one does take this
line of response, it makes answers to our second and third questions – How do we
get from the formal theory to applications? And what is the correct interpretation
of probability theory? – more pressing because one has to inject empirical content
that is clearly probabilistic into the formal theory in order to apply it. The relation
of probability theory to its applications will be somewhat different from the relation
of even quite abstract scientific theories to the world, since the axioms of the latter
theories already contain empirical content.5

3. Formal probability theory

To resolve this problem, and to begin to formulate answers to our three ques-
tions, we can turn to a suggestion made in Freedman and Stark [9]. There they
claim: “Probability has two aspects. There is a formal mathematical theory, ax-
iomatized by Kolmogorov [15]. And there is an informal theory that connects the
mathematics to the world, i.e., defines what ‘probability’ means when applied to
real events.” (p.201). This is a promising place to start, although “theory” is a
little grand for the second component – something along the lines of “mapping”
would be more accurate – and I would demur at the project being about mean-
ing. The project is better construed as one addressing how probability values are
correctly assigned within a model. The formal mathematical theory to which they
refer is, of course, the theory developed in Kolmogorov’s seminal Grundbegriffe der
Wahrscheinlichtkeitsrechnung (Kolmogorov [15]) and later developments thereof.6

This theory is centred on the following familiar apparatus:
4For a detailed examination of the relations between Kolmogorov’s work and Hilbert’s sixth

problem see Hochkirchen [11]. I thank Michael Stoeltzner for the reference and discussions on the
topic.

5I shall not here address a famous argument due to Quine [19], the conclusion of which is that
no sharp distinction can be drawn between mathematical and scientific theories. A response to
that argument involves philosophical issues that will be addressed in a future publication.

6There are other, less widely known, examples of this type such as the theories of Alfred Renyi
[21], p. 38 and Karl Popper [18], Appendices *iv and *v, both of which take conditional probability
rather than absolute probability as a primitive.
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Given a set Ω, a σ-algebra F on Ω and a real valued set function P on F , the
triple < Ω, F, P > constitutes a probability space if for any Ai ∈ F ,

(i) P (Ai) ≥ 0.
(ii) If Ai

⋂
Aj = ∅ for i �= j, then P (

⋃∞
i=1Ai) =

∑∞
i=1P (Ai).

(iii) P (Ω) = 1.

I say the standard theory is “centred” on this apparatus, because even though
many discussions of how to interpret probabilities refer only to these axioms, it
would be perversely narrow to identify probability theory with this minimal ba-
sis. Kolmogorov, for example, recognized the importance of the role played in his
theory by the definitions of stochastic independence and conditional expectations.
In addition, from the very beginning of the modern era the theory of stochastic
processes has formed an essential part of the theory of probability and supplements
such as ergodicity, martingales, exchangeable measures and the like must surely
also be included.

As in any formal theory, the intrinsic nature of the elements of the domain of
the probability space Ω, and hence of F , is irrelevant, a fact that is captured by
the use of induced probability spaces. The space is induced by mapping a given
probability space < Ω, F, P > within which the elements of Ω are actual outcomes
(rather than formal representations of them) onto the abstract space < R

1, B1, μ >
using a random variable7 X, where B1 is the Euclidean Borel field on R

1 generated
by the collection of intervals (a, b],−∞ < a < b < +∞, and μ is given by:

∀B ∈ B1, μ(B) = P{X−1(B)} = P{ω | X(ω) ∈ B}.

The space < R
1, B1, μ > induced by the random variable X is in various gener-

alized versions the canonical object of attention for a good deal of mathematical
probability theory. The mathematical advantages provided by the induced proba-
bility space lead to the view that random variables simply “re-label” the outcomes
of observations and experiments and that all of the essential probabilistic features
can be found in the induced space. As a result, in standard presentations of prob-
ability theory a sharp separation is not maintained between the representations of
the outcomes and the outcomes themselves, a situation which supports the formal-
ist view and the position that if two generating systems (“trials”) have the same
probability space, then they are probabilistically identical.8 This is one reason why,
considered at this level of abstraction, probability theory can be considered to be a
part of pure mathematics – the objects with which it is concerned are mathematical
objects that can be taken sui generis.

4. Probability models

Returning to Freedman and Stark’s article, its immediate purpose was critical.
The authors argued that predictions of earthquakes should be viewed with extreme
scepticism because the models upon which the probability values were based are
imprecise, poorly motivated, and based upon slim empirical evidence. I have no
disagreement with that conclusion. There is also a positive message in the article
that is muted yet deserves attention. It is this: rather than locating probabilities
in the abstract theory or locating probabilities as features of the world, a more

7Or in the more general case, sets of random variables.
8See, e.g. Itô [13], p.2.
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realistic approach is to emphasize the role of probabilistic models, and to locate the
probabilistic content in those models. One significant advantage of this approach
is that it makes much clearer the way in which subject matter specific scientific
content plays a role in attributions of probability values.

This need to supplement the pure theory with specific models was recognized by
Kolmogorov when he wrote in regard to his own theory: “Our system of axioms is
not, however, complete, for in various problems in the theory of probability different
fields of probability have to be examined” Kolmogorov [15], p. 3.9 What is needed
can be seen by noting that probability theory has at least two roles. There is its
representational role – specifying what are the general properties possessed by prob-
abilities – and its use as a calculus, allowing the computation of specific probability
values. Until some particular measure or distribution is introduced, abstract prob-
ability theory has few non-trivial uses as a calculus. In order to keep separate these
uses, we can consider the formal theory of probability as a mathematical template
(see Humphreys [12]) within which specific models and their particular distribu-
tions can be substituted. We can usefully draw parallels between the situation in
probability theory and that in classical mechanics. In the force-based version of the
latter theory, certain fundamental principles are laid down that require the speci-
fication of a force function in order for the theory to be applied. Newton’s Second
Law F = ma places only minimal constraints on forces and has only formal content
until a particular force function has been substituted for the place-holder F . It is
these fundamental principles that are the templates – they are general mathematical
forms within which substitution instances can be made for purposes of empirical
application. The need for this kind of substitution within highly abstract theories
is common – the specification of the form of Lagrangians or Hamiltonians in other
versions of classical mechanics, and the specification of basis sets and Hamiltonians
in quantum mechanics are but three widely used examples of this need.

In applying the theory to particular systems, some special features of the dis-
tributions will ordinarily be used because at the level of the Kolmogorov axioms,
probabilities have no internal structure beyond the minimum imposed by the ax-
ioms. From the perspective of abstract probability theory this is understandable,
for many of the core results in the area are dependent upon the choice of measure
or of the probability space only in very general ways, such as requiring the mea-
sure to be separable. In contrast, the specification and articulation of particular
distributions is of considerable importance for applying probabilities, because the
structure of the distribution is often motivated by considerations, however elemen-
tary, about the subject matter to which it applied. In what follows, I shall reserve
the term “particular distribution” to denote a probability distribution having a
density or mass function identifiable by a specific functional form, such as that
of the hypergeometric distribution. The plain term “distribution” denotes a more
abstract sense in which (in the one dimensional case) a distribution is simply a
probability measure over the Borel algebra on the reals. If the mathematical form
of the substitution instance is computationally tractable the template becomes a
computational template and the template can then be used as a calculus. In the
example of classical mechanics, the templates form a familiar part of the apparatus
of ordinary and partial differential equations, only some of which lend themselves
to a closed form solution, given appropriate initial or boundary conditions.

9By a “field of probability”, Kolmogorov meant anything that satisfies the axioms.
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5. Model and concrete generating systems

Here, again, is Kolmogorov: “We apply the theory of probability to the actual
world of experiments in the following manner: (1) There is assumed a complex of
conditions, C, which allows of any number of repetitions. (2) We study a definite set
of events which could take place as a result of the establishment of the conditions C.”
Kolmogorov [15], p.3. Combining this with the Freedman and Stark approach, we
shall need two types of structure in addition to those making up the formal theory
in order to capture the relation between probability theory and the world.

First, we have the pair < MS, MP > consisting of the model generating system
MS and its associated model probability distribution MP . MS serves as the source
of the elements in Ω, the outcome set of the probability space. The structure of
MS, which can be quite abstract, constrains and sometimes even determines the
structure of MP in a way illustrated by the Poisson model described below. MP is
the substitution in the probability template that converts the distribution P occur-
ring in the probability space into a particular distribution. Both MS and MP are
mathematical objects: “. . . probability is just a property of a mathematical model
intended to describe some features of the natural world. . . This interpretation – that
probability is a property of a mathematical model and has meaning for the world
only by analogy – seems the most appropriate for earthquake prediction. To apply
the interpretation, one. . . interprets a number calculated from the model to be the
probability of an earthquake in some time interval.” Freedman and Stark [9], p.5
(emphasis added).

Second, we have the pair < CS, CP > consisting of a concrete generating system
CS and the corresponding concrete probability distribution CP . Examples of con-
crete generating systems are a die thrown under specified conditions, a radioactive
atom, and a stock traded on a market. These are real dice, real atoms, and real
stock markets, not representations of them. Concrete systems give rise to concrete
outcomes but it is very easy to conflate these concrete outcomes with our repre-
sentations of them. So, to be quite clear: by the outcome of a process such as a
die toss, I mean the outcome of a particular side coming up, not a representational
description such as “6”.

It is useful to think in terms of the hierarchy

< Ω, F, P >⇒< MS, MP >⇒< CS, CP >

and the intermediate link is the focus of model based probabilities.10 Everything in
this hierarchy except the members of the rightmost element is a formal mathemat-
ical object. In virtue of specifying the particular distribution MP and the relation
between MS and Ω, one moves from the template at the left to the middle element.
The relation between the middle element and the concrete system is discussed with
respect to interpretations in Section 8 below.

6. Some examples

To see how the hierarchy works, consider the very simple example of a system
which has the structure of a Poisson process. This example lies between the simple
transparent models of coin tossing and dice throwing and the complex opaque

10In many cases there will also be an abstract, non-mathematical, model of CS between MS
and CS but for simplicity we can assume that object is used heuristically and is not part of the
deductive apparatus.
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models criticized by Freedman and Stark and so can perhaps better illuminate how
model based probability distributions are generated.

Here is one set of assumptions behind the attribution of a Poisson process to a
system:

(a) During a small interval t, the chance of one event occurring in that interval
is approximately proportional to the length of that interval: P (Nt = 1) = λt + f(t)
where f(t) ∈ o(t), i.e.

lim
t→0

P{Nt = 1} − λt

t
= 0.

(b) The chance of two or more events occurring in a small interval is small and
goes to zero rapidly as the length of the interval goes to zero: P (Nt ≥ 2) ∼ o(t).

(c) The chance of n events occurring in a given interval is independent of the
chance of m events occurring in any disjoint interval, for any n, m ≥ 0.

(d) The chance of n events occurring in an interval of length t depends only
upon the length of the interval and not upon its location.

These facts about the process can be given precise mathematical representations
in familiar ways and from those representations one can derive the exact form
of the probability distribution covering the output from the process. Within the
broad spectrum of applications of the Poisson process, there is a division between
those which are justified solely in terms of a reasonable fit between the observed
distribution of frequencies and the model distribution, which we can call frequency
driven models, and those for which some moderately plausible scientific model lies
behind the adoption of the probability model, which we can call theory-driven
models. An example of the former is the analysis of flying bomb hits on London
during World War II (Clarke [3]), for which the empirical fit to a Poisson distribution
is reasonably good. Yet there is no plausible aerodynamical or military model that
would explain why the trajectories of V-1 rockets should satisfy this particular
distribution.

In other cases, some attempt is made at providing a theory driven model and
one of the appealing features of the Poisson process is that such models can be
easily generalized. The successive development of a simple model for fluctuations
in electron-photon cascades in absorbers provides an illustration of this. Electron-
photon cascades occur when high energy electrons colliding with atoms in an ab-
sorber produce photons that lead to production of further electrons, producing a
cascade effect. The initial model by Bhabha and Heitler published in 1937 identi-
fied MS with a basic Poisson process within which t represents the thickness of the
absorber and n represents the number of electrons above an energy level E, so that

Pn(E, t) = e−λt (λt)n

n!
; λ = λ(E).

However, the predicted mean value for n of λt from this particular model is phys-
ically implausible because thicker materials tend to absorb energy from electrons
and so it was first modified to a linear birth process and then to a Pólya process.
The fact that none of these distributions is completely realistic reflects the severe
simplifications resulting from treating the energy levels as discrete and model gen-
erating systems of greater sophistication were subsequently developed.11

A different example of how a model generating system can be connected with a
model probability distribution can be extracted from a result found in Keller [14].

11See Bharucha-Reid [2].
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Keller considered an idealized coin of negligible thickness having its centre of gravity
at its geometrical centre (thus making it bias-free). Given the initial conditions of
u = upward velocity of the centre of gravity and ω = angular momentum of a
diameter of the coin, Keller showed that when u → ∞ and ω → ∞ the chance of
heads → 0.5, irrespective of what continuous probability density p(u, ω) describes
the initial conditions. MS here consists of the mathematical representation of the
idealized coin, the distribution on the initial conditions, the trajectory of the coin,
and an absorbing surface. In this case, it would be appropriate to assign to a real
coin a chance of coming up heads of approximately 0.5 when large values of u and ω
are present. Note again by what thin threads the middle level mathematical model is
tied to the real system, a small amount of idealized physics sufficing to ground the
model. Indeed, Diaconis, Holmes, and Montgomery [5] question the applicability
of the analysis to real coins, partly on the basis of experimental data, partly by
examining the validity of the associated physical model.

7. Empirical content

We now have the apparatus to answer our original question: Is probability theory a
mathematical theory or a scientific theory? In the three layers of our representation

< Ω, F, P >⇒< MS, MP >⇒< CS, CP >

the abstract probability space and the accompanying Kolmogorov theory are parts
of pure mathematics that have no factual content. The development of Kolmo-
gorov’s theory may once have been partially motivated by empirical concerns, and
indeed within elementary probability, relative frequencies were a guide for Kol-
mogorov,12 but there is no frequency interpretation for the full non-elementary
theory that is adequate.13 In addition, the full theory makes an essential appeal to
infinite collections and so has no direct empirical content. Once again, Kolmogorov:
“Since the new axiom [Axiom VI, the continuity axiom, from which countable addi-
tivity follows] is essential for infinite fields of probability only, it is almost impossible
to elucidate its empirical meaning. . . Infinite fields of probability occur only as ide-
alized models of real random processes. We limit ourselves, arbitrarily, to only those
models which satisfy Axiom VI.” (Kolmogorov [15], p. 15, italics in original).

Our intermediate element, the model generating system, is also a mathematical
object. Consider Freedman and Stark’s example (op. cit, p. 205) of a Maxwell–
Boltzmann distribution being replaced by a Bose–Einstein distribution for Bose–
Einstein condensates. Initially we have a Maxwell–Boltzmann model as the middle
element, the properties of which are constrained by the Kolmogorov theory.14 Now
suppose that computer-generated data from a Bose–Einstein distribution are com-
pared with the Maxwell–Boltzmann model. They will fail to fit that model and as
a result the Maxwell–Boltzmann model will be replaced by a Bose–Einstein model.
Note that everything in this scenario is a mathematical object.15 In such a case,
where the form of the distribution is changed, rather than estimates of particular

12“In establishing the premises necessary for the applicability of the theory of probability to
the world of actual events, the author has used, in large measure, the work of R. von Mises [23],
pp. 21–27.” Kolmogorov [15], p. 3 (footnote 5.)

13See van Fraassen [22], pp. 184–187.
14These constraints are usually tacit and the model generating system is often considered to

be an autonomous object of investigation.
15There is a small factual element if the data are generated on a real machine. We can either

ignore that, or think in terms of a virtual machine generating the data.
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probabilistic parameters, it is incorrect to say that the Maxwell–Boltzmann model
is revised. One constructs or selects a probability distribution for substitution in the
template and that distribution either correctly represents the data or it does not.
If it does not, the process involves replacement of the model, not its revision. Now
consider the situation in which data from a real Bose–Einstein system (e.g. Ander-
son et al. [1]) are used. Once again, if the predictions from the Maxwell–Boltzmann
model do not fit the factual statistics, then one replaces the model with a better
particular distribution. That particular distribution has a fixed mathematical form
and any changes in its form take us to a different distribution.

Here is what we now have: There is the general mathematical template of the
Kolmogorov theory and its abstract probability spaces. There is a collection of
mathematical models – model generating systems. If you have Platonist inclinations,
this collection is very large, it is completely abstract, and it contains models not
yet known to us. If your inclinations are more constructivist, the collection will
include only models known to us and built by us. All mappings between the abstract
probability space and the collection of mathematical models will be mathematical.
Finally, there will be a collection of real, concrete generating systems located in the
world. There will be mappings between the collection of model generating systems
and the collection of concrete generating systems but only a select few will be
identified by users and asserted to form the basis of a modeling relation between
the mathematical model and the real system. It is these mappings that contain the
empirical content, not the mathematical models or the general theory. They are
empirical in the sense that empirical facts about the concrete generating system
play a role in whether the mapping is structure preserving. The grounds on which
these mappings are assessed is by no means simple – the problem of relating physical
independence in concrete systems to stochastic independence in the model is by
itself a notoriously difficult task – but the point here is that what is false is the
assertion that a particular MS and MP have been correctly mapped onto a specific
CS and CP . The MS and MP involved can then be replaced, but they have no
empirical content themselves.

8. Interpretations

Finally, what about our third question concerning the interpretation of probability?
In the previous section I mentioned the structural features of probability models.
What of the specific probability values that are the main concern of the Freedman
and Stark paper? Even from the largely formalist perspective adopted here, we
cannot ignore the long tradition of trying to provide a substantive interpretation
for probability theory for it underlies the differences, sometimes contentious, be-
tween subjective Bayesians, objective Bayesians, frequentists, and other schools of
thought in probability and statistics. Probability theory is also tied to statistics and
whether one chooses to explore the properties of loss functions or to favour classical
Neyman-Pearson hypothesis testing, the interpretative issue has to be addressed.
And what is perhaps most important, the present approach involves mapping a
model probability distribution onto something concrete. What could that some-
thing be?

Two different approaches have been used to provide an interpretation for proba-
bility theory. The first approach uses an explicit definition of the term “probability”
or “has a probability of value p”. This approach was used by Hans Reichenbach
[20], Richard von Mises [24], and Bruno de Finetti [4]. For example, in von Mises’
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account, as modified by Alonzo Church, we have: Event A has a probability of value
p relative to the collective R if and only if A is an event of type A, A occurs in R,
and events of type A occur in R with limiting relative frequency p. A collective is
an infinite sequence of events within which all event types have limiting relative fre-
quencies that are invariant under selection of subsequences by recursively definable
functions on initial segments of the sequence.

Such explicit definitions have the virtue of reducing the concept of probability to
other, presumably less opaque, concepts which in the case of the von Mises/Church
approach are those of arithmetic limits and recursive functions and it ties the theory
based on the definitions very tightly to the intended interpretation. The disadvan-
tage is that such explicit definitions lead to accounts of probability that are different
from the account provided by the standard Kolmogorov axiomatization and the the-
ories of which are less general than the measure-theoretic account. For example, de
Finetti’s theory of personal probabilities, based on the concept of an agent’s rational
degrees of belief, rejects the countable additivity property of standard probabilities
on the grounds that it is operationally meaningless. De Finetti claimed, quite plau-
sibly, that human agents cannot distribute their degrees of belief over infinite sets of
outcomes. Von Mises’ frequentist theory rejected theorems of standard probability
theory about events that occur infinitely often, such as the Borel-Cantelli Lemmas,
on the grounds that such theorems were empirically unverifiable.

In contrast, the second approach to interpreting probability uses implicit defini-
tions. Recognizing that chains of definitions must be grounded in primitive terms,
this approach takes “probability” as a primitive and relies on a formal theory to
place constraints on the probabilities. This second approach has two aspects worth
noting. The first is that it captures the idea that all of the specifically probabilistic
content is contained in the formal probability spaces. The second aspect is that this
approach has the consequence that any probability spaces that are isomorphic are
treated as indistinguishable. This is the position underlying the use of the induced
probability measures discussed earlier in Section 3. It is for this reason that the
abstract theory has only formal content – any attempt to impose a more specific
interpretation will be arbitrary.

The term “probability” under this second approach thus refers to an element in
a formal theory. At the intermediate level there are particular formal distributions
and concrete generating systems can produce statistical estimates of values associ-
ated with those distributions. These estimates have an inescapably finite basis and
can be generated using finite frequencies, rational degrees of belief, in some cases
symmetry arguments, or other means. But these estimates are not interpretations
of probability, they are measurements of a parameter’s value. The publication of
Kolmogorov’s Grundbegriffe marked a sharp division between the formal theory of
probability and those approaches, such as von Mises’ and de Finetti’s, that used
idealizations of methods for estimating the values of elements in models, calling
these idealizations “probabilities”. The two sides of the division can be brought
into only indirect contact.

As an analogy, consider determinism. There are formal theories of determinism
that capture this intuition: a system is (historically) deterministic if, under the
constraints imposed on that system by the laws that govern it, any complete state
of the system is mapped onto a unique later state of the system.16 There are model
systems that are deterministic according to these theories of determinism.17 And

16See Montague [17].
17But considerably fewer than the famous claim in Laplace [16] suggested.
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there are concrete systems that, within measurement error, behave similarly to the
model systems. So to ask “Are there systems that are deterministic?” is a sensible
question with an affirmative answer. But the question “What is determinism?” when
asked within this theory is misplaced. All we have is the formal abstract theory
together with some specific deterministic systems. And so too with probability.
There is the abstract formal theory and there are the various particular probabilistic
models. The question “What is probability?” is properly approached through the
latter, not the former.

How does factual probabilistic content find its way into the models? There will
occur within the model generating system some parameter or distribution repre-
senting probabilities, the fact that they are probabilities being grounded in their
satisfying the constraints placed on them by the mathematical theory. With fre-
quency driven models, the probabilities will be interpreted as frequencies; with
theory driven models, theoretically grounded input will help constrain probability
values and distributional forms; perhaps even Bayesian methods can be brought to
bear on other types of models. This, I believe, is where the Freedman and Stark
model-based probability view constitutes both a distinctive position and a practical
but cautionary note. It is distinctive because it directs the interpretative enterprise
away from the theory of probability and towards specific probability models. It is
practical because it forces one to consider what subject matter specific knowledge
is required and is available to inject values into those models. And it is cautionary
because it draws our attention to the fact that in many, perhaps most, models the
amount of information available is far less than we need to make serious numerical
assignments of probability.

Acknowledgment. Thanks to David Freedman for his many comments on drafts
of this paper. He continues to disagree with some of the claims made here.
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