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Understanding Edge Connectivity
in the Internet through Core
Decomposition
J. Ignacio Alvarez-Hamelin, Mariano G. Beiró, and Jorge R. Busch

Abstract. The Internet is a complex network composed of several networks: the au-
tonomous systems. Each of them is designed with the aim of transporting information
efficiently. This information is carried over routes, which are discovered by routing
protocols, such as the border gateway protocol (BGP). The protocols may find pos-
sible paths between nodes whenever they exist, or even find paths satisfying specific
constraints, e.g., a certain quality of service (QoS). Here, we study connectivity as a
network attribute related to both situations; we provide a formal lower bound to it
based on core decomposition and low-complexity algorithms to find it. Then we ap-
ply these algorithms to analyze maps obtained from the prominent Internet mapping
projects, and use the LaNet-vi open-source software for their visualization.

1. Introduction

Today, the Internet is a highly developed network connecting people around
the world. Its continuous growth raises new problems, challenging us to find
novel and creative solutions to them. This paper aims at the robustness problem
and the study of connectivity in the Internet using the k-core decomposition of
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the network. Connectivity is quite important, for it represents how tolerant the
network is to link failures or what quality of service (QoS) it may offer (e.g.,
see the requests for comments (RFCs) of multiProtocol label switching [Rosen
et al. 01, Andersson and Asati 09]). For example, forwarding packets to well-
connected nodes may help in finding paths that fulfill a required QoS. Therefore,
node-to-node connectivity information may speed up the convergence of routing
protocols such as the border gateway protocol (BGP).

To classify our work, we resort to [Bollobás 04], in which the author splits the
research on random graphs into five categories: the study of real-world networks
and their properties, the proposition of new models, model simulation, heuris-
tic analysis, and rigorous mathematical study of the models to provide theorems
about their properties. Our work falls into the first category in this classification,
i.e., the study of real-world network properties. Understanding graph properties
and measuring them is the basis for modeling the Internet. By studying de-
gree distribution, the authors of [Faloutsos et al. 99] pointed out a remarkable
characteristic of the Internet topology: the node degrees have a heavy-tailed be-
havior. Until then, prominent models, such as those of [Waxman 88] and [Zegura
et al. 97], were based on classical [Erdős and Rényi 59] random graphs, whose
degrees obey a Poisson distribution. But from then on, a huge number of mod-
els arose with respect to inhomogeneous random graphs, of which we mention
only some nodal ones, starting with the model of [Barabási and Albert 99] based
on preferential attachment; the model of [Aiello et al. 00] with given expected
degrees; the generalized random graph of [Newman et al. 01], whereby the de-
gree distribution may be arbitrarily set; the more general model in [Bollobás
et al. 07]; and the FKP model, which proposes a trade-off between a topological
and a geometrical objective (see [Spatharis et al. 09] and the references therein).

Another example of attributes that provided a better understanding of the
Internet is found in [Pastor-Satorras et al. 01]. Using the average neighbor degree,
the authors showed that the Internet topology at the autonomous system (AS)
level is different from the Internet topology at the inter-router (IR) level, leading
to refinements in some models.

Our interest here is to study connectivity through k-cores, but we do not
deal with modeling. In fact, several authors have studied the emergence of cores
in random graphs [Riordan 08, Janson 09], and some of them have even given
conditions under which the k-core is k-connected with high probability (whp).
For real graphs, this topic has been addressed in [Carmi et al. 06].

We call graphs whose k-core is k-connected k-core-connected, and those graphs
for which this holds for all k, core-connected. We present some algorithms to
obtain core-connected subgraphs of a given graph, and a general lower bound for
the connectivity of the k-cores. These algorithms are of low complexity and are
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based on a generalization of Plesńık’s theorem [Plesńık 75] on the connectivity
of diameter-2 graphs.

The k-core decomposition is useful for identifying exploration sources through
visualization [Alvarez-Hamelin et al. 06, Beiró et al. 08], to validate models [Ser-
rano et al. 06], and to discover exploration biases in the Internet [Alvarez-Hamelin
et al. 08]. These facts support the k-core analysis as one of the relevant tools for
describing Internet topology maps.

The paper is organized as follows. Section 2 is devoted to developing some
mathematical tools used later and to formalizing the relation between k-cores
and k-connected subgraphs. In Section 3, we present our software LaNet-vi. This
tool implements the aforementioned ideas and provides a visualization of the
network according to its connectivity. We present some applications to Internet
maps. Finally, we conclude our paper with some remarks and comments on future
work.

2. Foundations

Let us introduce some general graph notions and notation. Let G be a simple
graph (i.e., a graph with no loops and no multiple edges) with vertex set V (G)
and edge set E(G) (we follow the notation in [West 01]). Given A,B ⊂ V (G),
[A,B] is the set of edges of the form ab joining a vertex a ∈ A to a vertex
b ∈ B. Since we consider edges to be undirected, we have [A,B] = [B,A]. Abusing
notation, for v ∈ V (G), A ⊂ V (G), we write [v,A] instead of [{v}, A]. The degree
of a vertex v ∈ V (G) is dG (v) .= |[v, V (G)]|. We shall define n(G) .= |V |, e(G) .=
|E|, δ(G) .= minv∈V dG (v), ∆(G) .= maxv∈V dG (v). The neighborhood N(v) of a
vertex v is the set of vertices w such that vw ∈ E(G).

Given A ⊂ V (G), G(A) is the graph G′ such that V (G′) = A, and E(G′) is the
set of edges in E(G) having both endpoints in A. Given v, w ∈ V (G), ρG (v, w)
is the distance in G from v to w, that is, the length of some shortest path from v

to w. If v ∈ V (G), A ⊂ V (G), we set ρG (v,A) .= minw∈A ρG (v, w). We shall also
use the notation

ρA
.= max

a,b∈A
ρG(A)(a, b)

for the diameter of G(A).
We introduce some notions of connectivity used in this paper. An edge cut in

G is a set of edges [S, S̄] such that S ⊂ V (G) and S̄
.= V (G) \ S are nonempty.

The edge-connectivity k′(G) of G is the size of the smallest edge cut in G. We
say that G is k-edge-connected if k′(G) ≥ k.
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From Menger’s theorem it follows that if G is k-edge-connected, then given
two vertices v, w in V (G), there are at least k edge-disjoint paths joining v to w

(see [West 01, pp. 153–169]).
Since we do not deal with vertex-disjoint paths in this paper, we shall here-

inafter speak of k-connectivity, avoiding any reference to the edges.

2.1. An Expansion Theorem

Let G be a simple graph. Let Q,C ⊂ V (G), and set C ′ .= Q ∪ C, G′ .= G(C ′).
From here on, we assume that Q and C are nonempty and that Q ∩ C = ∅. We
define, for x, y ∈ Q, the contracted distance

ρC ′/C (x, y) .= min{ρG(Q)(x, y), ρG ′(x,C) + ρG ′(y, C)}

and for x ∈ C ′, y ∈ C,

ρC ′/C (x, y) = ρC ′/C (y, x) .= ρG ′(x,C).

If x ∈ C ′ and A ⊂ C ′, we set ρC ′/C (x,A) .= mina∈A ρC ′/C (x, a). We shall use also
the notation

ρC ′/C
.= max

x,y∈C ′
ρC ′/C (x, y)

for the contracted diameter of C ′.
Observe that with these definitions, if ρC ′/C (x, y) = 2 for some x, y ∈ C ′, then

there exists z ∈ C ′ such that ρC ′/C (x, z) = ρC ′/C (z, y) = 1. Note also that ρC ′/C

is—whence the notation—the pseudodistance induced in C ′ by the distance in
the quotient graph G′/G(C), obtained from G′ by contracting C to a vertex (this
quotient graph is not a simple graph).

We shall also use the notation

∂jQ
.= {x ∈ Q : |[x,C]| ≥ j},

∂̄jQ
.= {x ∈ Q : |[x,C]| < j} = Q \ ∂jQ.

In this context, we also consider

ΦC ′/C
.=

∑
x∈Q

min{max{1, |[x, ∂̄2Q]|}, |[x,C]|}.

Since Q and C will be fixed in this section, we shall freely omit the subscript
C ′/C when speaking of ρC ′/C and ΦC ′/C . For v ∈ C ′, N ′(v) denotes its neigh-
borhood in G′.

In this general framework, we have the following theorem.
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Theorem 2.1. If ρC ′/C ≤ 2, [S, S̄] is an edge cut in G′ such that C ⊂ S, and we let
S1

.= S ∩Q, then we have the following:

1. If maxs̄∈S̄ ρ(s̄, S) = 1, then |[S, S̄]| ≥ maxs̄∈S̄ |N ′(s̄)|.
2. If maxs̄∈S̄ ρ(s̄, S) = 1, then |[S, S̄] ≥ |S̄|.
3. If maxs̄∈S̄ ρ(s̄, S) = 2, then |S̄| > mins̄∈S̄ |N ′(s̄)|.
4. If maxs̄∈S̄ ρ(s̄, S) = 2, then maxs∈S ρ(s, S̄) = 1.

5. If maxs∈S1 ρ(s, S̄) = 1, then |[S1 , S̄]| ≥ maxs∈S1 (|N ′(s)| − |N ′(s) ∩ C|).
6. If maxs∈S1 ρ(s, S̄) = 1, then |[S1 , S̄]| ≥ |S1 |.

Proof. 1. Suppose that for any s̄ ∈ S̄, we have ρ(s̄, S) = 1. Let s̄ ∈ S̄. Then we
have k1 edges s̄si , 1 ≤ i ≤ k1 , with si ∈ S and (eventually) k2 edges s̄s̄j , s̄j ∈ S̄.
But each s̄j satisfies ρ(s̄j , S) = 1, and thus we have k2 new edges (G′ is simple,
because the vertices s̄j are distinct) s̄j s

′
j , with s′j ∈ S, whence

|[S, S̄]| ≥ k1 + k2 = |N ′(s̄)|.
2. This assertion follows at once if we observe that in this case, for each s̄ ∈ S̄,

there is at least one s ∈ S such that s̄s ∈ [S̄, S].
3. Observe that if ρ(s̄, S) = 2, then {s̄} ∪N ′(s̄) ⊂ S̄.
4. Let s̄0 ∈ S̄ be such that ρ(s̄0 , S) = 2. Then for each s ∈ S, since ρ(s̄0 , s) = 2,

there exists s̄′ such that ρ(s̄0 , s̄
′) = ρ(s̄′, s) = 1. But again since ρ(s̄0 , S) = 2, it

follows that s̄′ ∈ S̄, whence ρ(s, S̄) = 1.
5. For each s ∈ S1 we have

N ′(s) = (N ′(s) ∩ S̄) ∪ (N ′(s) ∩ S1) ∪ (N ′(s) ∩ C),

and if maxs∈S1 ρ(s, S̄) = 1, then for each s′ ∈ N ′(s) ∩ S1 we have at least one
edge in [s′, S̄]. Thus |N ′(s)| ≤ |[S1 , S̄]|+ |(N ′(s) ∩ C)|.

6. For the last statement, we observe that maxs∈S1 ρ(s, S̄) = 1 means that for
s ∈ S1 , |[s, S̄]| ≥ 1, and these sets are pairwise disjoint subsets of [S1 , S̄].

Corollary 2.2. Assume that in addition to the hypotheses of Theorem 2.1, we have
|[S, S̄]| < minv∈Q |N ′(v)|. Then:

1. maxs̄∈S̄ ρ(s̄, S) = 2.

2. maxs∈S ρ(s, S̄) = 1.

3. |[S̄, C]| ≥ 1.



50 Internet Mathematics

(a) (b)

(c) (d)

Figure 1. Conventions: 1. Filled polygons represent cliques, and curved arcs
represent edges. 2. The dotted line separates C (the upper set of vertices)
from Q. 3. The widest arc shows the cut [S, S̄]. 4. k = minv∈Q |N ′(v)|. Descrip-
tions: (a) Here |[S, S̄]| = 3 < k = 4, |S ∩Q| = 2, |S̄| = 5, Φ = 3, S ∩Q = ∂2Q.
(b) Here |[S, S̄]| = 3 < k = 4, |S ∩Q| = 1, |S̄| = 5, Φ = 3, S ∩Q �= ∂2Q. (c) Here
|[S, S̄]| = 4 < k = 5, |S ∩Q| = 1, |S̄| = 6, Φ = 3, S ∩Q �= ∂2Q. (d) Here |[S, S̄]| =
1 < k = 2, |S ∩Q| = 0, |S̄| = 3, Φ = 1, S ∩Q = ∂2Q = ∅.

4. |S1 | < |[S, S̄]| < minv∈Q |N ′(v)| < |S̄|.
5. S ∩Q ⊂ ∂2Q, S̄ ⊃ ∂̄2Q.

6. Φ ≤ |[S, S̄]|.

(See the examples in Figure 1.)

Proof. Points 1 and 2 are obvious consequences of our new hypothesis and points
1 and 4 in Theorem 2.1. To prove point 3, observe that maxs∈S ρ(s, S̄) = 1. The
first (from left to right) of the inequalities stated in point 4 follows from point
6 in Theorem 2.1, and point 3 in the present theorem. The second of these
inequalities is assumed by our additional hypothesis, and the third one follows
immediately from point 3 in Theorem 2.1.
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From point 5 in Theorem 2.1 and |[C, S̄]| ≥ 1 we obtain

|[S, S̄]| > max
s∈S1

(|N ′(s)| − |N ′(s) ∩ C|).

Thus for s ∈ S1 ,

N ′(s) > |[S, S̄]| > (|N ′(s)| − |N ′(s) ∩ C|),
whence |N ′(s) ∩ C| ≥ 2. Point 5 follows immediately from this.

By our previous points, if s ∈ S ∩Q, then

|[s, S̄]| ≥ max{1, |[s, ∂̄2Q]|},
and of course for s̄ ∈ S̄, |[s̄, S]| ≥ |[s̄, C]|. Thus

|[S, S̄]| = |[S ∩Q, S̄]|+ |[S̄, C]| ≥
∑

s∈S∩Q

max{1, |[s, ∂̄2Q]|}+
∑
s̄∈S̄

|[s̄, C]| ≥ Φ.

Corollary 2.3. Let k ≤ δ(G′), and assume that

1. G(C) is δ(G′)-edge-connected,

2. ρC ′/C ≤ 2.

Then any of the following implies that G′ is k-edge-connected:

1. Φ ≥ k;

2. |∂1Q| ≥ k;

3. Q = ∂1Q.

(See the examples in Figure 2.)

Proof. Let [S, S̄] be any cut in G′. We shall show that under the listed hypotheses
and any of the alternatives, |[S, S̄]| ≥ k.

If S ∩ C �= ∅ and S̄ ∩ C �= ∅, then since

[S ∩ C, S̄ ∩ C] ⊂ [S, S̄]

is a cut in G(C) (which we assumed to be k-edge-connected), we obtain the
inequality |[S, S̄]| ≥ k.

Without loss of generality, let us we assume that C ⊂ S. We argue by contra-
diction, assuming that there exists some S such that |[S, S̄]| < k, so that we are
under the hypotheses of Corollary 2.2.
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(a) (b)

Figure 2. Conventions: 1.Filled polygons represent cliques, and curved arcs rep-
resent edges. 2.The dotted line separates C (the upper set of vertices) from Q. 3.
The widest arc shows a minimal cut [S, S̄]. Descriptions: (a) Here |[S, S̄]| = k = 4,
Φ = 4, |∂1Q| = 3. (b) Here |[S, S̄]| = k = 3, Φ = 1, |∂1Q| = 1, Q = ∂1Q. This ex-
ample shows that Corollary 2.3 includes an edge-connectivity version of the ex-
pansion lemma in [West 01, Lemma 4.2.3].

The first of our alternative hypotheses contradicts point 6 in the conclusions
of Corollary 2.2.

When v ∈ ∂1Q,

min{max{1, |[v, ∂̄2Q]|}, |[v, C]|} ≥ 1,

so that we have |∂1Q| ≤ Φ, i.e., the second of our alternative hypotheses implies
the first one.

To finish our proof, observe that if Q = ∂1Q, then since S̄ ⊂ Q, we have
ρ(s̄, S) = 1 for any s̄ ∈ S̄, contradicting point 1 in the conclusions of Corol-
lary 2.2.

Definition 2.4. Since this corollary is key to our later results, we shall set for future
reference

ΨC ′/C (k,G) .= max{ΦC ′/C − k, |∂1Q| − k, |∂1Q| − |Q|}, for k ≤ δ(G′),

so that now the three disjunctive hypotheses in Corollary 2.3 can be restated as
ΨC ′/C (k,G) ≥ 0.

Remark 2.5. Corollary 2.3 is related to a well-known theorem of Plesńık (see
[Plesńık 75, Theorem 6]), which states that in a simple graph of diameter 2,
the edge connectivity is equal to the minimum degree.
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2.2. Edge-Connectivity and Core Decomposition

Definition 2.6. [Seidman 83, Bollobás 84] A subgraph H = G(Ck ) induced by the
set Ck ⊆ V is the k-core (or the core of order k) in G if Ck is the maximal subset
of V such that minv∈C dG(C )(v) ≥ k.

Let kmax
.= max{k : Ck �= ∅}, Sk

.= Ck \ Ck+1, 0 ≤ k ≤ kmax − 1, Skm a x =
Ckm a x . We call Sk the k-shell of G, and if v ∈ Sk , we say that v has shell-index
k, k(v) = k. The connected components of Sk will be called clusters.

A k-core of G can be obtained by recursively removing all the vertices of
degree lower than k, together with their incident edges, until all the vertices in
the remaining graph have degree greater than or equal to k. This decomposition
can be easily implemented: the algorithm by [Batagelj and Zaversnik 03] has
a time complexity of order O(n(G) + e(G)) for a general simple graph G. This
makes the algorithm very efficient for sparse graphs, where e(G) is of the same
order as n(G).

Definition 2.7. Let A ⊂ V (G).

1. We say that A is k-connected in the strict sense if G(A) is k-connected,
that is, if every cut in G(A) has at least k edges, or equivalently, if for
u, v ∈ A, there exist at least k edge-disjoint paths from u to v in G(A).

2. We say that A is k-connected in the broad sense if every cut [X, X̄] in
G such that X ∩A �= ∅ and X̄ ∩A �= ∅ has at least k edges, that is, if
given u, v ∈ A, there exist at least k edge-disjoint paths from u to v in G.

Of course, if A is k-connected in the strict sense, it is also k-connected in the
broad sense. The reciprocal statement is valid only for k = 1, 2.

Let us introduce the following definition.

Definition 2.8. Consider a graph G, its k-cores Ck : 0 ≤ k ≤ kmax (see Definition
2.6), and A ⊂ V (G).

1. We say that A is k-core-connected in the strict sense if A ∩ Ck is k-
connected in the strict sense.

2. We say that A is k-core-connected in the broad sense if A ∩ Ck is k-
connected in the broad sense in G(Ck ).
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(a) Strict-sense connectivity (b) Broad-sense connectivity

Figure 3. These two figures show the progress in time (t) of both algorithms. Dots
represent clusters; dots in a circle, clusters in C ; dots in a square, clusters in D.
Both algorithms start looking for a cluster of diameter 2, descending from the top
shell. If they find one, this is the initial C . Then the first algorithm descends shell
by shell looking for clusters to add to C and preserving core-connectivity in the
strict sense. The second algorithm does the same, but each time it ends with the
inspection of a shell, it searches among the omitted clusters from previous shells
(saved in Q′) in order to find clusters to add to D. These clusters provide more
possibilities of connection (in the broad sense) to the next shell, thus producing
a bigger set C .

3. We say that A is core-connected in the strict sense if A ∩ Ck is k-
connected in the strict sense for all k such that A ∩ Ck �= ∅.

4. We say that A is core-connected in the broad sense if A ∩ Ck is k-
connected in the broad sense in G(Ck ) for all k such that A ∩ Ck �= ∅.

Next, we shall describe two algorithms, Algorithms 1 and 2, that provide a
mechanism to build (hopefully big) core-connected sets of vertices in both the
strict and broad senses. These algorithms are illustrated in Figure 3.

Both algorithms proceed recursively, starting from the highest core and ap-
pending joinable clusters to the core-connected set. The difference between the
algorithms lies in the meaning of “joinable cluster.”

When Q is a cluster, we denote by k(Q) its shell index. Let Q be a family of
clusters, and let k(Q) .= max{k(Q) : Q ∈ Q} denote the maximum shell index of
the clusters in Q.

Theorem 2.9. Algorithm 1 always stops, and when it stops, C is core-connected in
the strict sense.
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Algorithm 1. (Building core-connected sets of vertices in the strict sense.)
Input: Q, the family of all clusters of the k-core decomposition of a graph G
Output: C ⊂ V , core-connected in the strict sense
Initialization: C ← ∅, k ← km ax
begin1.1

while C = ∅ and Q �= ∅ and k ≥ 2 do1.2
k ← k(Q) ;1.3

if there is some Q ∈ Q satisfying:

{
k(Q) = k

ρQ ≤ 2

]
then

1.4
C ← C ∪Q ;1.5

end1.6
Q← Q \ {Q ∈ Q : k(Q) = k} ;1.7

end1.8
while Q �= ∅ and k ≥ 2 do1.9

k ← k(Q) ;1.10

while there is some Q ∈ Q satisfying:

⎧⎨
⎩

k(Q) = k

ρC ∪Q /C ≤ 2
ΨC ∪Q /C (k, G) ≥ 0

⎤
⎦ do

1.11
C ← C ∪Q ;1.12
Q← Q \ {Q} ;1.13

end1.14
Q← Q \ {Q ∈ Q : k(Q) = k} ;1.15

end1.16

end1.17

Proof. For the first while loop, step 1.3 computes the maximum k for the current
family of clusters, while step 1.7 deletes from Q all clusters with shell index k.
Hence, k is strictly decreasing, and when the algorithm reaches step 1.8, either
Q is empty or C has a cluster satisfying the hypotheses of Corollary 2.3.

The second while loop will also finish, because steps 1.10 and 1.15 ensure
that k is strictly decreasing.

The nested while loop will finish because Q is finite.
Assume that the current C is core-connected in the strict sense when we reach

step 1.11. By construction, C ∩ Cj = C when j ≤ k, and C ∩ Cj are previous
instances of C when j > k (in fact, these instances are obtained each time we
come to step 1.16). The new C, let us call it C ′ for the moment, has the same
intersections with Cj for j > k, and when j ≤ k, the intersection is C ′ = C ∪Q,
which is k-connected in the strict sense by Corollary 2.3, since the conditions
for the selection of Q in step 1.11 match the hypotheses of Corollary 2.3. Thus,
every instance of C throughout the algorithm is core-connected in the strict
sense, whence the final C is core-connected in the strict sense.
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Algorithm 2. (Building sets of core-connected vertices in the broad sense.)
Input: Q, the family of all clusters of a graph G
Output: C ⊂ V , core-connected in the broad sense
Initialization: C ← ∅ , D ← ∅ , Q′ ← ∅, k ← km ax

begin2.1
while C = ∅ and Q �= ∅ and k ≥ 2 do2.2

k ← k(Q) ;2.3

if there is some Q ∈ Q satisfying:

{
k(Q) = k

ρQ ≤ 2

]
then

2.4
C ← C ∪Q ;2.5
Q← Q \ {Q} ;2.6

end2.7
Q′ ← Q′ ∪ {Q ∈ Q : k(Q) = k} ;2.8
Q← Q \ {Q ∈ Q : k(Q) = k} ;2.9

end2.10
while Q �= ∅ and k ≥ 2 do2.11

k ← k(Q) ;2.12

while there is some Q′ ∈ Q′ satisfying:

⎧⎨
⎩

k(Q′) ≥ k

ρ(C ∪D ∪Q ′)/ (C ∪D ) ≤ 2
Ψ(C ∪D ∪Q ′)/ (C ∪D ) (k, G) ≥ 0

⎤
⎦ do

2.13
D ← D ∪Q′ ;2.14
Q′ ← Q′ \ {Q′} ;2.15

end2.16

while there is some Q ∈ Q satisfying:

⎧⎨
⎩

k(Q) = k

ρ(C ∪D ∪Q )/ (C ∪D ) ≤ 2
Ψ(C ∪D ∪Q )/ (C ∪D ) (k, G) ≥ 0

⎤
⎦ do

2.17
C ← C ∪Q ;2.18
Q← Q \ {Q} ;2.19

end2.20
Q′ ← Q′ ∪ {Q ∈ Q : k(Q) = k} ;2.21
Q← Q \ {Q ∈ Q : k(Q) = k};2.22

end2.23

end2.24

Theorem 2.10. Algorithm 2 always stops, and when it stops, C is core-connected in
the broad sense.

Proof. For the first while loop, step 2.3 computes the maximum k for the current
family of clusters, while step 2.9 deletes from the current Q all the clusters with
shell index k. Hence k is strictly decreasing, and when the algorithm reaches
step 2.10, either Q is empty or C has a cluster satisfying the hypothesis of
Corollary 2.3.

The second while loop will also finish because steps 2.12 and 2.22 allow us
to ensure that k is strictly decreasing.
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The nested while loops will finish because the families Q′ and Q are finite.
Assume that the current C is core-connected in the broad sense when we reach

step 2.17. By construction, C ∩ Cj = C when j ≤ k, and C ∩ Cj are previous
instances of C when j > k (in fact, these instances are obtained each time we
come to step 2.23). The new C, let us call it C ′ for the moment, has the same
intersections with Cj for j > k, and when j ≤ k, the intersection is C ′ = C ∪Q,
which is k-connected in the broad sense by Corollary 2.3, since the conditions for
the selection of Q in step 2.17 match the hypotheses of Corollary 2.3. Thus, all
the instances of C during the algorithm are core-connected in the broad sense;
hence the final C is core-connected in the broad sense.

Observe that in both algorithms, C includes nodes only from the shells with
k ≥ 2. The conditions from Corollary 2.3 are not natural at level 1. It is obvious
that if C is the strict-sense core-connected set constructed by Algorithm 1, then
after adjoining to C all the clusters from shell 1 that are connected to it, the
result is also strict-sense core-connected. Analogously, it is clear that if C and D

are the sets constructed by Algorithm 2, if we adjoin to C all the clusters from
shell 1 connected to C or D, then the new C is also core-connected in the broad
sense. We assume in the following section that C has been extended according
to these remarks.

3. Applications

In this section we will test our algorithms on some Internet maps obtained from
different sources. Each of them has its own biases and explores the Internet at a
particular level:

1. The Route Views Project [ORV 01], for instance, uses a small number
of BGP routers to peer with routers in other autonomous systems (AS)
and thus obtain routing tables. As a bias, this method does not detect
hidden routes (not all inter-AS routes are public due to policies and
agreements).

2. The CAIDA Association [CAIDA 98] developed skitter probes (which
have evolved into the Ark infrastructure). Based on traceroute, these
measuring nodes send ICMP requests to routers in order to discover
paths. Skitter had around 24 monitors in 2003, 22 monitors in 2005, and
only 11 in 2008. Ark project has 54 monitors in February 2011.

3. The DIMES Project [DIMES 04] is a distributed system composed of
around one thousand voluntary nodes; anyone may subscribe, even those
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with low CPU power or bandwidth. It explores the Internet with tools
such as traceroute and ping to discover its topology.

4. Mercator [Govindan and Tangmunarunkit 00] uses hop-limited ICMP
probes to discover the Internet map with informed random heuristics.
The algorithm induces the path to traverse certain nodes using the IP
source-routing option, which is no longer available.

At the autonomous systems (AS) interconnection level, data have been ob-
tained from the Oregon Route Views Project, the CAIDA Association, and the
DIMES Project. Router-level maps (IR) come from CAIDA, DIMES, and Mer-
cator.

To test our Algorithms 1 and 2, we have implemented them in the LaNet-
vi open source software [Alvarez-Hamelin et al. 05]. Based on the k-core de-
composition, this tool computes and visualizes the strict-sense and wide-sense
core-connected subgraphs. This bound is obtained by applying Corollary 2.3 for
nodes in the core-connected subgraph and using the value of Φ for the others. In
the LaNet-vi color visualization (black-and-white differences will be mentioned
in parentheses), the node colors (node shades) show their core, while the bor-
der colors (border shades) suggest a lower bound for connectivity with other
nodes. In fact, the absence of a border points out that the node belongs to the
core-connected subgraph, and so its connectivity with nodes in inner shells from
the core-connected subgraph is at least the node shell index. A colored border
(shaded border) implies instead that the node is not in C but belongs to the D

set in Algorithm 2, meaning that we ensure a certain level of edge-connectivity
with internal clusters in C, though this bound is less than the node shell index.
Finally, for white nodes (nodes in a square) we can ensure no edge-connectivity
with others, and perhaps that the node is poorly connected.

We have performed different tests to show the effectiveness of our tool. Defining
the fraction of nodes in C (the core-connected subgraph) for each shell k as

ρk =
|Sk ∩ C|
|Sk | ,

we studied the following quantities:

α =
1

kmax

km a x∑
k=1

ρk ,

β =
2

kmax(kmax + 1)

km a x∑
k=1

ρkk,

γ =
km a x∑
k=1

ρk
|Sk |
|C| .



Alvarez-Hamelin et al.: Understanding Edge Connectivity in the Internet through Core Decomposition 59

M

C

D

10.90.80.70.60.50.40.30.2
 α

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 γ AS ORV 2008
AS ORV 2005
AS CAIDA 2008
AS CAIDA 2005
AS DIMES 2007
AS DIMES 2005
IR Mercator 2002M
IR CAIDA 2003C
IR DIMES 2005D
 γ = α

Figure 4. Comparison between γ and α. The line α = γ splits the space into two
areas: the upper one for graphs with C concentrated on highly populated shells
(γ > α), and the bottom for C mainly in low-populated shells (γ < α).

In fact, α, β, and γ may be interpreted as probabilities for a node to be in C

under different models: α is the average of all ρk ; β is a weighted average of ρk ,
where each shell is weighted according to its index; and γ is a weighted average
of the fractions ρk with each k-shell weighted by its size.

Figure 4 shows γ as a function of α. Networks with γ > α have the greater
part of C in highly populated shells. We also present β as a function of α in
Figure 5, where β > α means that a smaller part of C is found in lower-shell
indices.

On the one hand, AS maps are close to point (1, 1) in both figures, and this
means that most of their nodes belong to C. AS DIMES maps have β < α because
some of their higher shells are empty. On the other hand, IR maps are worse than
AS maps because the ratio of nodes in C is low. Each IR has a different behavior;
the best is IR DIMES (90% of the nodes in C and in higher shells). The reason
that the other IR maps give a small C is the presence of big clusters in which
the ρ ≤ 2 condition is not satisfied. This is probably a bias in the exploration:
IR DIMES maps may be more accurate because they use a greater number of
sources (thousands, according to [Dall’Asta et al. 06]). We think that a detailed
picture of the Internet at the IR level will satisfy our hypotheses.

We carried out a different analysis at the shell level. In the first place, we
counted pairs of nodes {u, v} belonging to the wide-sense core-connected sub-
graph, i.e., having both ends in C. Figure 6 presents this information as a func-
tion of min(k(u), k(v)) for the AS CAIDA 2008 map. It follows that only the first
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Figure 5. β vs. α for different maps.

three shells have nodes out of C, and that they are few (about 1% per shell). This
behavior is similar in all maps except for IR CAIDA 2003, where some nodes in
low, medium, and high shells do not belong to the core-connected subgraph.

In the second place, we compared the minimum shell index of a pair of nodes
{u, v} in a core-connected subgraph with the connectivity, this last obtained with
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Figure 6. Histogram showing the number of paths from u to v in the AS CAIDA
2008 map. White is for {u, v} ∈ C , and black is for u ∈ C̄ or v ∈ C̄ .
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Figure 7. Connectivity for {u, v} pairs vs. their minimum shell index. Circles
stand for mean values per shell index, and error bars show the standard deviation;
crosses show connectivity; the bounding line connectivity = shell index is also
displayed.

the Gomory–Hu algorithm (see [Ford and Fulkerson 62, Chapter 4]). In Figure 7
we display the connectivity of each pair {u, v} as a function of the minimum
shell index min(k(u), k(v)) for the AS CAIDA 2008 map. This analysis is similar
to that in [Carmi et al. 06]. We see that connectivity is higher than the bound
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Figure 8. Connectivity through the cores for {u, v} pairs vs. their minimum shell
index. Circles stand for mean values, and error bars show the standard deviation;
crosses show connectivity; the bounding line connectivity = shell index is also
displayed.
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obtained through the core-connected graph. Nonetheless, the average values are
relatively similar for low and medium shells (less than 100% up to shell 13). Since
our bound is related to connectivity through cores (i.e., taking only the maximum
k-core containing {u, v} to find paths), we also show the connectivity through
the k-core, where k = min(k(u), k(v)) in Figure 8. Node-to-node connectivity is
clearly larger than connectivity through the k-core, but the latter is closer to the
minimum shell index. The other AS maps have analogous behavior.

We note that we were unable to compute connectivity for IR maps because it
is expensive on RAM due to their size, which is greater than 100,000 nodes.

To conclude our analysis, in Figure 9 we present a gray-scale visualization for
the AS CAIDA 2008 map, testing Algorithm 2.

Figure 9. Gray-scale visualization of the AS CAIDA 2008 map displaying the
wide-sense core-connected subgraph (Algorithm 2). Bottom: Detail showing some
nodes out of the core-connected subgraph, i.e., some out of C and D appearing
as small white-filled squares (on the start of the last quarter of the picture, from
left to right); and one node belonging to D having a white border, on the right.



Alvarez-Hamelin et al.: Understanding Edge Connectivity in the Internet through Core Decomposition 63

4. Conclusions

In this paper we have defined core-connected graphs, for which we find a lower
bound of node-to-node connectivity between nodes: the minimum shell index
of pairs of nodes in the graph k-core decomposition. In order to formalize this
relation we have provided a theorem (Corollary 2.3) that gives sufficient condi-
tions to ensure the aforementioned lower bound. This theorem is an extension
of Plesńık’s theorem (see [Plesńık 75]):

Plesńık’s theorem asserts that if a simple graph has diameter 2, then the con-
nectivity is at least δ(G). The hypothesis of G being simple can be easily relaxed:
for general multigraphs the connectivity is at least minv∈V |N(v)| (which is δ(G)
in the simple case). The combinatorial nature of connectivity, in which multiple
bifurcations give rise to a great multiplicity of paths between two vertices, in the
absence of bottlenecks, justifies the presumption that the condition of diameter
2 is rather artificial. In fact, the authors of [Carmi et al. 06, Carmi et al. 07] have
noticed that the node-to-node connectivity k′(u, v) is at least min(k(u), k(v)) for
all but very exceptional pairs u, v in many real-life net graphs (indeed, the con-
nectivity in this paper is less than k′, because the authors count only disjoint
paths, where “disjoint” means that they do not share either edges or vertices).
Our results herein show some semilocal conditions under which this bound for
the connectivity holds, where “semilocal” means here that the conditions involve,
for each k, the relations between a k-core and its next (k − 1)-shell. Rather than
an alternative procedure to find the connectivity, which can be quite efficiently
found with the Gomory–Hu algorithm (see [Ford and Fulkerson 62, Chapter 4]),
we hope that our results give some new insight into the local–global relations for
connectivity, useful in real-life net graphs.

We also developed two algorithms to obtain core-connected subgraphs of a
given graph G: one for strict-sense connectivity (whose complexity is O(e)) and
the other for wide-sense connectivity (O(e×√e)). In the strict-sense algorithm
each cluster is considered only once to determine whether it fulfills conditions
about its diameter and Φ. With e(Q) the number of edges of cluster Q counting
the internal ones and those that connect it with inner cores (clusters do not share
edges with other clusters in the same core), it can be determined in O(e(Q))
whether the cluster’s diameter is less than or equal to 2. The Φ condition can
also be evaluated in O(e(Q)), since it implies a BFS in the cluster. Consequently,
covering all clusters, the algorithm runs in O(e).

In the wide-sense algorithm each cluster may be considered up to kmax times
(once per each shell). But kmax is bounded above by

√
e, because in order to

obtain a k-shell, k + 1 nodes are needed with at least k connections each, so the
graph must have k × (k − 1) edges. Then we get a complexity of O(e×√e).
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Finally, we have included these algorithms in the open-source software LaNet-
vi to visualize core-connected subgraphs and list nodes in them, showing that it
works for Internet maps.

At present, we are working on a possible relaxation of the conditions involved
with Φ and the treatment of clusters with ρ > 2. We will also be looking for
explanations of the high connectivity found in the higher shells.
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Beiró acknowledges a Peruilh fellowship.

References

[Aiello et al. 00] W. Aiello, F. Chung, and L. Lu. “A Random Graph Model for Power
Law Graphs.” Experimental Math. 10 (2000), 53–66.

[Alvarez-Hamelin et al. 05] J. I. Alvarez-Hamelin, M. G. Beiro, L. Dall’Asta, A. Barrat,
and A. Vespignani. “Large Network Visualization Tool.” Available online (http://
sourceforge.net/projects/lanet-vi), 2005.

[Alvarez-Hamelin et al. 06] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A.
Vespignani. “Large Scale Networks Fingerprinting and Visualization Using the k-
Core Decomposition.” In Advances in Neural Information Processing Systems 18,
edited by Y. Weiss, B. Schölkopf, and J. Platt, pp. 41–50. Cambridge, MA: MIT
Press, 2006.

[Alvarez-Hamelin et al. 08] J. I. Alvarez-Hamelin, L. Dall’Asta, A. Barrat, and A.
Vespignani. “k-Core Decomposition of Internet Graphs: Hierarchies, Self-Similarity
and Measurement Biases.” Networks and Heterogeneous Media 3:2 (2008), 371–393.

[Andersson and Asati 09] L. Andersson and R. Asati. “RFC 5462: Multiprotocol Label
Switching (MPLS) Label Stack Entry: ‘EXP’ Field Renamed to ‘Traffic Class’ Field.”
Available online (ftp://ftp.rfc-editor.org/in-notes/rfc5462.txt), 2009.

[Barabási and Albert 99] A. L. Barabási and R. Albert. “Emergence of Scaling in Ran-
dom Networks.” Science 286 (1999), 509–512.

[Batagelj and Zaversnik 03] V. Batagelj and M. Zaversnik. “An O(m) Algorithm for
Cores Decomposition of Networks.” CoRR, arXiv.org/cs.DS/0310049, 2003.
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Internet.” Eur. Phys. J. B 50 (2006), 249–254.

[Spatharis et al. 09] A. Spatharis, I. Foudalis, M. Sideri, and C. Papadimitriou. “Com-
paring Trade-Off Based Models of the Internet.” Fundam. Inf. 92:4 (2009), 363–372.

[Waxman 88] B. M. Waxman. “Routing of Multipoint Connections.” IEEE Journal on
Selected Areas in Communications 6:9 (1988), 1617–1622.

[West 01] D. B. West. Introduction to Graph Theory. Englewood Cliffs, NJ: Prentice
Hall, 2001.

[Zegura et al. 97] E. W. Zegura, K. L. Calvert, and M. J. Donahoo. “A Quantitative
Comparison of Graph-Based Models for Internet Topology.” IEEE/ACM Transac-
tions on Networking 5:6 (1997), 770–783.

J. Ignacio Alvarez-Hamelin, INTECIN, Facultad de Ingenieŕıa, Universidad
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