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Euclidean versus Hyperbolic
Congestion in Idealized versus
Experimental Networks
Edmond Jonckheere, Mingji Lou, Francis Bonahon, and Yuliy Baryshnikov

Abstract. This paper proposes a mathematical justification of the phenomenon of ex-
treme congestion at a very limited number of nodes in very large networks. It is argued
that this phenomenon occurs as a combination of the negative curvature property of the
network together with minimum-length routing. More specifically, it is shown that in
a large n-dimensional hyperbolic ball B of radius R viewed as a roughly similar model
of a Gromov hyperbolic network, the proportion of traffic paths transiting through a
small ball near the center is Θ(1), whereas in a Euclidean ball, the same proportion
scales as Θ (1/Rn−1 ). This discrepancy persists for the traffic load, which at the center
of the hyperbolic ball scales as volume2 (B), whereas the same traffic load scales as
volume1+1/n (B) in the Euclidean ball. This provides a theoretical justification of the
experimental exponent discrepancy observed by Narayan and Saniee between traffic
loads in Gromov-hyperbolic networks from the Rocketfuel database and synthetic Eu-
clidean lattice networks. It is further conjectured that for networks that do not enjoy
the obvious symmetry of hyperbolic and Euclidean balls, the point of maximum traffic
is near the center of mass of the network.
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1. Introduction

One of the most important challenges in large and wide area networks is to over-
come the traffic congestion problem. The queuing feature at routers can create
a logic bottleneck between two users. Correspondingly, insufficient bandwidth
on the physical links between routers is a contributor to congestion. The cur-
rent congestion control technologies in communication networks are based on
the feedback from the congested node to the source to slow down the packet
flow rate, such as bidirectional congestion control and random early detection
(RED). However, these technologies can be applied only after the congestion has
happened to some degree, and it is based only on the local point of view of some
queue overflow along the source-to-target path.

From the large-scale point of view, it has been experimentally observed that
on the Internet and other networks, traffic seems to concentrate quite heavily
on some very small subsets. The major result of this paper is to show that the
deeper reason behind this congestion in the large scale is the combination of the
least-cost routing together with the negative curvature of the network.

Roughly speaking, a network is negatively curved if its graph can be approxi-
mated by a negatively curved Riemannian manifold. In practice, however, it has
become customary to check the Gromov thin triangle condition (TTC), meaning
that the least-cost paths between three vertices “arch inside” the triangle, giv-
ing it a “thin” external appearance. The connection between negatively curved
surfaces and the TTC can be understood on the basis that a triangle drawn on
a negatively curved surface has the sum of its internal angles less than π, giving
it a “thin” appearance. The formalization of this equivalence is, however, much
harder and is known as the Bonk–Schramm theorem [Bonk and Schramm 00].

Over the past few years, there has been mounting evidence that many
(wired and wireless) communication networks are negatively curved [Jonck-
heere et al. 08, Jonckheere and Lohsoonthorn 02, Jonckheere and Lohsoon-
thorn 04, Lohsoonthorn 03]. Hierarchical networks have been found to have
“hidden hyperbolic structure” [Krioukov et al. 09]. In view of the above
graph–manifold identification, we can certainly argue on a negatively curved
n-dimensional Riemannian manifold. To simplify the exposition in this intro-
duction, we invoke the nontrivial fact, proved in the appendix (Section 10), that
congestion in very large hyperbolic ball models does not depend on the dimen-
sion. Therefore, it is legitimate to argue on a negatively curved surface, as we
will do in the remainder of this introduction.

A well-known feature of least-length paths on a negatively curved surface is the
fact that two geodesics starting from points within an arbitrarily small disk even-
tually diverge exponentially. In this paper, we somehow reverse that argument
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and show that least-length paths departing at remote points of a convex subset
X of the surface “converge” to a single point where the “density of geodesics”
is the highest. The latter is the point of maximum congestion. We conjecture
that this congestion point is near the center of mass of the convex subset, and
prove that the maximum congestion point and the center of mass coincide for
very large disks embedded in the surface.

Naturally, there might be some questions as to the relevance of this idealized
analysis to real networks. In fact, some recent experimental results [Narayan and
Saniee 09] have confirmed the validity of our analysis. The network congestion
metric adopted in [Narayan and Saniee 09] is the betweenness centrality [Zhao
et al. 05]. The continuous geometry traffic congestion metric adopted here is the
average length of the geodesics in a small convex subset X. We call the latter
load measure, denoted by Λt(X), because if X is thought of as a subnetwork,
then Λt(X) is meant to be the number of packets in that subnetwork. Consistent
with the major theme of this paper, we prove that if X is a disk of fixed radius,
then Λt(X) is maximal when the disk has its center at the center of mass. But
more importantly, we show that in a large disk BR (0) of hyperbolic surface,
maxX⊆BR (0),area(X )=1 Λt(X) scales as (area(BR (0)))2 . On the other hand, it was
shown in [Narayan and Saniee 09] that for networks for the Rocketfuel database
[Spring et al. 04], the maximum betweenness centrality scales as N 2 , where N

is the number of vertices. Since N can be interpreted as the area, this confirms
the validity of our theoretical model.

An outline of the paper follows: In Section 2, we set the basic traffic metrics
in graph models. In Section 3, a simple concept of negatively curved planar
graphs is introduced and the general facts about congestion in negatively curved
graphs are proposed as conjectures. Immediately thereafter, in Section 4, we show
that our conjectures hold in selected planar graph examples. In Section 5, we
propose the more general concept of Gromov-hyperbolic graphs and we invoke
the Bonk–Schramm theorem to argue that traffic in Gromov-hyperbolic graphs
can be analyzed on negatively curved Riemannian manifold models. In Section 6,
we formulate our major results dealing with traffic in subsets of H

n . Probably the
most significant results are Theorems 6.2 and 6.1, proving that traffic in a small
subset X of large hyperbolic and Euclidean balls BR (0) scales as vol(BR (0))2 and
vol(BR (0))1.5 , respectively, where “vol(·)” denotes the volume measure, the n-
dimensional generalization of the elementary 3-dimensional concept, also referred
to as “area” when n = 2. (The precise differential-geometric definition of the
volume and the proofs of the scaling results are relegated to the appendix.)

Theorems 6.3 and 6.4 formulate the basic minimum inertia versus maxi-
mum traffic issues, proving the conjectures for hyperbolic balls X. Finally, in
Section 7, we show that no matter how theoretical our models are, they turn
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out to be surprisingly accurate at predicting asymptotic traffic distribution in
realistic networks.

2. Traffic Metrics

Let G = (V,E) be a (connected) graph specified by its vertex set V and its edge
set E and endowed with a (symmetric) distance function d : G × G → R

+. A
path p(s, t) from s to t is a continuous map [0, l] → G such that p(s, t)(0) = s

and p(s, t)(l) = t. The weight of an edge e = xy is defined as w(e) = d(x, y). The
length of the path is defined as �(p(s, t)) =

∑
e⊆p(s,t) w(e). A geodesic [s, t] is a

path such that � ([s, t]) ≤ � (p (s, t)) for all paths p(s, t) joining s to t.
The traffic on the graph is driven by a demand measure Λd : V × V → R

+,
where the demand Λd(s, t) is the traffic rate (e.g., number of packets per second)
to be transmitted from the source s to the destination target t. Assume that
the routing protocol sends the packets from the source s to the target t along
the geodesic [s, t] with probability π ([s, t]). It is indeed customary as a load-
balancing strategy to randomize the Dijkstra algorithm so as to distribute the
traffic more evenly [Cisco 05, Lou 08]. Under this scheme, the geodesic [s, t]
inherits a traffic rate measure τ ([s, t]) = Λd(s, t)π ([s, t]). An edge e lying on the
path [s, t] inherits from that path a traffic τ ([s, t]). Aggregating this traffic over
all source–target pairs and all geodesics traversing the edge e yields the traffic
rate sustained by the edge e:

τ(e) =
∑

(s,t)∈V ×V

∑
[s,t]⊇e

τ ([s, t]) =
∑

(s,t)∈V ×V

∑
[s,t]⊇e

Λd(s, t)π ([s, t]) .

Observe that τ(e)�(e) can be interpreted as the traffic load, that is, the number
of packets in the edge e.

This paper is essentially concerned with existence of a subnetwork that has
extremely high traffic load. Formally, given a connected subgraph X ⊆ G con-
taining some edges, we define its traffic load to be representative of the number
of packets in it:

Λt(X) =
∑
e∈X

�(e)τ(e) =
∑

s,t∈V

( ∑
e∈[s,t]∩X

w(e)

)
Λd(s, t)π ([s, t])

=
∑

s,t∈V

� ([s, t] ∩ X) Λd(s, t)π ([s, t]) . (2.1)

The above definition does not allow X to be reduced to a vertex, but we can
identify the smallest Λt-measurable neighbor of a vertex. Define the star of a
vertex, star(x), to be the smallest subgraph of G containing x; let �(star(x)) be



Jonckheere et al.: Euclidean versus Hyperbolic Congestion in Idealized versus Experimental Networks 5

the sum of the lengths of the set of edges abutting x; the latter vertex set is
denoted by Ex = {xy : y ∈ V, xy ∈ E}. Then consider

Λt (star(x))
� (star(x))

=

∑
e∈Ex

Λt(e)∑
e∈Ex

�(e)
≤
∑
e∈Ex

Λt(e)
�(e)

=
∑
e∈Ex

τ(e) =: τ(x).

The inequality is a well-known fact, and equality is achieved for the number-of-
hops metric, that is, w(e) = 1,∀e ∈ E. Since the traffic in any edge connected to
x must be “serviced” by the “hub” x, the interpretation of τ(x) is the traffic rate
sustained by x. Therefore, the fundamental question addressed by this paper can
be reformulated, from a very local point of view, as that of existence of vertices
with very high traffic rate. The above string indicates that such vertices with
very high traffic rates can be sought via the load measure Λt . The latter aspect
will play a crucial role in Section 6.

The traffic τ(x) can be computed by counting the number of geodesics [s, t]
having x as a vertex. One should consider two classes of such geodesics, though:
those that traverse x, that is, x �= s, x �= t, and those that either start at x, [x, t],
or terminate at x, [s, x]. The first ones have to be serviced twice, once in the input
queue, once in the output queue; the others have to be serviced just once. There
are 2(N − 1) geodesics starting or terminating at x. The betweenness centrality
βc(x) of a vertex x is defined, for a uniquely geodesic graph, as the number of
shortest paths that have x as a vertex (this includes those geodesics starting at x

or terminating at x). For uniformly defined demand, that is, Λd(x, y) = 1,∀x �= y,
the connection between the traffic rate and the betweenness is easily seen to be

τ(x) = 2(βc(x) − 2(N − 1)) + 2(N − 1) = 2βc(x) − 2(N − 1).

3. Basic Conjectures

For the sake of simplicity, we introduce a network curvature concept restricted
to planar communication graphs and based on Alexandrov angles [Bridson and
Haefliger 99].

Let (ab1 = abdeg(a)+1 , ab2 , . . . , abdeg(a)) be a cyclic ordering of the set of edges
attached to the vertex a. A geodesic triangle is defined as

∆abc = [a, b] ∪ [b, c] ∪ [c, a].

The Alexandrov angle αk at the vertex a of the geodesic triangle ∆abk bk+1 is

αk = cos−1 d(a, bk )2 + d(a, bk+1)2 − d(bk , bk+1)2

2d(a, bk )d(a, bk+1)
.
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Then the (Gaussian) curvature at the vertex a is defined as

κ(a) =
2π −

∑deg(a)
i=1 αk∑deg(a)

k=1 area(∆abk bk+1)
,

where area(∆abk bk+1) denotes the area of the geodesic triangle ∆abk bk+1, easily
computable from the distances via Heron’s formula.

It is easily seen that for the number-of-hops metric (w(e) = 1), we have αk =
π/6; therefore, κ(a) < 0, κ(a) = 0, or κ(a) > 0 depending on whether deg(a) > 6,
deg(a) = 6, or deg(a) < 6, respectively.

This simple definition is introduced to construct some easily understood illus-
trative examples. In the main body of the paper, though, we will use the Gromov
definition of negative curvature for graphs (see Section 5).

Definition 3.1. [Jost 97] The moment of inertia of a connected weighted graph G

with respect to a vertex v is defined as φ
(2)
G (v) =

∑
v i ∈V d2(v, vi).

Since the edges are treated as massless, this concept refers more to the under-
lying metric space structure (V, d) than to the weighted graph structure (V,E, d).
Observe that this inertia may be infinite.

Definition 3.2. [Jost 97] A center of mass or centroid of the weighted graph G

is defined as a vertex that achieves the infimum of the inertia: φ
(2)
G (cm(G)) =

infv∈V φ
(2)
G (v) < ∞.

If the graph is infinite (|V | = ∞), this definition requires existence of a vertex
v such that φ

(2)
G (v) < ∞. If we relax the minimum to be anywhere on the graph,

it will in general be achieved on an edge, but restricting it to vertices makes it
easier to relate it to the traffic.

We can now pose our conjectures.

Conjecture 3.3. (Negative curvature.) Consider a large but finite (|V | < ∞) negatively
curved graph G, subject to uniformly distributed demand. Then:

1. There are a very few nodes v that have very high traffic rate τ(v) as mea-
sured by βc(v); furthermore, the vertices of highest traffic rate are in a small
neighborhood of the vertices of minimum inertia.

2. If the graph has a symmetry group that fixes some point 0, this point
achieves the unique minimum of the inertia and the maximum of the traffic
rate.
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The first part of this conjecture is illustrated on planar graphs in Section 4.
As a model of a large negatively curved graph, it is tempting to take the full hy-
perbolic space H

n . The latter is (globally) affine symmetric [Helgason 00, Chap-
ter IV], [Jost 98, Section 6.2], [Kobayashi and Nomizu 96, Chapter XI, Example
10.2], and the transitivity of the symmetry group [Kobayashi and Nomizu 96,
XI, Theorem 1.4] would make the traffic uniformly distributed if it weren’t for
the lack of convergence of the traffic function for uniformly distributed demand
on infinite space.

Restricting the network model to finite subsets of H
n breaks enough of the

symmetry to create traffic spikes, even asymptotically as the size increases to
infinity. An estimate of how close the center of mass and the point of maximum
traffic are seems to be beyond our reach for general network models, at least at
this stage. However, for hyperbolic balls, we prove that the two coincide and, as
our major result, that the sharpest traffic spike scales as vol(G)2 .

Conjecture 3.4. (Nonnegative curvature.) Consider a large but finite (|V | < ∞) nonnega-
tively curved graph G subject to uniformly distributed demand. Then:

1. Both the traffic and inertia functions τ and βc are more evenly distributed
than in the case of a negatively curved graph.

2. If the graph has a vertex-transitive symmetry group, then both the traffic
and the inertia are uniform.

Even though this conjecture asserts that for both zero-curvature graphs (e.g.,
Euclidean lattices) and positively curved graphs, the traffic is more smoothly
distributed than in the case of negatively curved graphs, there is a significant
difference between the two cases. A Euclidean lattice graph could be infinite,
while positively curved (cubic) graphs are finite by Higuchi’s theorem [DeVos
and Mohar 07, Higuchi 01, Réti et al. 05, Sun and Yu 04]. Positively curved
graphs need not be truncated and hence enjoy more symmetry than truncated
Euclidean or hyperbolic graphs. This point is easy to illustrate on the 1-skeletons
of the boundaries of the Platonic solids, all of which are positively curved. (For
those Platonic solids that have triangular faces, the above curvature formula
applies; for the other Platonic solids, the more general Higuchi–Mohar–DeVos
formula [DeVos and Mohar 07] should be applied.) The transitivity of the
symmetry groups of the Platonic solids, together with the uniform distri-
bution of the demand, implies the uniform distribution of the traffic on the
boundary graphs. For more general positively curved graphs, this conjecture
is proved using a Riemannian manifold model with its curvature bounded
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as 0 < k2
1 ≤ κ(x) ≤ k2

2 . Here the symmetry is broken by the nonisotropic
curvature.

Truncating E
n to secure convergence results in symmetry-breaking, creating

traffic “bumps,” not as sharp as those of the negatively curved case, but sharper
than those in the positively curved spaces. This statement is quantified by show-
ing that the maximum traffic scales as vol(G)1+1/n .

4. Some Examples

We consider two simple examples: The first one (symmetric graph) highlights
the worsening of the congestion as the curvature decreases. The second one
(asymmetric graph) highlights the relationship between the curvature and the
inertia.

4.1. Almost Symmetric Graph: Congestion versus Curvature

We construct a graph from a single vertex (#1) followed by the addition of seven
neighbors (#2–#8) in a counterclockwise sense, as shown in Figure 1, top. We
then proceed from vertex #2 and add vertices #9, #10, #11, #12, so that vertex
#2 has valence 7. We then add neighbors to vertex #3, and proceed recursively,
until we obtain the graph shown in Figure 1, top. With seven neighbors for
each vertex, except the boundary ones, the graph is negatively curved, because

Figure 1. Top: Almost symmetric negatively curved network of valence 7. Bot-
tom: Traffic function 2βc , “number of visits,” versus vertex number; clearly, con-
gestion at the centroid increases as the curvature becomes more negative. Also
shown is the traffic function after curvature-based load balancing (see [Lou 08]
for details).
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Figure 2. Scatter plot of traffic, measured as number of visits 2βc , and iner-
tia φ(2) on planar graphs of valence 7 and 8. The valence-7 graph is shown
in Figure 3; the valence-8 graph is a valence-8 version of the same graph. Ob-
serve that the (φ(2) , βc ) data seem to cluster around a relationship of the form
φ(2) × βc = constant. From the scatter plot, it is quite obvious that the maximum
traffic occurs at the minimum inertia, and on the other hand, the minimum traffic
occurs at the maximum inertia.

∑7
i=1 αi = 7 × π

3 > 2π. For the traffic simulation, the construction is iterated
until 100 vertices are obtained. The same construction can be used to generate
graphs of valence 6 (vanishing curvature) and 8 (negative curvature). The plots
of Figure 1, bottom, clearly demonstrate that the maximum congestion worsens
as the curvature becomes more negative.

4.2. Asymmetric Graph: Congestion versus Inertia

Here we consider a graph of valence 7, constructed the same way as in the
preceding case, except that some “appendices” have been deliberately added to
make the graph asymmetric. The results are shown in Figures 2 and 3. Because
the graph is negatively curved, and as conjectured, the traffic has its maximum
precisely at the point where the inertia is minimal, we observe that the traffic
and the inertia are inversely proportional.
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Figure 3. Spatial distribution of traffic on a planar graph of valence 7; the graph
has been made asymmetric so that the centroid does not coincide with the obvious
symmetry center. The centroid occurs at vertex #14. Also observe the heavy
traffic at vertex #4, because it is the gateway between the top appendix and the
right side of the network.

5. From Graphs to Riemannian Manifolds

As stated in the introduction, it has become standard routine in complex net-
works to check their Gromov negatively curved property as a way to validate
arguments based on such models as the Poincaré disk. For the sake of mathe-
matical accuracy, we formulate the basic definition and result.

Definition 5.1. A geodesic metric space (G, dG ), for example a graph, is said to
be Gromov hyperbolic if there exists a δ < ∞ such that every geodesic triangle
�abc has an inscribed triangle �xyz, x ∈ [b, c], y ∈ [a, c], z ∈ [a, b], of perimeter
not exceeding δ, that is, d(x, y) + d(y, z) + d(z, x) ≤ δ.

This definition makes sense only for infinite graphs. Even though there exists
a Gromov concept for finite graphs [Jonckheere et al. 08], we really do not need
the latter here, since our congestion analysis is asymptotic for very large graphs
(or manifolds).



Jonckheere et al.: Euclidean versus Hyperbolic Congestion in Idealized versus Experimental Networks 11

Theorem 5.2. [Bonk and Schramm 00] Let (G, dG ) be a Gromov hyperbolic metric
geodesic space with bounded growth at some scale. Then there exist an integer n,
a convex subset D ⊆ H

n , constants λ, k, and a map f : G → D such that

|λdG (u, v) − dD (f(u), f(v))| ≤ k, ∀u, v ∈ G,

and supx∈D dD (x, f(G)) ≤ k.

This theorem makes precise the somewhat loose statement made in the in-
troduction regarding graph–manifold identification. Clearly, G, after a scaling λ,
can be identified with D via f and subject to a bounded error k. The condition of
bounded growth at some scale is satisfied, for example, when G is a finite-valence
graph.

Since this graph–manifold identification entails a bounded error, large-scale
problems on graphs can be mapped to more manageable continuous geometry
problems on manifolds.

6. Differential-Geometric Proof of Conjectures

To justify our numerical results related to congestion on planar graphs of uniform
valence 7, 8, 9, we could develop a Poincaré disk model (see Figure 4, right panel).
The latter is a faithful model in the sense that the graphs of valence 7, 8, 9 are
quasi-isometric to the Poincaré disk. Recall that the Poincaré disk

D = {z = x + jy ∈ C : |z| < 1}

Figure 4. Traffic load in Euclidean space and Poincaré disk, the latter taken as
a model of H

2 . The radii of the balls in the complex plane model are written
r̄, R̄, and the corresponding hyperbolic measurements are r = tanh−1 (r̄), R =
tanh−1 (R̄).
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inherits its hyperbolic structure through the metric

ds2 =
4 dz dz̄

(1 − |z|2)2
.

The latter leads to the area element

d area =
4 dx dy

(1 − |z|2)2
.

In the spirit of generalization, we develop models in the hyperbolic space H
n ,

even in a Riemannian manifold M with arbitrary Riemannian metric ds2 and
volume form d vol, provided its sectional curvature is bounded as −k2

2 ≤ κ(x) ≤
−k2

1 < 0. To emphasize the role of the curvature, we also look at the Euclidean
space E

2 as a model of graphs of valence 6 and further generalize the results
to E

n .

6.1. Hyperbolic versus Euclidean Traffic Load

Consider, in a Riemannian manifold M , a large ball BR (0) of radius R with its
center at the origin together with a convex subset X ⊂ BR (0). The traffic load
in X is defined as (compare with (2.1))

Λt(X) =
∫∫

(s,t)∈BR (0)×BR (0)
� (X ∩ [s, t]) dΛd(s, t).

As for the graph model, in this Riemannian context, the demand is uniformly
distributed in the sense that dΛd(s, t) is the product volume d vol(s) d vol(t). The
normalized traffic load in X is defined as follows:

λt(X) :=
Λt(X)

vol(BR (0))2 (6.1)

=
1

vol (BR (0))2

∫∫
(s,t)∈BR (0)×BR (0)

� (X ∩ [s, t]) dΛd(s, t).

We take the hyperbolic plane H
2 as a roughly similar model of an infinite nega-

tively curved planar graph [Bonk and Schramm 00] and carry over the analysis
to n dimensions. In order to secure convergence of the traffic load, we restrict
ourselves to the finite domain BR (0) ⊂ H

n , representative of a large but finite
negatively curved graph G, and then we do the asymptotic analysis as R → ∞.

We now state our two major results. The proofs are in the appendix (Sec-
tion 10):
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Theorem 6.1. If BR (0) and X = Br (0), r 
 R, are concentric balls in H
n and if

dΛd(s, t) is the product volume measure, we have

λt(Br (0)) � c1(n)rn ,

where c1(n) > 0. Furthermore, in a Riemannian manifold of curvature bounded
as −k2

2 ≤ κ(x) ≤ −k2
1 < 0 ∀x ∈ M , the asymptotic traffic load is bounded as

ck1 (n)rn ≤ λt(X) ≤ ck2 (n)rn .

Theorem 6.2. If BR (0) and X = Br (0), r 
 R, are n-dimensional Euclidean balls
(vanishing curvature) and if dΛd(s, t) is the product volume measure, we have

λt(Br (0)) � c0(n)
rn

Rn−1

for some constant c0(n) > 0, independent of r,R.

Probably the most important conclusion to be drawn from the preceding two
theorems is that the normalized traffic load in the small hyperbolic ball Br (0)
remains bounded from below as R → ∞, whereas the same normalized traffic
but in the small Euclidean ball goes to zero as R → ∞. Figure 4 provides an
intuitive explanation as to why this discrepancy happens. Because the hyperbolic
geodesics are “arched” toward the center where the small ball lies, their average
length in the small hyperbolic ball is much larger than in the small Euclidean
ball.

Figure 4 gives a clue about elementary proofs of Theorems 6.1 and 6.2 in two
dimensions. Clearly, the natural parameterization of the s(x, y), t(x′, y′) points
in the traffic load integral is via polar coordinates; the difficulty is to compute
the Jacobian from dx dy dx′dy′, (respectively,

dx dy dx′dy′

(1 − (x2 + y2))2(1 − (x′2 + y′2))2 )

to the area-squared element in polar coordinates of Euclidean (respectively hy-
perbolic) space. The details are available in [Lou 08]; this elementary but more
explicit proof yields a specific value for c0(2) = 1/π. The proof in the appendix
is much more conceptual.

Observe that besides its definition as the traffic load, λt could be interpreted
in another way. Instead of (6.1), consider the following:

1
vol(BR (0))2

∫∫
BR (0)×BR (0)

IX∩[s,t](s, t)dΛd(s, t),

where IX∩[s,t](s, t) = 1 if X ∩ [s, t] �= ∅ and 0 otherwise. The above is clearly the
proportion of communication paths transiting through X. If X is between two



14 Internet Mathematics

balls, that is, Br1 (0) ⊆ X ⊆ Br2 (0), the above is of order λt(X)/ri . Thus λt(X)
can be interpreted as the percentage of traffic passing through X.

6.2. Minimum Inertia

Let D ⊂ M be a convex domain of finite volume in a Riemannian manifold with
distance d(·, ·). For x ∈ D, define (compare with Definition 3.1)

φ
(p)
D (x) =

∫
D

d(x,x′)pd vol(x′).

For p = 2, the above is called the moment of inertia of D relative to x. Next,
assume that there exists a point cm(D) ∈ D such that (compare with Defini-
tion 3.2)

φ
(p)
D (cm(D)) = inf

x∈D
φ(p)(x) < ∞.

For p = 2, cm(D) is called a center of mass or centroid of D (see [Jost 97, Defini-
tion 3.2.1]). This concept was apparently introduced by Élie Cartan [Berger 00,
p. 47].

Arguments related to existence and uniqueness of the center of mass rely on
strict convexity of x �→ d(x,y)p and x �→ φ(p)(x). In negatively curved spaces,
p ≥ 1 suffices, whereas in nonpositively curved spaces (e.g., Euclidean spaces) the
stricter condition p > 1 is required for strict convexity. If φ(p) is strictly convex,
uniqueness is guaranteed [Jost 97, Lemma 3.1.1].

Theorem 6.3. Let M be a complete Riemannian manifold with its curvature
bounded as −k2

2 ≤ κ(x) ≤ −k2
1 < 0. Then the inertia of BR (0) ⊂ M relative to

the point x,

φ
(2)
BR (0)(x) =

∫
BR (0)

d(x,x′)2d vol(x′),

has a unique minimum; furthermore, for k1 = k2 , this minimum is x = 0.

Proof. Obviously, M is a complete Riemannian manifold of nonpositive curvature,
and hence it is a Busemann nonpositively curved (NPC) space [Jost 97, p. 45].
Define the measure µ(·) = vol(·)IBR (0)(·), where IBR (0) denotes the indicator of
BR (0) ⊂ M . Obviously, the measure µ has finite support and µ(BR (0)) < ∞.
Therefore, by [Jost 97, Theorem 3.2.1],∫

M

d(x,x′)2µ(dx′) =
∫

BR (0)
d(x,x′)2d vol(x′)
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is finite and has a unique infimum. Furthermore, if k1 = k2 = 1, then M has
orientation-preserving isometry group SO+(n, 1). Under the subgroup that fixes
0, BR (0) is invariant, and therefore φ

(2)
BR (0) has the same symmetries. Therefore,

the only way to secure uniqueness of the infimum is x∗ = 0.

Obviously, whenever D has a nontrivial symmetry group that fixes some point
0, the minimum inertia is unique and occurs at 0.

6.3. Maximum Load

Theorem 6.4. Restricted to convex subsets X of BR (0) ⊂ H
n with the same hy-

perbolic volume, λt(X) reaches its maximum for a ball centered at the origin
of BR (0).

Proof. The proof is a corollary of the proof of the appendix. First, observe that
µk (x) is spherically invariant, that is, µk (x) = µk (Sx), for all S in the subgroup
of SO+(n, 1) that fixes 0. Set µk (‖x‖) as the common value of µ(x) for x ∈
∂B‖x‖(0).

Next, we want to prove that∫
S n −1

x

∫ e(�v )

0

∫ e(−�v )

0
shn−1

k (x + y) dx dy d�v

subject to the restriction that e(�v) + e(−�v) = E is maximal for e(�v) = e(−�v).
This is proved using the augmented functional∫

S n −1
x

∫ e(�v )

0

∫ e(−�v )

0
shn−1

k (x + y) dx dy + L(e(�v) + e(−�v)),

where L is the Lagrange multiplier. Setting the partial derivatives relative to
e(�v) and e(−�v) to zero yields∫

S n −1
x

∫ e(−�v )

0
shn−1

k (e(�v) + y)dy + L = 0,

∫
S n −1

x

∫ e(�v )

0
shn−1

k (x + e(−�v)) dx + L = 0.

Clearly, the above yields e(�v) = e(−�v), and the maximum is monotone increasing
with E. It follows that

µk (‖x‖) ≤ 1
vol(BR (0))2

∫
S n −1

x

∫ R

0

∫ R

0
shn−1

k (x + y) dx dy d�v.

But

µk (0) =
1

vol(BR (0))2

∫
S n −1

0

∫ R

0

∫ R

0
shn−1

k (x + y) dx dy d�v.
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Thus µk (‖x‖) reaches its maximum at x = 0. Furthermore, it is obviously sym-
metric for the subgroup of SO+(n, 1) that fixes 0. Finally, from the appendix,
µk (‖x‖) is monotone decreasing with ‖x‖.

It remains to show that the optimal way to distribute the volume allocated to
X is in a ball around 0. First, we show that if inf λt(X) is achieved for some X∗

that does not enjoy the symmetry under the action of the subgroup of SO+(n, 1)
that fixes 0, then the same λt(X∗) can be achieved for another subset that has
the symmetry but cannot be optimal.

Decompose the big ball as BR (0) = �m−1
i=0 A[ri, ri+1), where A[ri, ri+1) is the

annulus {x : ri ≤ d(0,x) < ri+1}. Clearly, there exists an annulus A[ρi, ρi+ ) ⊆
A[ri, ri+1) such that λt(X ∩ A[ri, ri+1)) = λt(A[ρi, ρi+ )). Thus

λt(X) =
∑

i

λt(A[ρi, ρi+ )) and λt(X) =
∑

i

∫ ρi +

ρi

µk (r)T (r) dr,

where T (r) is the transverse measure such that vol(A[r, r + dr)) = T (r)dr, that
is, T (r) is the “area” of the sphere at 0 with radius r. Consider now the con-
strained optimization problem

inf
ρ

∑
i

∫ ρi +

ρi

µk (r)T (r) dr

subject to
∑

i

∫ ρi +

ρi

T (r)dr = vol(X).

Again, a Lagrange multiplier argument proves that optimality cannot hold with
some i such that ρi+ < ρi+1. (The intuition is that since the density µk is mono-
tone decreasing, optimality would require ρi+1 to drop down to ρi+ .) Thus ρ0 = 0
and ρi+ = ρi+1, that is, the presumed optimal annulus collapses to a ball.

When D has a nontrivial symmetry group that fixes some point 0, the above
argument can easily be extended to prove that the maximum traffic occurs for
a subset X having the same symmetry. Hence in this more general situation the
center of mass and the maximum traffic point are colocated.

7. Differential Geometry versus Real Network Congestion

It is argued that no matter how theoretical our model Λt(Br (0)) of the traffic
load is, it is remarkably accurate at predicting how the “load at the center,” here
0, scales with the number of vertices, N , in a real network.
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In [Narayan and Saniee 09], the traffic load at the “center” of a sample of
networks from the Rocketfuel database [Spring et al. 04] has been numerically
found to scale as N 2 . Using scaled Gromov analysis [Jonckheere et al. 08], it
was asserted in [Narayan and Saniee 09] that the networks from that database
are negatively curved. In [Narayan and Saniee 09], the “center” is defined as the
“network core” or the “set of nodes that are at the intersection of the majority of
geodesics.” The latter concept is unmistakably the same as our theoretical center
of mass concept. In the same paper, the authors provide experimental evidence
that the traffic load at the center of Watts–Strogatz small-world 2-dimensional
networks scales as N 1.5 . It is commonly admitted, and it has been proved using
scaled Gromov δ-analysis [Jonckheere et al. 08], that those networks are not
hyperbolic; they are rather Euclidean, even positively curved, in a certain range
of the connectivity and rewiring parameters [Lohsoonthorn 03, Section 6.4.2].

Fact 7.1. [Narayan and Saniee 09] Let βc(v) be the betweenness centrality of the
vertex v in a network.

1. In the Rocketfuel database [Spring et al. 04] of real networks, which are
scaled-Gromov hyperbolic by the definition of [Jonckheere et al. 08], the
maximum traffic rate scales as

max
v

βc(v) = Θ(N 2).

2. For synthetic 2-dimensional Euclidean lattice networks, the maximum traf-
fic rate scales as

max
v

βc(v) = Θ(N 1.5).

To proceed to a continuous-geometry justification of the above, the graphs
are embedded in appropriate manifolds, using the Bonk–Schramm theorem for
a Gromov hyperbolic graph, or using the trivial Euclidean embedding for the
Euclidean lattice graphs. The Bonk–Schramm embedding f : G → D ⊆ H

n maps
the geodesic flow on the graph G to a quasigeodesic flow on the manifold D.
Consider a vertex v on the graph. We clearly have Λt(star(v)) ≈ Λt(Br (f(v))),
for some r of order the mesh of the graph. But as argued in Section 2, Λt(star(v))
scales as τ(v), which scales as βc(v). The continuous-geometry model of the
traffic metric of Fact 7.1 is therefore Λt(Br (x)) for some x ∈ D. Obviously, the
continuous-geometry equivalent of N is

N = vol(D).
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Fact 7.2. (Theorems 6.1 and 6.2.) Let Λt(Br (x)) be the traffic load in a small metric
ball Br (x) embedded in a large metric ball BR (0), where R � r.

� In a hyperbolic ball BR (0) ⊂ H
n , we have

max
x

Λt(Br (x)) = Θ(vol(BR (0))2) = Θ(N 2).

� In a Euclidean ball BR (0) ⊂ E
n , we have

max
x

Λt(Br (x)) = Θ
(

vol(BR (0))2

Rn−1

)
= Θ(N 1+1/n ).

In view of the striking consistency between Facts 7.1 and 7.2, our model cor-
rectly predicts how the maximum traffic load scales as a function of N or the
volume of the manifold.

By the same token, we have extended the Euclidean results of [Narayan and
Saniee 09] to the case n > 2. This generalization allows us to observe that as the
dimension increases, the Euclidean congestion decreases and the gap between
traffic loads in hyperbolic and Euclidean spaces increases.

While there are computational methods to check the Gromov property of a
network [Ariaei et al. 08, Jonckheere et al. 10, Jonckheere et al. 08, Lohsoon-
thorn 03], associating a dimension with a complex network is another matter
entirely. The remarkable feature is that the asymptotic traffic analysis in nega-
tively curved spaces transcends the dimension.

8. The Case of Positive Curvature

The case of a Riemannian manifold positively curved as 0 < k2
1 < κ < k2

2 is sig-
nificantly different from that of a nonpositively curved manifold, because the
diameter of the former is bounded as π/k1 . Furthermore, by the sphere theo-
rem [do Carmo 92, Chapter 13], if k1 = k2/2, the manifold is homeomorphic to
a sphere. Thus, in contrast to the nonpositive curvature case, we cannot take
a very large manifold with fixed positive curvature; so we will have to take an
arbitrarily large manifold of positive curvature decreasing to 0. The first part of
the following theorem is completely trivial; the second part is easily proved by
bounding the integrand of (10.2) and taking the upper limit of the two inner
integrals to be πR = π/k.
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Theorem 8.1. Let M be a connected n-dimensional Riemannian manifold with con-
stant curvature κ = k2 > 0. Then the following hold:

1. Both the normalized traffic λt and the inertia φ
(2)
M over the whole manifold

are uniform.

2. λt(Br (0)) = Θ
(
1/R2n−2

)
, where BπR (0) = M \ {antipodal point of 0}.

Comparing with Theorem 6.2, it is clear that the normalized traffic in posi-
tively curved space decays with n even faster than in the Euclidean case.

Finally, using the comparison formula of the appendix, the following is easily
derived:

Theorem 8.2. Let M be a connected Riemannian manifold with curvature bounded
as k2

1 < κ ≤ k2
2 . Then

µ+
k2

(x) <
dλt(x)

dx
≤ µ+

k1
(x).

Thus, under varying but bounded curvature, the traffic density in a small
neighborhood of x remains bounded between the densities in fixed curvature.
(Observe that by symmetry, µ+

ki
(x), i = 1, 2, are independent of x.)

9. Conclusion

We have provided a mathematical justification of the experimentally observed
fact that negatively curved networks—even with uniform curvature—driven by
uniformly distributed demand have small areas of very high traffic concentra-
tion. Nonnegatively curved networks, on the other hand, do not exhibit this phe-
nomenon as dramatically as negatively curved networks. In fact, uniformly posi-
tively curved networks have uniform traffic distribution; more generally, bounds
on the curvature implies bounds on the maximum traffic.

Since the root cause of congestion in a network is its negative curvature, load
balancing could be achieved by controlling the curvature to become and remain
positive [Lou 08], despite outages and varying demand.

The areas of maximum traffic have been narrowed down to areas of low inertia.
It has been proved that networks with enough symmetry have colocated maxi-
mum traffic and minimum inertia. But as already stated, for general networks,
bounding the distance between the two points is a challenging problem.
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The traffic dealt with here is that driven by a uniformly distributed demand.
The extension to nonuniformly distributed demand is not a major hurdle. It
suffices to redefine the inertia as φ

(2)
G (v) =

∑
v i d2(v, vi)(

∑
j Λd(vi, vj )).

Finally, the present analysis is a spatial one. The temporal component would
bring the dynamics of packet drops and retransmission into the picture. Early
ns-2 simulations have shown that UDP traffic has its maximum packet drop at
the point of maximum traffic and minimum inertia [Lou 08].

From a broader perspective, this paper points to the curvature as being the all-
encompassing parameter regulating network behavior. Certainly, as the present
paper demonstrates, curvature regulates the distribution of the load. In addition,
some recent independent work [Sarkar et al. 09] has pointed to the curvature as
the crucial parameter determining whether greedy forwarding in a sensor network
would be successful.

10. Appendix

10.1. Nonpositively Curved Spaces

Let D be a convex domain in an n-dimensional Riemannian manifold M . Here
convex means that for every s and t in D, there is a unique shortest geodesic,
or shortest path, [s, t] going from s to t and contained in D.

For a subset X of D, we are interested in

λt(X) =
1

vol(D)2

∫
D×D

�(X ∩ [s, t]) ds dt,

where the integral is with respect to the square of the n-dimensional volume of D.
From a dynamical point of view, assuming uniform traffic between pairs of

points of D, and assuming that this traffic travels at unit speed along geodesics,
λt(X) measures the average of the amount of time spent in X.

We provide an estimate for λt(X) when M has nonpositive curvature, and an
exact computation when the curvature is constant.

Consider a point s in D. For every unit vector �v based at s, draw the geodesic
g�v emanating from s in the direction of �v, and let e(�v) be the distance from
s to the point where the geodesic exits D. (This exit point is unique by the
convexity of D.) We can similarly consider the geodesic g−�v emanating from s
in the opposite direction −�v, and the corresponding distance e(−�v).

For k > 0, define

µk (s) =
1

vol(D)2

∫
S n −1

s

∫ e(�v )

0

∫ e(−�v )

0

1
kn−1 sinhn−1(kx + ky) dx dy d�v, (10.1)
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where the outer integral is with respect to the (n − 1)-dimensional volume of the
unit sphere Sn−1

s consisting of all unit vectors �v based at s. The inner double
integral can of course be computed by elementary calculus.

For k = 0, let

µ0(s) =
1

vol(D)2

∫
S n −1

s

∫ e(�v )

0

∫ e(−�v )

0
(x + y)n−1 dx dy d�v.

Theorem 10.1. If the curvature of M is constant and equal to −k2 , then

λt(X) =
∫

X

µk (x) dx.

More generally, if the curvature of M is everywhere bounded between two non-
positive constants −k2

1 and −k2
2 with 0 ≤ k1 ≤ k2 , then∫

X

µk1 (x) dx ≤ λt(X) ≤
∫

X

µk2 (x) dx.

In other words, the quantity λt(X) is estimated by the integral of the density
functions µk .

Proof. Let T be the set of triples (s, t,x) where s, t, x are points of D such that x
is located on the geodesic [s, t] and inside of X. There are two natural measures
that can be put on T .

The first one is the product ds dt d� of the volume in s, the volume in t, and the
arc-length parameter � along the geodesic [s, t]. The reason we are considering
T with this measure is that∫

D×D

�(X ∩ [s, t]) ds dt =
∫
T

ds dt d�.

The second one requires a different description of T . If we consider the unit
vector �v based at x and pointing in the direction of s (so that −�v points in the
direction of t), the distance s from x to s, and the distance t from x to t, then
the three points (s, t,x) are completely determined by the x-based vector �v and
by the numbers s and t ≥ 0.

Recall that the unit tangent bundle T 1X consists of all unit vectors �v based
at points of X. This is a (2n − 1)-dimensional manifold (n dimensions for the
base point, n − 1 for the direction), and the metric of X naturally lifts to a
Riemannian metric on T 1X via the Levi-Civita connection.

The above construction identifies the set T of triples (s, t,x) such that x ∈
X ∩ [s, t] with the subset of T 1X × R × R consisting of those (v, s, t) such that
v is a point of T 1X and such that 0 ≤ s ≤ e(�v) and 0 ≤ t ≤ e(−�v), with e(�v) the
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distance between x and the point e(�v) where the geodesic starting at x along
the direction �v exits D (see Figure 4, right panel). Considering the volume form
dv on T 1X now provides another measure dv ds dt on T .

When the curvature of M is bounded between −k2
1 and −k2

2 , the two mea-
sures ds dt d� and dv ds dt on T can be compared by the standard Riemannian
arguments on the variation of geodesics (using Jacobi fields):

Lemma 10.2.

shn−1
k1

(s + t) dv ds dt ≤ ds dt d� ≤ shn−1
k2

(s + t) dv ds dt,

where shk (x) = 1
k sinh(kx) if k > 0 and s0(x) = x.

Therefore,

λt(X) =
1

vol(D)2

∫
T

ds dt d�

≤ 1
vol(D)2

∫
T

shn−1
k2

(s + t) ds dt dv

=
1

vol(D)2

∫
T 1 X

∫ e(�v )

0

∫ e(−�v )

0
shn−1

k2
(s + t) ds dt dv

=
1

vol(D)2

∫
X

∫
S n −1

x

∫ e(�v )

0

∫ e(−�v )

0
shn−1

k2
(s + t) ds dt d�v dx

=
∫

X

µk2 (x) dx.

Observe that on the fourth line, d�v stands for the (n − 1)-dimensional volume on
the sphere Sn−1

x of unit vectors based at x, whereas dv represents the (2n − 1)-
dimensional volume of T 1X in the two previous lines.

The inequality

λt(X) ≥
∫

X

µk1 (x) dx

is proved by the same argument.

For instance, consider the case that D and X are two concentric balls in an n-
manifold of constant curvature −k2 ≤ 0, of respective radii R and r with r 
 R.
Then, e(�v) � R for every vector �v based at a point of X.

Theorem 10.3. If D and X are two concentric balls of respective radii R and r,
with r 
 R, in the Euclidean space of dimension n, then the proportion λt(X)
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of traffic in D that transits through X is approximately

λt(X) � c0(n)
rn

Rn−1 ,

where c0(n) is an explicit constant depending on the dimension n.
If instead, D and X are concentric balls in n-dimensional hyperbolic space

(where the curvature is −1), then

λt(X) � c1(n)rn .

Proof. Under these hypotheses, λt(X) is of order µk (0)vol(X). Write µk (0) =
Mk (0)/vol(D)2 , where Mk (0) is the triple integral. Then e(�v) � R for every
vector �v based at a point of X. Therefore, in the Euclidean case, M0(0) is
of order Rn+1, vol(D) is of order Rn , and λt(X) is of order rn/Rn−1 . In the
hyperbolic case, M1(0) is of order e2(n−1)R , vol(D) is of order e(n−1)R , and thus
λt(X) is of order vol(X), which is itself of order rn for r small.

Note the independence of R in the negatively curved case.

Proof of Lemma 10.2. The Jacobi field equation [do Carmo 92] in the hyperplane
orthogonal to the geodesic [x, e(�v)] in the n-manifold M of constant curvature
−k2 reads d2 J (s)

ds2 − k2J(s) = 0. If dxi = J(0), i = 1, . . . , n − 1, is a linear element
orthogonal to the geodesic at x and dθi = J ′(0) is the elementary angle on the
sphere Sn−1

x , then the solution to the Jacobi field equation at s reads, with a
similar solution for [x, e(−�v)] at t,

dsi =
1
k

sinh(ks)dθi + cosh(ks)dxi,

dti = −1
k

sinh(kt)dθi + cosh(kt)dxi.

In the above, dsi , dti are the variations of the geodesic in the orthogonal hy-
perplane at s, t, respectively. The volume defined by the variation of s at s

is ds = (∧n−1
i=1 dsi)ds. Clearly, ∧n−1

i=1 dsi is the transverse variation and ds is the
longitudinal variation. A similar statement holds for dt. Because of the skew-
symmetry of exterior differential forms, it is convenient to introduce the notation
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θ
σ= ω to denote θ = (−1)n−1ω. With this notation, we get

ds ∧ dt ∧ d�
σ= ∧n−1

i=1 (dsi ∧ dti) ∧ ds ∧ dt ∧ d�

σ= ∧n−1
i=1

(
1
k

sinh(k(s + t))dθi ∧ dxi

)
∧ ds ∧ dt ∧ d�

σ=
(

1
k

sinh(k(s + t))
)n−1 (

∧n−1
i=1 dθi ∧ dxi

)
∧ d� ∧ ds ∧ dt

= shn−1
k (k(s + t))(∧n−1

i=1 dθi) ∧
((
∧n−1

i=1 dxi

)
∧ d�

)
∧ ds ∧ dt

= shn−1
k (k(s + t))

(
d�v ∧ ((∧n−1

i=1 dxi) ∧ d�)
)
∧ ds ∧ dt

= shn−1
k (k(s + t)) (d�v ∧ dx) ∧ ds ∧ dt

= shn−1
k (k(s + t))dv ∧ ds ∧ dt.

Observe that to go from the second to the third line, we need skew-commutativity
of ∧ along with some elementary hyperbolic trigonometry. The inequality follows
from the Rauch comparison argument [Kobayashi and Nomizu 96, VIII, Theo-
rem 4.1], which in this context refers to the monotone increasing property of the
solution shk (x) to the Jacobi field equation with k.

We finish this section with two corollaries that are useful in the main body of
the text. A notation needs to be made more explicit: ex(�v) denotes the length of
the geodesic shot from x in the direction �v and terminating at ∂BR (0).

Corollary 10.4. For fixed �v, ex(�v) + ex(−�v) is strictly monotone decreasing with ‖x‖.

Proof. Let ex(�v) be the point where the geodesic starting at x with direction �v exits
BR (0). With a mild abuse of notation, we will let �v denote the angle between the
radial [0,x] and the tangent to the geodesic at x. The same definition applies to
ex(−�v). Because H

n is isotropic, the geodesic [ex(−�v), ex(�v)] is contained in a
plane, which itself contains x and 0. Let [0,p] be the radial orthogonal to that
geodesic. In the right triangle �0pex(�v)), we get

cosh
(

1
2
‖ex(�v)ex(−�v))‖

)
=

cosh R

cosh(‖0p‖) .

On the other hand, in the right triangle �xp0, we have sinh ‖0p‖ = cosh(x) sin�v.
It follows that

cosh
(

1
2
‖ex(�v)ex(−�v))‖

)
=

cosh R√
1 + cosh2 x sin2 �v

,

and from this the result is obvious.
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Corollary 10.5. For k > 0, the density function µk (s) is strictly monotone decreasing
with ‖s‖.

Proof. It is easily seen that the double inner integral in the definition (10.1) of
µk is a polynomial in the variables exp(±ki(es(�v) + es(−�v)), where i is some
power. From the same definition, it is also obvious that the inner double integral
is monotone increasing with es(�v) + es(−�v). But by the previous corollary, the
latter is monotone decreasing with ‖s‖. Thus the double inner integral in (10.1)
is monotone decreasing with ‖s‖, and so is the average over the sphere Sn−1

s .

10.2. Positively Curved Spaces

The case of uniformly positive curvature κ = k2 > 0 is treated in a way parallel
to the preceding one. The difference resides in the Jacobi field equation, which
now takes the form d2J(s)/ds2 + k2J(s) = 0, with a solution involving ordinary
trigonometric functions rather than hyperbolic trigonometric functions. There-
fore, if for some bounded subset D of the space of curvature k2 we define

µ+
k (s) =

1
vol(D)2

∫
S n −1

s

∫ e(�v )

0

∫ e(−�v )

0

1
kn−1 sinn−1(k(x + y)) dx dy d�v, (10.2)

the normalized traffic load in X ⊂ D is given by

λt(X) =
∫

X

µ+
k (x)dx.

In a Riemannian manifold with its curvature bounded as 0 < k2
1 ≤ κ ≤ k2

2 , we
have ∫

X

µ+
k2

(x)dx ≤ λt(X) ≤
∫

X

µ+
k1

(x)dx.
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