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with nuisance parameters
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Abstract: This paper develops a test for homogeneity in finite mixture mod-
els where the mixing proportions are known a priori (taken to be 0.5) and
a common nuisance parameter is present. Statistical tests based on the no-
tion of Projected Likelihood Contrasts (PLC) are considered. The PLC is a
slight modification of the usual likelihood ratio statistic or the Wilk’s Λ and is
similar in spirit to the Rao’s score test. Theoretical investigations have been
carried out to understand the large sample statistical properties of these tests.
Simulation studies have been carried out to understand the behavior of the
null distribution of the PLC statistic in the case of Gaussian mixtures with
unknown means (common variance as nuisance parameter) and unknown vari-
ances (common mean as nuisance parameter). The results are in conformity
with the theoretical results obtained. Power functions of these tests have been
evaluated based on simulations from Gaussian mixtures.

1. Introduction

Finite mixture models are often used to understand whether the data comes from
a heterogeneous or a homogeneous population. In particular, consider the case of
a mixture of two populations with the mixing proportions known (Goffinet et al.
[7]). We are interested to know whether the data is sampled from a proper mixture
of two distributions or a single distribution.

In particular, consider a mixture family g, with generating population densities
given by M0 = {f(·|θ, η) : θ ∈ Θ, η ∈ E}, where θ is the main parameter of interest
and η is the common nuisance parameter. We assume that the mixing proportion
is known a priori to be 0.5. The mixture model then becomes

(1.1) g(z|θ1, θ2, η) = 0.5 f(z|θ1, η) + 0.5 f(z|θ2, η).

The null hypothesis for homogeneity is, θ1 = θ2.
In several practical examples (for example, arising in speech analysis and non-

parametric regression methodology) detection of the location of discontinuity in
the local mean or the local variance (or local amplitude) are of interest (Figure 1).
The theoretical results developed in this paper can be used in such problems. Fig-
ure 1 demonstrates several scenarios of signals being scanned through a running
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Fig 1. Left column shows time plots of data with solid vertical lines marking the windows con-
sidered. The top two panels indicate a simulated noisy signal (with additive Gaussian noise) with
mean function having a jump discontinuity. The bottom panels describe a portion of digitized
speech waveform. In the right column three fitted densities of y-values: nonparametric kernel
smoothed density (solid line), single component Gaussian fit (dashed line) and mixture of two
Gaussian fit with equal mixing weights (curve indicated by +), are shown corresponding to the
frames indicated in the left column.

window of specified bandwidth. When the center of the window is placed at points
of discontinuity the raw signal values (y-axis) will have a distribution which can
be adequately modeled by (1.1). This basic idea has been explored by Hall and
Titterington [8] in the context of edge and peak preserving smoothers.

A brief list of references dealing with the study of mixture distributions and
properties of the Likelihood Ratio Test (LRT) tests are provided below. In Tit-
terington et al. [13], McLachlan and Basford [11] and Lindsay [10] one may find
extensive discussions about the background of finite mixture models. The asymp-
totic distributions of the LRT in mixture models have been studied in Bickel and
Chernoff [1], Chernoff and Lander [5], Ghosh and Sen [6], Lemdani and Pons [9].
Different modifications of LRT tests in mixture models are proposed and studied
by Chen et al. [4] and Self and Liang [12].

In this paper we introduce a concept of Projected Likelihood Contrasts (PLC),
a modified version of the LRT test or the Wilks’ Λ (Wilks [14]) statistic, which we
motivate as follows. Consider i.i.d. observations Z1, Z2, . . . , ZN generated by some
element of the class of densities g given by (1.1). The likelihood under the full
mixture model is given by

(1.2) LN (θ1, θ2, η) =
N∑

i=1

log g(Zi|θ1, θ2, η),

where g is defined through (1.1). Under the null hypothesis the likelihood reduces
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to the usual likelihood under M0, namely,

(1.3) LN (θ, θ, η) =
N∑

i=1

log f(Zi|θ, η).

Define (θ̂, η̂) as the maximum likelihood estimators of (θ, η) under (1.3). The idea
behind the PLC statistics is to plug in the estimated nuisance parameter under the
null in (1.2) and maximize it over remaining parameters θ1 and θ2. Finally the PLC
statistic is defined as

(1.4) ΛN = 2
(

max
θ1,θ2

LN (θ1, θ2, η̂) − LN (θ̂, θ̂, η̂)
)

.

The term projected likelihood is used here to distinguish the procedure from profile
likelihood. We call it projected likelihood because the profile of the nuisance para-
meter is obtained after projecting the full likelihood onto f(·|θ̂, η) ∈ M0. That way
we first obtain a projected profile of η and then maximize it so that its estimate
coincides with the maximum likelihood estimate (MLE) under the null hypothesis.
Note that this procedure, in spirit, is very similar to the Rao’s score test.

The paper is organized as follows. In Section 2, the large sample properties of
the PLC statistics is discussed. In Section 3, some simulation studies are provided.
The proof of the main theorem in Section 2 is provided in the Appendix.

2. Large sample approximation of PLC statistic

For the purpose of theoretical investigation we shall simplify the model further as-
suming that the class of densities are all one dimensional. Denote the null hypothesis
by

(2.1) H∗
0 : Z1, Z2, . . . , ZN are iid M0

For notational convenience we adopt the convention that the symbol Dr
x indicates

r-th partial derivative with respect to x, treated as a generic argument in a function.
Define the following estimated scores

(2.2) ξ̂r(j) =
Dr

θ f(Zj |θ̂N , η̂N )

f(Zj |θ̂N , η̂N )
,

for 1 ≤ j ≤ N and r ≥ 1. Analogously define the true scores ξr(j) = Dr
θ f(Zj |θ,η)
f(Zj |θ,η) at

the true parameter values under H∗
0 . One can verify that E

H∗
0

ξr(1) = 0 for every
r ≥ 1 in case of regular parametric families.

Note that under regularity assumptions on the model the scores are well behaved
and have finite moments. For the Gaussian case all moments will be finite since the
joint moment generating function of any finite set of polynomials involving ξr’s
exists. Define the following mixed partial derivatives of the full likelihood LN .

(2.3) C
N

ij = (Dθ1 + Dθ2)
i (Dθ1 − Dθ2)

j LN (θ̂N , θ̂N ),

where i, j are nonnegative integers. Moreover, let C̄
N

ij = N−1 C
N

ij . Although the
quantities defined in (2.3) look quite incomprehensible they can however be ex-
pressed as linear combinations of Dl

θ1
Dm

θ2
LN (θ1, θ2) using the Binomial expansion.
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One can establish with some effort the following. Di
θ1

Dj
θ2

log g(z| θ̂
N

, θ̂
N

, η̂
N

) =∑
Ω
∗

a(Ω)
∏i+j

r=1 ξ̂ ωr
r (z), where

∑∗ runs over all nonnegative integral partitions
Ω = (ω1, ω2, . . . , ωp+q) satisfying

∑
r ωr = i + j. The coefficients a(Ω) are compli-

cated combinatorial quantities but can be recursively computed. It can be verified
that C

N

ij = 0 if j is odd. We provide simplified expressions for some of the lower
order C

N

ij which are necessary for future calculations.

(2.4)
C̄

N

20 = 1
N

∑N
j=1 ( ξ̂2(j) − ξ̂

2

1 (j) ) ( P→ −I), C̄
N

02 = 1
N

∑N
j=1 ξ̂2(j)

C̄
N

12 = 1
N

∑N
j=1 (ξ̂3(j) − ξ̂1(j) ξ̂2(j)), C̄

N

04 = 1
N

∑N
j=1 ψ̂(j),

where ψ̂(j) = ξ̂4(j) + 1
2 ξ̂1(j) ξ̂3(j) − 3 ξ̂

2

2 (j) + 3 ξ̂
2

1 (j) ξ̂2(j), and I is the Fisher
information of θ under H∗

0 . Finally, let C̄ij denote asymptotic expected values of
C̄

N

ij under H∗
0 which can be easily derived using Lemma 2.1 (i). The distributional

properties of C̄
N

ij can be derived using classical properties of M -estimators. We
state the following lemma for the sake of completeness. The proof can be found in
Bickel and Doksum [2].
Lemma 2.1. Let Z1, Z2, . . . , ZN be independent and identically distributed random
variables with density f(z|θ) satisfying usual regularity conditions with the score
function S(z, θ) and Fisher information matrix I = Covθ (S(Z1, θ)).

(i) Let ψ(z, θ) be a real valued, continuously differentiable (in θ) kernel with
Eθ ψ2(Z1, θ) < ∞, for every θ. Further let θ̂N denote the MLE of θ. Then

1
N

N∑
i=1

ψ(Zi, θ̂N ) P→ Eθ ψ(Z1, θ).

(ii) In addition if ψ satisfies Eθ ψ(Z1, θ) = 0 for every θ then

(2.5)
1√
N

N∑
i=1

ψ(Zi, θ̂N ) =⇒ N(0, V 2),

where V 2 = Eθψ
2 − C ′I−1C where C = Covθ (ψ(Z1, θ), S(Z1, θ)).

Finally, we proceed to the main asymptotic representation theorem of the PLC
statistic. It turns out that even in the Gaussian case the standard χ2-approximation
does not hold. Actually it turns out that Gaussian case is more paradoxical than one
would expect. As a result one has to go for higher order expansion to get an idea of
the limiting behavior of the statistic. The crucial issue is whether E

H∗
0

ξ1(1)ξ2(1) = 0
or not. This is a measure of some type of spurious non-degeneracy in the model
due to skewness and its asymptotic effect needs to be corrected for. Two cases are
considered in the simulation section. In the first case we consider a mixture Gaussian
with different means but common unknown variance and the in second case scale
mixture Gaussian with common unknown mean is considered. In both cases we
find E

H∗
0

ξ1(1)ξ2(1) = 0. The first case is covered by Theorem 2.2(i) below while
the second case is covered by Theorem 2.2(ii). We state the theorem keeping these
two special cases in mind. The proof of the theorem is provided in the Appendix.
Theorem 2.2. Assume that EH∗

0
ξ1(1)ξ2(1) = 0 and C04 < 0. Then under H∗

0 ,

(i) if C̄
N

02 = 0, then ΛN
P→ 0.
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(ii) if
√

N C̄
N

02 =⇒ N(0, σ2) for some σ2 > 0, then

(2.6) ΛN =⇒ c2 max(0, Z)2,

for suitable c2 > 0 and a standard normal variate Z.

3. Simulation studies in the case of Gaussian mixtures

In this section we provide results pertaining to the sampling distributions of the
PLC statistic under the null in case of Gaussian mixtures [7]. Studies have been
carried out for two different cases: unknown variances and common mean as the
nuisance parameter and unknown means and common variance as the nuisance
parameter. The simulation results are in conformity with the theoretical results
derived. The power function of the PLC test statistic for each of the above two
set-ups have been studied for different values of the alternative. Simulation studies
have been carried out for different sample sizes.

3.1. Null distributions of the PLC

Consider the particular example of Gaussian mixture models, the main parame-
ters of interest are the unknown means and the common variance is the nuisance
parameter. The generating model is given by

(3.1) f(z|θ, η) = η−1φ((z − θ)/η)

where φ is the standard normal probability density function (θ ∈ 	, η > 0). In
this case η̂2 = N−1

∑N
i=1(Zi − Z̄)2, where Z̄ = N−1

∑N
i=1 Zi. The corresponding

PLC is denoted by Λm
N . Simulation studies for the null distribution of Λm

N have
been performed for sample sizes N=50, 100 and 200. Percentiles of the sampling
distribution are displayed in Table 1 which shows how different percentiles p (5,
50 and 95) of the null distribution of Λm

N decrease with increasing sample size N .
The difference of the percentile values, (say that between percentiles 95 and 5),
decreases with increasing sample size as well. The tabulated values give sufficient
reason to believe in the validity of the theoretical results obtained in Theorem 2.2.

In the second example, also pertaining Gaussian mixture models, the main pa-
rameters of interest are unknown variances and the common mean is the nuisance
parameter.

(3.2) f(z|θ, η) = θ−1φ((z − η)/θ)

for θ > 0, η ∈ 	. Here η̂ = Z̄. The corresponding PLC statistic is denoted by Λs
N .

Table 1

Percentiles of the null distribution of the PLC, corresponding to a
Gaussian mixture with unknown means and common variance as

the nuisance parameter

Percentiles
N 5 50 95
50 0.008 0.011 0.014

100 0.004 0.005 0.006
200 0.002 0.002 0.003
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The constant c2 in the limiting distribution (2.6) can be computed, but the
computations are quite cumbersome. Hence the constant c2 has been evaluated
based on the sampling distribution of Λs

N under the null. The sampling distribution
is based on 5000 simulations of data-size 2000. The value of c2 hence obtained is
0.69070.

The asymptotic null distribution of Λs
N is a mixture of a degenerate mass at 0

and a c2χ2
1 (for suitable c2 > 0), with mixing proportion 0.5. The sampling distri-

bution of Λs
N , obtained from 5000 simulations of sample size 2000, is found to be a

mixture of outcomes which are exactly zero and another strictly positive absolutely
continuous distribution. We have observed that this absolutely continuous distri-
bution (as obtained from simulations) is very close to c2χ2

1 (where c2 = 0.69070)
as depicted in Figure 2. Hence simulation studies of the null distribution show
sufficient conformity to the theoretical results obtained in Theorem 2.2.

Simulation studies for the null distribution of Λs
N have been performed and

tabulated (see Table 2) for different sample sizes N based on 1000 simulations of
data size N where N = 50, 100, 200 .

The expected value of the sampling distribution shows a negative bias. The
degree to which it approximates the mean of the large sample distribution of the
PLC improves with increasing sample size. The proportion of zeros in the sampling

Fig 2. Dotted line shows the kernel density estimate of c2(max{0, N(0, 1)2})(c2 = 0.69070),
the theoretical asymptotic null distribution of the PLC under N(0, 1). Note that by invariance
the results do not depend on the choice of the mean and variance. The solid line is the kernel
density estimate of the sampling distribution of the PLC with the zeros left out, under the null
corresponding to a Gaussian mixture of the same set-up. This sampling distribution is based on
5000 simulations of sample size 2000.

Table 2

Summary statistics of the null distribution of the PLC, corresponding to a Gaussian mixture
with unknown variance and common mean as the nuisance parameter

Expectation % of zeros 5% signif. point
N Theor.* Est. Theor. Est. Theor.* Est.
50 0.345 0.156 50 70.1 1.86 0.935

100 0.345 0.256 50 61.5 1.86 1.608
200 0.345 0.328 50 57.5 1.86 1.817

*The sampling distribution based on 5000 simulations of sample-size 2000, has been used as a
proxy for the theoretical asymptotic null distribution.
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Fig 3. Solid line, dotted line and dashed line correspond to the sample sizes 200, 100 and 50
respectively in both the figures. Power functions of the PLC test statistic at level α = 0.05 have
been evaluated. In the case of Λm

N , (left figure) the power function has been evaluated for values

of the parameter
|θ1−θ2|

2
∈ [0, 2]. The power function corresponding to Λs

N (right figure) has also

been evaluated for the values of the parameter

√
max{θ1,θ2}
min{θ1,θ2} ∈ [1, 3].

distribution goes on decreasing with N before it asymptotes to the theoretical value
0.5. The degree to which the sampling distribution approximates the theoretical
distribution improves with increasing sample size in the case of the 95th percentile.

3.2. Power function of the PLC test statistic

Power functions corresponding to the test statistic Λm
N at level α = 0.05 have been

evaluated for different values of the parameter (different values of the alternative)
|θ1−θ2|

2 in the range [0, 2], for three different sample sizes N = 50, 100, 200. (Fig-
ure 3). The power is found to increase with increasing sample size.

Power functions corresponding to the test statistic Λs
N at level α = 0.05 have been

evaluated for different values of the parameter (different values of the alternative)√
max{θ1,θ2}
min{θ1,θ2} in the range [1, 3], for three different sample sizes N = 50, 100, 200.

(Figure 3). The power is found to increase with increasing sample size.

Appendix: Proof of Theorem 2.2

First, it follows from Chen et al. [4] that both the MLEs θ̂1 and θ̂2 respectively are
N1/4 consistent under (1.1). For both the cases in the theorem we re-parametrize
the problem with θ1 = θ̂

N
+ N−1/2 s+N−1/4 τ and θ2 = θ̂

N
+ N−1/2 s−N−1/4 τ and

study its behavior near (θ̂
N

, θ̂
N

) in the neighborhoods |s| ≤ log N and |τ | ≤ log N
respectively. In what follows we do not verify orders of remainder terms explicitly.
Several technical steps need to be verified in the process of deriving the result. We
refer to Bickel and Doksum [2], Ghosh and Sen [6] and Bose and Sengupta [3] for the
type of regularity assumptions and machinery needed for uniform approximations
in such a context. Also, note that under the above parametrization the likelihood
becomes an even function in τ . Therefore we work with τ ≥ 0 without any loss of
generality. The asymptotic problem is non-standard because the Fisher information
matrix, I(θ1, θ2, η), has rank 2 if θ1 = θ2 and 3 otherwise (can be verified by
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straightforward differentiation). Next define

H(s, τ) = LN (θ̂N + s + τ, θ̂N + s − τ).

It can be readily verified from (1.2) and (2.3) that

(A.1)
∂i+j

∂si ∂τ j
H(0, 0) = C

N

ij ,

for i, j ≥ 0. The strategy of the proof is the following. Since the expansion is regular
in within-model displacement s, we fix τ ≥ 0 and maximize over s in the first step.
Then, we examine the behavior of the maximum value obtained in the first step
across τ to derive the final result. Because of our general regularity conditions all
the following calculations will be valid uniformly in probability over the compact
set |s| ≤ log N and 0 ≤ τ ≤ log N . In what follows γ > 0 shall denote a generic
constant whose value may be determined on a case by case basis. Also, in deriving
the orders of remainders we specially mention one simple fact from calculus, namely,
N−a(log N)b → 0 as N → ∞ for any a, b > 0.

H(N−1/2s, τ) = H(0, τ) + s [N−1/2H10(0, τ)]

+
1
2
s2 [N−1H20(0, τ)] + o

P
(N−γ),(A.2)

where Hij ’s denote respective partial derivatives of H. Also, it can be checked that

H20(0, τ) = −N I (1 + oP (N−γ) ).

Therefore, in large samples, for fixed 0 ≤ τ ≤ N−1/4 log N , the maximum value
of H(N−1/2s, τ) over the compact set |s| ≤ log N cannot exceed its unrestricted
global maximum, which is of the order of [N−1/2H10(0, τ)]2 / [N−1H20(0, τ)]. By
direct Taylor series of order 4 we find

H10(0, N−1/4τ) = (2!)−1 [
√

NC̄
N

12]τ
2 + (4!)−1 [C̄

N

14] τ
4 + oP (N−γ).

The facts required for the above simplification are: (i) H10(0, 0) = 0 by the maxi-
mum likelihood equation, (ii) H1j(0, 0) = 0 for j odd (since H is an even function
of τ) and (iii) the assumption of the theorem that EH∗

0
ξ1(1)ξ2(1) = 0. It can be

checked that the last assertion implies
√

NC̄
N

12 = OP (1), in view of (2.4) and Lemma
2.1.

Therefore by virtue of the assumptions of the theorem the profile global maxi-
mum of H(·, τ) becomes negligible in probability over the range of interest. Thus
we have

(A.3) max
|s|≤log N

H(N−1/2s, τ) = H(0, τ) + o
P

(N−γ),

uniformly over 0 ≤ τ ≤ N−1/4 log N . Finally,

H(0, N−1/4τ) = H(0, 0) + (2!)−1 [
√

NC̄
N

02] τ
2 + (4!)−1 [C̄

N

04] τ
4 + o

P
(N−γ).

Therefore we have

(A.4)

ΛN ≈ 2 max
|s|≤log N,0≤τ≤log N

[H(N−1/2s, N−1/4τ) − H(0, 0)]

= max
0≤τ≤log N

{ [
√

NC̄
N

02] τ
2 + 1

12 [C̄
N

04] τ
4 + o

P
(N−γ)}.
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Now we consider case (i) of the theorem where C̄
N

02 = 0. Then (A.4) reduces to
ΛN = max0≤τ<log N{(1/12) [C̄

N

04] τ4 + oP (N−γ) }. Since C04 < 0 it follows form
Lemma 2.1 that Pr{C̄N

04 < −δ} → 1 for arbitrarily small δ > 0. By choosing
τ > 121/4 δ−1/4N−γ/4 one can show that the value of the objective function (being
maximized) becomes negative. Hence it can be verified that ΛN

P→ 0.
For case (ii) arguing in a similar line and collecting the dominant terms from

(A.3) and (A.4) and then maximizing the dominant term with respect to τ (noting
that the dominant expression is a quadratic in τ2 and C̄

N

04
P→ C04 (< 0)) we obtain

(A.5)

ΛN ≈ max
0≤τ≤log N

{ [
√

NC̄
N

02] τ
2 + 1

12 [C̄
N

04] τ
4}

≈ −3 [max(0,
√

NC̄
N

02)] 2

C̄04
,

with an error in approximation of the order of oP (N−γ) as before. Hence the second
part of the the theorem follows from the assumptions.
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