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Criteria for Cluster-Based
Personalized Search
Hyun Chul Lee and Allan Borodin

Abstract. We study personalized web-ranking algorithms based on the existence
of document clusterings. Motivated by topic-sensitive page ranking [Haveliwala 03],
we develop and implement an efficient “local-cluster” algorithm by extending the web
search algorithm of [Achilioptas et al. 01]. We propose some formal criteria for evalu-
ating such personalized ranking algorithms and provide some preliminary experiments
in support of our analysis. Both theoretically and experimentally, our algorithm differs
significantly from Topic-Sensitive PageRank.

1. Introduction

Due to the size of the current Web and the diversity of user groups using it,

the current algorithmic search engines are not completely ideal for dealing with

queries generated by a large number of users with different interests and prefer-

ences. For instance, it is possible that some users might input the query “Star

Wars” with their main topic of interest being “movie” and therefore expecting

pages about the popular movie as results of their query. On the other hand,

others might input the query “Star Wars” with their main topic of interest

being “politics” and therefore expecting pages about proposals for deployment

of a missile defense system. (Of course, in this example, the user could eas-

ily disambiguate the query by adding, say, “movie” or “missile” to the query

terms.)
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To expedite simple searches as well as to try to accommodate more complex

searches, web search-personalization has recently gained significant attention for

handling queries produced by diverse users with very different search intentions.

The goal of web-search personalization is to allow the user to expedite web search

according to personal search preference or context.

There is no general consensus on exactly what web search personalization

means, and moreover, there have been no general criteria for evaluating person-

alized search algorithms. The goal of this paper is to propose a framework that

is general enough to cover many real application scenarios and yet is amenable

to analysis with respect to correctness in the spirit of [Achilioptas et al. 01] and

with respect to stability properties in the spirit of [Ng et al. 01] and [Lee and

Borodin 03] (see also [Borodin et al. 05, Donato et al. 05]). We achieve this

goal by assuming that the targeted web service has an underlying cluster struc-

ture. Given a set of clusters over the intended documents in which we want to

perform personalized search, our framework assumes that a user’s preference is

represented as a preference vector over these clusters. A user’s preference over

clusters can be collected either online or offline using various techniques [Qiu

and Cho 06, Chirita et al. 05, Teevan et al. 05, Ferragina and Gulli 05].

We do not address how to collect the user’s search preferences, but we simply

assume that such preferences (possibly with respect to various search features)

are already available and can be translated into search preferences over given

cluster structures of targeted documents.

We define a class of personalized search algorithms called “local-cluster” algo-

rithms that compute each page’s ranking with respect to each cluster containing

the page rather than with respect to every cluster. We propose a specific local-

cluster algorithm by extending the approach taken in [Achilioptas et al. 01]. Our

proposed local-cluster algorithm considers linkage structure and content gener-

ation of cluster structures to produce a ranking of the underlying clusters with

respect to a user’s given search query and preference. The rank of each document

is then obtained through the relation of the given document with respect to its

relevant clusters and the respective preference of these clusters.

Our algorithm is particularly suitable for equipping already existing web ser-

vices with a personalized search capability without affecting the original ranking

system.

Our framework allows us to propose a set of evaluation criteria for personalized

search algorithms. We observe that Topic-Sensitive PageRank [Haveliwala 03],

which is probably the best-known personalized search algorithm in the literature,

is not a local-cluster algorithm and does not satisfy some of the criteria that

we propose. In contrast, we show that our local-cluster algorithm satisfies the

suggested properties.
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Our main contributions are the following:

• We define a personalized search algorithm that provides a more practi-

cal implementation of the web search model and algorithm proposed in

[Achilioptas et al. 01].

• We propose some formal criteria for evaluating personalized search algo-

rithms and then compare our proposed algorithm and the Topic-Sensitive

PageRank algorithm based on such formal criteria.

• We experimentally evaluate the performance of our proposed algorithm

against that of the Topic-Sensitive PageRank algorithm.

2. Motivation

We believe that our assumption that the web service to be personalized admits

cluster structures is well justified. For example, we mention the following:

• Human-generated web directories : In web sites like Yahoo! and Open Di-

rectory Project (DMOZ), web pages are classified into human-edited cat-

egories (possibly machine-generated as well) and then organized in a tax-

onomy. In order to personalize such systems, we can simply take the leaf

nodes in any pruning of the taxonomy tree as our clusters.

• Geographically sensitive search engines: Sites like Yahoo! Local, Google

Local, and Citysearch classify reviews, web pages, and business information

of local businesses into different categories and locations (e.g., city level).

Therefore, in this particular case, a cluster would correspond to a set of

data items or web pages related to the specific geographic location (e.g.,

web pages about restaurants in Houston, Texas).

We note that the same corpus can admit several cluster structures using dif-

ferent features. For instance, web documents can be clustered according to

features such as topic (Yahoo!, DMOZ, Topix, Gnews, About) whether com-

mercially or educationally oriented (Yahoo! Mindset), domain type, language,

etc. Our framework allows incorporating various search features into web-search

personalization because it works at the abstract level of clustering structures.

3. Preliminaries

Let GN (or simply G) be a web-page collection (with content and hyperlinks)

of node size N , and let q denote a query string represented as a term vector.



402 Internet Mathematics

Let C = C(G) = {C1, . . . , Cm} be a clustering (not necessarily a partition) for G

(i.e., each x ∈ G is in Ci1 ∩ · · · ∩ Cir for some i1, . . . , ir). For simplicity we will

assume that there is a single clustering of the data but that there are a number

of ways that we can extend the development when there are several clusterings.

We define a cluster-sensitive page-ranking algorithm μ as a function with values

in [0, 1] where μ(Cj , x, q) will denote the ranking value of page x relative to cluster

Cj with respect to query q.1

We define a user’s preference as a [0, 1]-valued function P , where P (Cj , q)

denotes the preference of the user for cluster Cj (with respect to query q). We

call (G, C, μ, P, q) an instance of personalized search, that is, a personalized search

scenario where there exist a user having a search preference function P over a

clustering C(G), a query q, and a cluster-sensitive page-ranking function μ. Note

that either μ or P can be query-independent.

Definition 3.1. Let (G, C, μ, P, q) be an instance of personalized search. A personal-

ized search ranking (PSR) is a function that maps GN to an N -dimensional real

vector by composing μ and P through a function F ; that is,

PSR(x) = F (μ(C1, x, q), . . . , μ(Cm, x, q), P (C1, q), . . . , P (Cm, q)).

For instance, F might be defined as a weighted sum of μ and P values.

4. Previous Algorithms

4.1. Modifying the PageRank Algorithm

Due to the popularity of the PageRank algorithm [Brin and Page 98], the first

generation of personalized web search algorithms were based on the original

PageRank algorithm by manipulating the teleportation factor of the PageRank

algorithm. In the PageRank algorithm, the rank of a page is determined by the

stationary distribution of a modified uniform random walk on the Web graph.

Namely, with some small probability ε > 0, a user at page i uniformly jumps to

a random page, and otherwise with probability (1 − ε) jumps uniformly to one

of its neighboring pages.2 That is, the transition probability matrix is given by

PA
ε = ε · U + (1− ε) · A, where U = evT is the teleportation factor matrix with

e = (1, 1, . . . , 1) and v a uniform probability vector defined by vi = 1/N , and

A = (aij) with aij = 1/outdeg(i) if (i, j) is an edge and zero otherwise. The

1Our definition allows and even assumes a ranking value for a page x relative to Cj even
if x /∈ Cj . Most content-based ranking algorithms provide such a ranking, and if not, we can
then assume that x has rank value 0.

2When page i has no hyperlinks (i.e., outdeg(i) = 0), it is customary to let ε = 1.
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first generation of personalized web-search algorithms introduced some bias, re-

flecting the user’s search preference, by using nonuniform probabilities on the

teleportation factor (i.e., controlling v). Among these, we have Topic-Sensitive

PageRank [Haveliwala 03], Modular PageRank [Jeh and Widom 03], and Block-

Rank [Kamvar et al. 03]. In this paper, we restrict analysis to Topic-Sensitive

PageRank.

4.1.1. Topic-Sensitive PageRank. One of the first proposed personalized search-ranking

algorithms was Topic-Sensitive PageRank [Haveliwala 03]. It computes a topic-

sensitive ranking (i.e., cluster-sensitive in our terminology) by constraining the

uniform jumping factor of a random surfer to each cluster. That is, when com-

puting the PageRank vector with respect to cluster Cj of pages, we use the

personalization vector vj , where

vji =

{
1

|Tj | if i ∈ Cj ,

0 if i /∈ Cj .

More precisely, the page-rank vector with respect to the cluster Cj is then com-

puted as the solution to TR(Cj) := (1− ε) ·AT ·TR(Cj)+ ε · vj . We note that if

there exists y ∈ Cj with a link to x, then TR(x,Cj) �= 0 whether or not x ∈ Cj .

During query time, the cluster-sensitive ranking is combined with a user’s search

preference. Given query q, using (for example) a multinomial naive-Bayes clas-

sifier, we compute the class probabilities for each of the clusters, conditioned on

q. Let qi be the ith term in the query q. Then given the query q, we compute

for each Cj the following:

Pr(Cj | q) = Pr(Cj) · Pr(q | Cj)

Pr(q)
∝ Pr(Cj) ·

∏
i

Pr(qi | Cj). (4.1)

Then Pr(qi | Cj) is easily computed from the class term vector Dj. The quantity

Pr(Cj) is not as straightforward. In the original Topic-Sensitive PageRank,

Pr(Cj) is chosen to be uniform. Certainly, more advanced techniques can be used

to better estimate Pr(Cj). To compute the final rank, we retrieve all documents

containing all query terms using a text index. The final query-sensitive ranking

of each of these pages is given as follows: For page x, we compute the final

importance score TSPR(x, q) as TSPR(x, q) =
∑

Cj∈C Pr(Cj | q) · TR(x,Cj).

Then the Topic-Sensitive PageRank algorithm is a personalized search-ranking

algorithm with μ(Cj , x, q) = TR(x,Cj) and P (Cj , q) = Pr(Cj | q).

4.2. Other Personalized Systems

In [Aktas et al. 04], the Topic-Sensitive PageRank algorithm is employed at the

level of URL features such as Internet domain names. In [Chirita et al. 05],
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the authors extend the Modular PageRank algorithm [Jeh and Widom 03]. In

[Chirita et al. 05], rather than using an arduous process for collecting the user’s

profile as in Modular PageRank, the user’s bookmarks are used to derive the

user profile. The algorithm augments the pages obtained in this way by finding

their related pages using the Modified PageRank and HITS algorithms.

Most content-based web-search personalization methods are based on the idea

of reranking the returned pages in the collection using the content of pages

(represented as snippet, title, full content, etc.) with respect to the user profile.

Some content-analysis-based personalization methods consider how to collect

user profiles as part of their personalization frameworks. In [Liu et al. 02],

the authors propose a technique for web-search personalization that maps a

user query to a set of categories that represent the user’s search intention. A

user profile and a general profile are learned from the user’s search history and

a category hierarchy respectively. Later, these two profiles are combined to

map a user query into a set of categories. In [Chirita et al. 05], the authors

propose a way of performing web search using the ODP (Open Directory Project)

metadata. First, the user has to specify a search preference by selecting a set

of topics (hierarchical) from the ODP taxonomy. Then, at run time, the web

pages returned by the ordinary search engine can be resorted according to the

distance between the URL of a page and the user profile. In [Sun et al. 05] is

proposed an approach called CubeSVD (motivated by HOSVD = High-Order

Singular Value Decomposition) that focuses on utilizing click-through data to

personalize the web search. Note that the click-through data are highly sparse,

containing relations among user, query, and clicked web page.

5. A Generative Model and Our Local-Cluster Algorithm

We first define local-cluster algorithms and show how such algorithms can be

derived from an existing document ranking. We then present a generative model

by modifying the model of [Achilioptas et al. 01] so that clusters will now play

the role of documents. This generative model motivates our local-cluster PSP

algorithm and also allows us to formulate a correctness result for the PSP algo-

rithm analogous to the correctness result of [Achilioptas et al. 01]. We note that

like the SP algorithm, PSP is defined without any reference to the generative

model.

5.1. Local-Cluster Algorithms Using an Existing Document Ranking

For a given clustering C, let CS(x) = {Cj ∈ C | x ∈ Cj}. Given an instance

(G, C, μ, P, q) of personalized search, a local-cluster algorithm is a personalized
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search ranking such that PSR(x, q) depends only on clusters Ci ∈ CS(x). A linear

(personalized search) algorithm is given by PSR(x, q) =
∑

j P (Cj , q) ·μ(Cj , x, q).

A linear local search algorithm is therefore one that satisfies

PSR(x, q) = F (μ(C1, x, q), . . . , μ(Cm, i, q), P (C1, q), . . . P (Cm, q))

=
∑

Cj∈CS(x)

P (Cj , q) · μ(Cj , x, q).

We note that TSPR is a linear algorithm but not a local algorithm. Our al-

gorithm personalizes existing web services utilizing existing ranking algorithms.

Our framework assumes that there is a generic page ranking R(x, q) for rank-

ing page x given query q. Using an algorithm CR to compute the ranking for

clusters, we compute the cluster-sensitive ranking μ(Ci, x, q) as

μ(Ci, x, q) = R(x, q) · CR(Ci, q),

where CR(Cj , q) refers to the ranking of cluster Cj with respect to query q. In

Section 5.3, we will define a specific cluster-ranking algorithm and then define

our Personalized SP algorithm as PSP(x, q) =
∑

Cj∈CS(x) P (Cj , q) · μ(Cj , x, q).

We note that PSP is a linear local-cluster algorithm.

5.2. The Generative Model

Our personalized search algorithm for computing a cluster-sensitive page rank-

ing is based on a linear model capturing correlations between cluster content,

cluster linkage, and user preference. Our model borrows heavily from the Latent

Semantic Analysis (LSA) of [Deerwester et al. 90], which captures term-usage

information based on a (low-dimensional) linear model, and the SP algorithm

of [Achilioptas et al. 01], which captures correlations among three components

(i.e., links, page content, user query) of web search in terms of proximity in a

shared latent semantic space. The algorithm for ranking clusters is the direct

analogy of the SP algorithm, where now clusters play the role of pages. That is,

we will be interested in the aggregation of links between clusters and the term

content of clusters. We modify the generative model of [Achilioptas et al. 01] so

as to apply to clusters.

Let {C1, . . . , Cm} be a clustering for the targeted corpus. Now following [Deer-

wester et al. 90] and [Achilioptas et al. 01], we assume that there exists a set

of k unknown (latent) basic concepts whose combinations represent every topic

of the web. Given such a set of k concepts, a topic is a k-dimensional vector

describing the contribution of each of the basic concepts to this topic.
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5.2.1. Authority and Hub Values for Clusters. We extend the notion of a page’s authority

and hub values as introduced in [Kleinberg 99] and utilized in [Achilioptas et

al. 01]. Two vectors are associated with a web page x:

• There is a k-tuple A(x) ∈ [0, 1]k reflecting the topic on which x is an

authority. The cth entry in A(x) expresses the degree to which x concerns

the concept c. This topic vector captures the content on which this page

is an authority.

• The second vector associated with x is a k-tuple H(x) ∈ [0, 1]k reflecting

the topic on which x is a hub.

Based on this notion of page hub and authority values, we introduce the con-

cept of cluster hub and authority values. With each cluster Cj ∈ C, we associate
two vectors:

• The first vector associated with Cj is a k-tuple Ã(j) that represents the

cumulative authority value that is accumulated in cluster Cj with respect

to each concept. We define Ã(j) as Ã(j)(c) =
∑

x∈Cj
A(x, c), where A(x, c)

is document x’s authority value with respect to the concept c.

• The second vector associated with Cj is a k-tuple H̃(j) representing the cu-

mulative hub value accumulated in cluster Cj with respect to each concept.

We define H̃(j) as H̃(j)(c) =
∑

x∈Cj
H(x, c), where H(x, c) is document x’s

hub value with respect to concept c.

5.2.2. Link Generation over Clusters. In what follows, we assume that all random vari-

ables have bounded range. Given clusters Cp and Cr ∈ C, our model assumes

that the total number of links from pages in Cp to pages in Cr is a random

variable with expected value equal to the inner product 〈H̃(p), Ã(r)〉. Note that

the intuition is the same as in the link-generation model for two arbitrary doc-

uments [Achilioptas et al. 01]. The more closely aligned the hub topic of the

pages in Cp is with the authority topic of the pages in Cr , the more likely it is

that there will be a link from a document in Cp to a document in Cr. Therefore,

the link-generation model among different clusters is described in terms of an

m×m matrix W̃ = H̃ · ÃT , where the pth row of H̃ is (H̃(p))T and the rth row

of Ã is (Ã(r))T . Each entry (p, r) of W̃ represents the expected number of links

from Cp to Cr.

Let Ŵ be the actual link structure of documents for the targeted corpus and

let Z be the n×m indicator matrix Z whose (x, j) entry indicates whether page

x is a page in cluster j. The assumption is that the actual number of links

W = ZT ŴZ from Cp to Cr is an instantiation of the link-generation model for

clusters.
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5.2.3. Term-Content Generation over Clusters. Once again, our term-content-generation

model heavily borrows from that introduced in [Achilioptas et al. 01]. We assume

that there are l terms and that the term distributions over clusters are given by

the following two distributions:

• The first distribution expresses the expected number of occurrences of

terms as authoritative terms within all documents. More precisely, we

assume a k-tuple S̃
(u)
A whose cth entry describes the expected number of

occurrences of the term u in the set of all pure authority documents in the

concept c that are not hubs on anything.

• The second distribution expresses the expected number of occurrences of

terms as hub terms within all documents. More precisely, we assume a

k-tuple S̃
(u)
H whose cth entry describes the expected number of occurrences

of the term u in the set of all pure hub documents in the concept c that

are not authorities on anything.

The above distributions can be expressed in terms of two matrices, namely

S̃A, the l × k matrix whose rows are indexed by terms, where row u is the

vector (S̃
(u)
A )

T
, and S̃H is the l × k matrix whose rows are indexed by terms

such that row u is the vector
(
S̃
(u)
H

)T
. Our model assumes that terms within

cluster Cp having authority value Ã(p) and hub value H̃(p) are generated from

a distribution of bounded range where the expected number of occurrences of

term u is
〈
Ã(p), S̃

(u)
A

〉
+
〈
H̃(p), S̃

(u)
H

〉
. We describe the term-generation model of

clusters with an m× l matrix S̃ = H̃ · S̃T
H + Ã · S̃T

A , where again m is the number

of underlying clusters and l is the total number of possible terms.

The (j, u) entry in S̃ represents the expected number of occurrences of term u

within all documents in cluster j. Let Ŝ be the actual term-document matrix of

all documents in the targeted corpus. Analogous to the previous link-generation

model of clusters, we assume that S = ZT Ŝ is an instantiation of the term-

generation model of clusters described by S̃.

5.2.4. Preference Vector. As discussed in Section 1, we assume that the user provides

a search preference having in mind certain clusters (types of documents in which

he is interested). If the user exactly knows what the given clusters are, then she

might directly express her search preference over these clusters. However, such

explicit preferences will not generally be available. Instead, we consider a more

general scenario in which the user expresses his search interests through a set of

keywords (terms). More precisely, the model for the user search preference is as

follows:
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1. The user expresses his search preference by providing a vector p over terms

whose uth entry indicates his degree of preference over the term u. Note

that this preference for terms could be made relative to a query or can be

query-independent.

2. Given the vector p, the preference vector over clusters is obtained as pT ·ST
.

5.2.5. User Query. The user has in mind some topic on which she wants to find

the most authoritative cluster of documents on the topic when she performs the

search. The terms that the user presents to the search engine should be the

terms that a perfect hub on this topic would use, and then these terms would

potentially lead to the discovery of the most authoritative cluster of documents

on the set of topics closely related to these terms. The query-generation process

in our model is given as follows:

• The user chooses the k-tuple v describing the topic he wishes to search for

in terms of the underlying k concepts.

• The user computes the vector q̃T = vT S̃T
H , where the uth entry of q̃ reflects

the expected number of occurrences of the term u in queries on the user’s

topic.

• The user then decides whether to include term u among her search terms

by sampling from a distribution with expectation q̃[u]. We denote the

instantiation of the random process by q[u].

The input to the search engine consists of the terms with nonzero coordinates in

the vector q.

5.3. Our PSP Algorithm

Given this generative model that incorporates link structure, content generation,

user preference, and query, we can rank clusters of documents using a spectral

method. While the basic idea and analysis for our algorithm follow from [Achil-

ioptas et al. 01], our PSP algorithm is different from the original SP algorithm

in one substantial aspect: In contrast to the original SP algorithm, which works

at the document level, our algorithm works at the cluster level, making our algo-

rithm computationally more attractive and consequently more practical.3 More

specifically, in our algorithm, the SVD computations of the M , W , and S ma-

trices are relatively inexpensive, since the size of these matrices depends on the

number of clusters rather than the number of documents.
3To the best of our knowledge, the SP algorithm has never been implemented. Ignoring any

personalization aspects (i.e., setting the preference P to be a constant function), the cluster
framework provides a significant computational benefit.
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We need some additional notation. For two matrices A and B with an equal

number of rows, let [A | B] denote the matrix whose rows are the concatenations

of the rows of A and B. Let σi(A) denote the ith-largest singular value of a

matrix A and let ri(A) = σ1(A)/σi(A) ≥ 1 denote the ratio between the primary

singular value and the ith singular value.

Using standard notation for the singular value decomposition (SVD) of ma-

trix B ∈ �n×m, we have B = UΣV T , where U is a matrix of dimension

n×rank(B) whose columns are orthonormal, Σ is a diagonal matrix of dimension

rank(B) × rank(B), and V T is a matrix of dimension rank(B) ×m whose rows

are orthonormal. The (i, i) entry of Σ is σi(B). The cluster-ranking algorithm

preprocesses the entire corpus of documents, independent of the query.

Preprocessing Step.

1. Let M = [W
T | S]. M ∈ �m×(m+l) (m is the number of clusters and l is

the number of terms). Compute the SVD of the matrix as

M
∗
= UMΣMV T

M
.

2. Choose the largest index r such that the difference |σr(M
∗
)−σr+1(M

∗
)| is

sufficiently large (we require ω(
√
(m+ l))). Let M

∗
r = (UM )r(ΣM )r(V

T
M
)r

be the rank-r SVD approximation to M .

3. Compute the SVD of the matrix W as W
∗
= UWΣWV T

W
.

4. Choose the largest index t such that the difference |σt(W
∗
) − σt+1(W

∗
)|

is sufficiently large (we require ω(
√
(t))). Let W

∗
t = (UW )t(ΣW )t(V

T
W
)t be

the rank-t SVD approximation to W .

5. Compute the SVD of the matrix S as S
∗
= USΣSV

t
S
.

6. Choose the largest index o such that the difference |σo(S
∗
) − σo+1(S

∗
)| is

sufficiently large (we require ω(
√
(o))). Let S

∗
o = (US)o(ΣS)o(V

T
S
)o be the

rank-o SVD approximation to S.

Query Step. Once a query vector qT ∈ �l is presented, let q′
T

= [0m | qT ] ∈
Rm+l. The user’s preference for cluster Cj is the jth component of P = pTS∗

o

T
,

where p is the user’s preference vector over terms.4 Then we compute the cluster

authority vector υ(q)T = q′
T
M

∗−1

r W
∗
t , where M

∗
r

−1
= (V T

M
)r(ΣM )−1

r (UM )r is

the pseudoinverse of M r.

4We note that if p were query-dependent, then it would be more appropriate to write
P (Cj , q). In our experiments we will use preference vectors that are independent of the query
and hence it is more informative to use P (Cj). When the preference vectors are independent
of the query, we can compute P in the preprocessing step.
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Final Ranking. Once we have computed the ranking for clusters, we proceed with

the actual computation of cluster-sensitive page ranking. Let υ(Cj , q) denote the

authority value of cluster Cj for query q as computed in the previous section. The

cluster-sensitive page rank for page x with respect to cluster Cj is computed as

μ(x,Cj , q) =

{
R(x, q) · υ(Cj , q) if x ∈ Cj ,

0 otherwise,

where again R(x, q) is the generic rank of page x with respect to query q.

The final personalized rank for page x is computed as

PSP(x, q) =
∑

Ci∈CS(x)

P (Ci) ·R(x, q) · υ(Ci, q).

For a d-dimensional vector V = (v1, . . . , vd), we let diag(V ) denote the d × d

diagonal matrix whose (i, i) entry is vi. Then in matrix form we express the

PSP algorithm as PSP(q) = diag(R)Z diag(P )υ.

6. Personalized Search Criteria

We present a series of results comparing the Topic-Sensitive PageRank algorithm

and our PSP algorithm with respect to a set of personalized search algorithm

criteria that we propose.

Our criteria are all of the form “small changes in the input imply small changes

in the computed ranking.” We believe that such criteria have immediate practical

relevance as well as theoretical interest. Since our ranking of documents produces

real authority values in [0, 1], one natural approach is to study the effect of

small continuous changes in the input information as in the rank-stability studies

[Borodin et al. 05, Donato et al. 05, Lee and Borodin 03, Ng et al. 01].

One basic property shared by both Topic-Sensitive PageRank and our PSP

algorithm is continuity.

Theorem 6.1. Both TSPR and our PSP ranking algorithms are continuous; i.e.,

small changes in any μ value or preference value will result in a small change in

the ranking value of all pages.

Proof. The continuity of Topic-Sensitive PageRank and PSP easily follows from

the way these algorithms produce the final ranking. Both algorithms linearly

combine μ and P to produce the final ranking. That is, for both algorithms

the final rank vector FR(q) with respect to query q can be written as FR(q) =
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Γ(q)·P (q), where Γ(q) is an n×mmatrix whose (x, j)th entry denotes μ(Cj , x, q),

and P (q) denotes the cluster-preference vector. We first prove the continuity of

algorithms with respect to the cluster-preference vector. Given ε > 0, we have

‖Γ(q) · P (q) − Γ(q) · P̃ (q)‖2 ≤ ‖Γ(q)‖F ‖P (q) − P̃ (q)‖2 < ε. Therefore, δ = ε
m

would be sufficient for achieving the continuity of algorithms with respect to the

cluster-preference vector. The continuity with respect to μ can be proved in a

similar fashion.

Our first distinguishing criterion is a rather minimal monotonicity property

that we claim any personalized search should satisfy. Namely, since a (cluster-

based) personalized ranking function depends on the ranking of pages within

their relevant clusters as well as the preference of clusters, when these rankings

for a page and cluster preferences are increased, we expect that the personalized

rating can only improve. More precisely, we have the following definition:

Definition 6.2. Let (G, C, μ, P, q) and (G, C, μ, P̃ , q) be two instances of personalized

search. Let χ and ψ be the set of ranked pages produced by (G, C, μ, P, q)
and (G, C, μ, P̃ , q) respectively. Suppose that x ∈ χ, y ∈ ψ share the same set

of clusters (i.e., CS(x) = CS(y)), and suppose that μ(Cj , x, q) ≤ μ(Cj , y, q) and

P (Cj , q) ≤ P̃ (Cj , q) hold for every Cj that they share. We say that a personalized

ranking algorithm is monotone if PSR(x) ≤ P̃SR(y) for every such x ∈ χ and

y ∈ ψ.

We now introduce the idea of “locality.” The idea behind locality is that

(small) discrete changes in the cluster preferences should have only a minimal

impact on the ranking of pages. The notion of locality justifies our use of the

terminology “local-cluster algorithm.” A perturbation ∂α of size α changes a

cluster-preference vector P to a new preference vector P̃ = ∂α(P ) such that P

and P̃ differ in at most α components. Let P̃SR denote the new personalized

ranking vector produced under the new search preference vector P̃ .

Definition 6.3. Let (G, C, μ, P, q) and (G, C, μ, P̃ , q) be the original personalized

search instance and its perturbed personalized search instance respectively. Let

AC(∂α), the active clusters, be the set of clusters that are affected by the per-

turbation ∂α (i.e., P (Cj , q) �= P̃ (Cj , q) for every cluster Cj in AC(∂α)). We say

that a personalized ranking algorithm is local if for every x, y /∈ AC(∂α),

PSR(x, q) ≤ PSR(y, q)⇔ P̃SR(x, q) ≤ P̃SR(y, q),

where PSR refers to the original personalized ranking vector, while P̃SR refers

to the personalized ranking vector after the perturbation.
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Theorem 6.4. The Topic-Sensitive PageRank algorithm is not monotone and not

local.

Proof. Nonmonotonicity of TSPR. Suppose that G is a graph that consists of

four points {x1, x2, x3, x4}. Let C = {C1, C2, C3} be a clustering of G such that

x1, x2 ∈ C1, x3 ∈ C2, and x4 ∈ C3, and let there be links (edges) x3 → x1,

x4 → x1, and x4 → x2. In addition, we assume ε ≥ 0.25. We have TR(x1, C1) =
ε
2 + (1 − ε), TR(x2, C1) = ε

2 + (1 − ε), TR(x1, C2) = (1 − ε)ε, TR(x1, C3) =

(1 − ε) ε2 , and TR(x2, C2) = 0, TR(x2, C3) = (1 − ε) ε2 . Moreover, we assume

P (C1, q) = 2/5, P (C2, q) = 1, P (C3, q) = 1, P̃ (C1, q) = 3/5, P̃ (C2, q) = 1,

and P̃ (C3, q) = 1. Therefore, all assumptions of monotonicity are satisfied with

respect to x1 and x2. However, we have

TSPR (x1)

= P (C1, q) TR (x1, C1) + P (C2, q) TR (x1, C2) + P (C3, q) · TR(x1, C3)

=
2

5

( ε

2
+ (1− ε)

)
+ (1− ε) ε+ (1− ε)

ε

2

>
3

5

( ε

2
+ (1− ε)

)
+ (1− ε)

ε

2

= P̃ (C1, q) TR (x2, C1) + P̃ (C2, q) TR (x2, C2) + P̃ (C3, q) · TR(x2, C3)

= T̃SPR (x2) .

Nonlocality of TSPR. In particular, we show that a small perturbation in

preference values can have considerably large impact on the overall ranking. Let

G = C1 ∪C2 ∪ C3 ∪ C4, |C1| = |C2| = N − β, and |C3| = |C4| = β, where β is a

fixed constant. Every page in C3 ∪C4 points to every page in C1 ∪C2. One can

verify that for each x ∈ C1 and y ∈ C2 we have TSPR(x,C1) = TSPR(y, C2), and

similarly we have TSPR(x,C2) = TSPR(y, C1). Furthermore, TSPR(x,C3) =

TSPR(x,C4) = TSPR(y, C3) = TSPR(y, C4). Now suppose that the original

cluster preferences are altered from P (C1, q) = P (C2, q), P (C3, q) < P (C4, q) to

P̃ (C1, q) = P̃ (C2, q), P̃ (C3, q) > P̃ (C4, q). From the original cluster preferences,

we will have TSPR(x) < TSPR(y) for x ∈ C1, y ∈ C2. On the other hand, from

the modified cluster preferences, we will have ˜TSPR(x) > ˜TSPR(y) for x ∈ C1,

y ∈ C2. That is, nonlocality is proven.

In contrast we show that our PSP algorithm does enjoy the monotone and

local properties.

Theorem 6.5. Any linear local-cluster algorithm (and hence PSP) is monotone and

local.
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Proof. Monotonicity. Since by the assumption, for every Cj ∈ CS(x) = CS(y), we

have P (Cj , q) ≤ P̃ (C̃j , q) and μ(Cj , x, q) ≤ μ(Cj , y, q), we will have

PSR(x) =
∑

Cj∈CS(x)

P (Cj , q)μ(Cj , x, q) ≤
∑

Cj∈CS(y)

P (Cj , q)μ(Cj , y, q) = P̃SR(x).

Locality. This easily follows from the fact that the ranking produced by local-

cluster algorithms is based only on those clusters containing the point to be

ranked. Therefore, the original ranking for points not in the set AC(δα) of

affected clusters is unaffected by the perturbation.

We next consider a notion of stability (with respect to cluster movement) in

the spirit of [Ng et al. 01, Lee and Borodin 03]. Our definition reflects the extent

to which small changes in the clustering can change the resulting rankings. We

consider the following page-movement changes to the clusters:

• A migration migr(x,Ci, Cj) moves page x from cluster Ci to cluster Cj .

• A replication repl(x,Ci, Cj) adds page x to cluster Cj (assuming x was not

already in Cj) while keeping x in Ci.

• A deletion del(x,Cj) is the deletion of page x from cluster Cj (assuming

that there exists a cluster Ci in which x is still present).

We define the size of these three page-movement operations to be μ(Ci, x, q)+

μ(Cj , x, q) for migration/replication, and μ(Cj , x, q) for deletion. We measure

the size of a collectionM of page movements to be the sum of the individual page-

movement costs. Our definition of stability then is that the resulting ranking

does not change significantly when the clustering is changed by page movements

of small size.

We recall that each cluster is a set of pages and its induced subgraph, induced

from the graph on all pages. We will assume that the μ ranking algorithm is

a stable algorithm in the sense of [Ng et al. 01, Lee and Borodin 03]. Roughly

speaking, locality of a μ ranking algorithm means that there will be a relatively

small change in the ranking vector if we add or delete links to a web graph.

Namely, the change in the ranking vector will be proportional to the ranking

values of the pages adjacent to the new or removed edges.

Definition 6.6. Let (G, C, μ, P, q) and (G, C, μ, P̃ , q) be a personalized search instance.

A personalized ranking function PSR is cluster-movement stable if for every set

of page movements M there is a β, independent of G, such that

‖PSR−P̃SR‖2 ≤ β · size(M),
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where PSR refers to the original personalized ranking vector, while P̃SR refers

to the personalized ranking vector produced when the set of page movements M

has been applied to a given personalized search instance.

Theorem 6.7. The Topic-Sensitive PageRank algorithm is not cluster-movement

stable.

Proof. We exhibit a counterexample to show that Topic-Sensitive PageRank is not

cluster-movement stable. Let G be a graph that consists of n+1 points and three

clusters C1, C2, and C3 such that C1 contains x0, C2 contains {x2, . . . , xn}, and
C3 contains all points. We have x0 → x1, xn → x1, and xk → xk+1 for every

1 < k < (n − 1). Furthermore, suppose that P (C1, q) = 1, P (C2, q) = 0, and

P (C3, q) = 0.5 One can verify that TSPR(x0) = TR(x0, C1) = ε, TSPR(xn) =

TR(xn, C1) = δ, and TSPR(xm) = TR(xm, C1) = (1 − ε)m(ε + δ), where ε ≤ 1

and δ = ε(1−ε)n

1−(1−ε)n for every 1 ≤ m < (n− 1).

On the other hand, one can easily see that TR(xi, C2) = 1/n for every 1 ≤ i ≤
n. Now we delete x1 from C2. One can see that T̃SPR(x0, C1) = T̃R(x0, C1) = 1

and T̃SPR(xi, C1) = T̃R(xi, C1) = 0 for every 1 ≤ i ≤ n. We have

‖TSPR−T̃SPR‖2
size(del(x1, C2))

= n ·
√√√√((ε − 1)2 +

n−1∑
i=1

((1 − ε)i(ε + δ))2

= n

√
((ε − 1)2 + (

1− (1− ε)2n

1− (1 − ε)2
− 1)(ε+ δ)2)

≥ n(1 − ε),

which is unbounded with respect to n.

Theorem 6.8. The PSP algorithm is cluster-movement stable.

Proof. It is sufficient to consider only replication and deletion, since migration

migr(xa, Ci, Cj) can be seen as a sequential application of repl(xa, Ci, Cj) fol-

lowed by del(xa, Ci). Furthermore, we present the proof only for replication,

since the proof for deletion is similar. Let diag(R)Z diag(P )υ be the ranking

before the page movement. Let Z̃ = Z + E be the new matrix representing the

page’s membership in a cluster, where E is given as Ea,j = 1 for repl(xa, Ci, Cj),

while the rest of entries are all zero. Let diag(R)Z̃ diag(P )υ̃ be the ranking after

5Since C3 contains x0, it is not true that P (C3, q) = 0, but when n is sufficiently large,
P (C3, q) ≈ 0. Therefore, we assume that P (C3, q) = 0 for the sake of simplicity.
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the page movement. We will show that

‖ diag(R)Z diag(P )υ − diag(R)Z̃ diag(P )υ̃‖2
‖ diag(R)λυ‖1

is bounded by a constant, where λ is the projection of υ over the affected clusters

(e.g., λfd = 1 for f = a, d = i, j, and λfd = 0 otherwise for repl(xa, Ci, Cj)).

We have

‖ diag(R)Z diag(P )υ − diag(R)Z̃ diag(P )υ̃‖2
‖ diag(R)λυ‖1

≤ 1

‖ diag(R)λυ‖2
∥∥ diag(R)Z diag(P )υ − diag(R)Z̃ diag(P )υ

+ diag(R)Z̃ diag(P )υ − diag(R)Z̃ diag(P )υ̃
∥∥
2

≤ ‖ diag(R)Z diag(P )υ − diag(R)Z̃ diag(P )υ‖2
‖ diag(R)λυ‖2

+
‖ diag(R)Z̃ diag(P )υ − diag(R)Z̃ diag(P )υ̃‖2

‖ diag(R)λυ‖2 .

The first term,

‖ diag(R)Z diag(P )υ − diag(R)Z̃ diag(P )υ‖2
‖ diag(R)λυ‖2 =

‖ diag(R)E diag(P )υ‖2
‖ diag(R)λυ‖2 ,

is bounded as follows. We have

‖ diag(R)E diag(P )υ‖2 =
√
R(xa)2P (Ci)2υ2

j ≤
√
R(xa)2υ2

i +R(xa)2υ2
j

= ‖ diag(R)λυ‖2.

Therefore,
‖ diag(R)E diag(P )υ‖2
‖ diag(R)λυ‖2 ≤ 1.

The second term,

‖ diag(R)Z̃ diag(P )υ − diag(R)Z̃ diag(P )υ̃‖2
‖ diag(R)λυ‖2 ,

is bounded as follows. One should note that

‖ diag(R)λυ‖2 ≥ 1√
2
‖ diag(R)λ‖F ‖τ‖2‖υ‖2,
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where τ is the smallest possible cluster-ranking value (i.e., for a cluster having

one page with no links). Therefore, we have

‖ diag(R)Z̃ diag(P )υ − diag(R)Z̃ diag(P )υ̃‖2
‖ diag(R)λυ‖2

≤
√
2
‖ diag(R)Z̃ diag(P )‖F ‖υ − υ̃‖2
‖ diag(R)λ‖F ‖τ‖2‖υ‖2 .

But one can observe that

‖ diag(R)Z̃ diag(P )‖F
‖ diag(R)λ‖F ≤

√∑
xi

∑
xi∈Cj

R2(xi, q)P (Cj , x, q)2√
R(xa, q)2

≤
√∑

xi
R2(xi, q)

∑
xi∈Cj

1

R2(xa, q)

≤
√∑

xi
R2(xi, q)m

R2(xa, q)

≤
√
2m.

Moreover, we have

‖υ − υ̃‖2
‖τ‖2‖υ‖2 ≤

1

τ

(
1 +
‖υ̃‖2
‖υ‖2

)
≤ 2

τ
.

Therefore,

‖ diag(R)Z̃ diag(P )υ − diag(R)Z̃ diag(P )υ̃‖2
‖ diag(R)λυ‖2 ≤ 2

√
2m

τ
.

7. Experiments

As a proof of concept, we implemented the PSP algorithm and the Topic-

Sensitive PageRank algorithm for comparison. In Section 7.1, we consider the

retrieval effectiveness of our PSP algorithm versus that of the Topic-Sensitive

PageRank algorithm. In Section 7.2, we briefly discuss experiments regarding

monotonicity and locality. A more complete reporting of experimental results

can be found at http://www.cs.toronto.edu/∼leehyun/cbps experiment.html.

As a source of data, we used the Open Directory Project (ODP)6 data, which

is the largest and most comprehensive human-edited directory in the Web. We

6See http://www.dmoz.com.
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first obtained a list of pages and their respective categories from the ODP site.

Next, we fetched all pages in the list, and parsed each downloaded page to extract

its pure text and links (without nepotistic links). We treat the set of categories

in the ODP that are at distance two from the root category (i.e., the “Top”

category) as the cluster set for our algorithms. In this way, we constructed

549 categories (or clusters) in total. The categorization of pages using these

categories did not constitute a partition, since some pages (5.4% of ODP data)

belong to more than one category.

7.1. Comparison of Algorithms

To produce rankings, we first retrieved all the pages that contained all terms in a

query, and then computed rankings taking into account the specified categories

(as explained below). The PSP algorithm assumes that there is already an

underlying page ranking for the given web service. Since we were not aware

of the ranking used by the ODP search, we simply used pure PageRank as the

generic page ranking for our PSP algorithm. Topic-Sensitive PageRank was

implemented as described in Section 4.1.1. We used the same α = 0.25 value as

that used in [Haveliwala 03].

We devised 20 sample queries and their respective search preferences (in terms

of categories) as shown in Table 1. The “preferred” categories were chosen as

follows: for each query in Table 1, we chose a random subset of the categories

given for the top-ranked pages returned by the ODP search. For the Topic-

Sensitive PageRank algorithm, we did not use the approach for automatically

discovering the search preference (See (4.1)) from a given query, since we found

that the most probable categories discovered in this way were heavily biased

toward “news”-related categories. Instead, we computed both Topic-Sensitive

PageRank and PSP rankings by equally weighting all categories listed in Table 1.

The evaluation of ranking results was done by three individuals, two with

computer-science degrees and one with an engineering degree, all with extensive

web search experience.

We used the precision over the top ten (p@10) as the evaluation measure using

the methodology employed in [Tsaparas 04]. That is, for each query we merged

the top ten results returned by both algorithms into a single list. Without any

prior knowledge about what algorithm was used to produce the corresponding

result, each person was asked to carefully evaluate each page from the list as

“relevant” if in their judgment the corresponding page should be treated as a

relevant page with respect to the given query and one of the specified categories,

or nonrelevant otherwise. In Table 2, we summarize the evaluation results,

where the presented precision value is the average of all three precision values.
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Query Used Categories Query Used Categories
Society/Issues Science/Astronomy

middle News/Current northern Kids and
east Events light Teens/School Time

Recreation/Travel Science/Software
Arts/Weblogs Recreation/Autos

popular Arts/Chats jaguar Sports/Football
blog and Forums

News/Weblogs Science/Biology
Home/Personal Arts/Movies

Finance
planning Shopping/Weddings star wars Games/Video Games

Recreation/Parties Recreation/Models
Home/Do It Yourself Science/Methods

and Techniques
common Arts/Writers technique Arts/Visual Arts

Resources
tricks Games/Video Games Shopping/Crafts

Computers/Software Sports/Strength
Sports

integration Health/Alternative strong World/Deutch
man

Society/Issues Recreation/Drugs
Science/Math Health/Senses

chaos Society/Religion vision Computers/Artificial
and Spirituality Intelligence

Games/Video Games Business/Consumer
Goods

Society/Folklore Society/Politics
proverb Reference conservative Society/Religion

/Quotations and Spirituality
Home/Homemaking News/Analysis

and Opinion
Arts/Education Business/Publishing

and Printing
english Kids and Teens/ graphic Computers/Graphics

Society/Ethnicity design Arts/Graphic Design
School Time

Recreation/Camps Society/Politics
fishing Recreation liberal Society/Religion

/Outdoors and Spirituality
expedition Sports/Adventure News/Analysis

Racing and Opinion
Society/History Business/Energy

and Environment
war Games/Board Games environment Science/Environment

Reference/Museums Arts/Genres

Table 1. Sample queries and the preferred categories for search used in our ex-
periments.

These evaluation results suggest that our PSP algorithm outperforms the Topic-

Sensitive PageRank algorithm. We also report on the actual produced results in

experimental result 1 of our web page.

To gain further insight, we analyzed the distribution of categories associated

with each produced ranking. An ideal personalized search algorithm should

retrieve pages in clusters representing the user’s specified categories as the top-
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Query PSP TSPR Query PSP TSPR

middle east 0.76 0.8 northern lights 0.7 0.8
popular blog 0.93 0.7 jaguar 0.96 0.46
planning 0.96 0.56 star wars 0.6 0.66

common tricks 0.66 0.9 technique 0.96 0.7
integration 0.6 0.16 strong man 0.9 0.86

chaos 0.56 0.56 vision 0.43 0
proverb 0.9 0.83 conservative 0.86 0.76
english 0.8 0.26 graphic design 1 0.73

fishing expedition 0.86 0.66 liberal 0.76 0.73
war 0.83 0.16 environment 0.93 0.5

Average PSP = 0.80, Average TSPR = 0.59

Table 2. Top ten precision scores for PSP and Topic-Sensitive PageRank.

ranked pages. Therefore, in the list of the top 100 pages associated with each

query, we computed how many pages were associated with those categories spec-

ified in each search preference. Each page p in the list of the top 100 pages was

counted as 1/| nc(p)|, where nc(p) is the total number of categories associated

with page p. We report on these results in Table 3.

The results here exclude four queries (strong man, popular blog, common

tricks, and vision) that did not retrieve a sufficient number of relevant pages in

their lists of top 100 pages. Note that with the 1/| nc(p)| scoring, the total sum

of all three preferred categories for each query was always less than 100, since

several pages pertain to more than one category. For several queries in our web

page, one can observe that each algorithm’s favored category is substantially

different. For instance, for the query “star wars,” the PSP algorithm prefers

the “Games/Video Games” category, while Topic-Sensitive PageRank prefers

the “Recreation/Models” category. Furthermore, for the queries “liberal,” “con-

servative,” “technique,” “english,” and “planning,” the PSP algorithm and the

Topic-Sensitive PageRank algorithm have very different views on what the most

important context associated with “liberal,” “conservative,” “technique,” “en-

glish,” and “planning” is. One should also observe that when there is a highly

dominant query context (e.g., “Society/Issues” category for “integration,” and

“Arts/Graphic Design” for “graphic design”) over other query contexts, then for

both algorithms the rankings are dominated by this strongly dominant category

with PSP being somewhat more focused on the dominant category. Finally, in

averaging over all queries, 86.38% of pages in the PSP list of the top 100 pages

were found to be in the specified preferred categories, while for Topic-Sensitive

PageRank, 69.05% of pages in the list of the top 100 pages were found to be in

the specified preferred categories.
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Query Category PSP TSPR
Society/Issues 51.17 6.17

Middle East News/Current Events 3.67 14.17
Recreation/Travel 31.50 19.50
Society/Politics 48.33 26.67

Liberal News/Analysis and Opinion 4.50 49.50
News/Religion and Spirituality 36.83 1.00

Home/Personal Finance 80.75 3.0
Planning Shopping/Wedding 13.00 68.00

Recreation/Parties 4.5 11.50
Science/Math 11.33 49.91

Chaos Society/Religion and Spirituality 28 3
Games/Video Games 57 30.00
Computers/Software 0.0 0.0

Integration Health/Alternative 0.0 0.0
Society/Issues 88.92 54.08
Arts/Education 17.83 43.66

English Kids and Teens/School Time 35.16 8.33
Society/Ethnicity 23.5 5.66
Recreation/Camps 62.33 62.33

Fishing Expedition Sports/Adventure Racing 22.83 22.83
Recreation/Outdoors 0.50 0.50

Society/History 65.75 15.41
War Games/Board Games 0.5 0.5

Reference/Museums 8.25 9.08
Science/Astronomy 62.33 62.33

Northern Lights Kids and Teens/School Time 22.83 22.83
Science/Software 0.50 0.50
Recreation/Autos 53.83 68

Jaguar Sports/Football 15.5 15.5
Science/Biology 26 0
Arts/Movies 22.83 11.33

Star Wars Games/Video Games 69.83 32.33
Recreation/Models 0.0 0.0

Science/Methods and Techniques 2 17
Technique Arts/Visual Arts 36.5 6.5

Shopping/Crafts 55.5 42.5
Society/Politics 53.17 20.33

Conservative News/Analysis and Opinion 8.0 56.00
News/Religion and Spirituality 30.00 1.00

Business/Publishing and Printing 0.5 0.5
Graphic Design Computers/Graphics 0.0 0.0

Arts/Graphic Design 94 92.5
Business/Energy and Environment 3.16 3.3

Environment Environment 74.41 26.25
Arts/Genres 1 17.5

Table 3. Distribution of the preferred categories in the top 100 pages.

We personally considered a number of queries altering the preferred categories.

For “integration,” we considered the single category “Science/Math,” and the
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precision over the top 20 was 0.5 for PSP and 0.35 for TSPR. (Both algorithms

suffered from uses of the term “integration” not applying to the calculus op-

eration.) For the “star wars” query, we added the category “Society/Politics”

to our preferred categories. We note that the ODP search does not return any

pages within this category. Looking at the top 100 pages returned, PSP returned

3 pages in society/politics not relevant to our query, while TSPR returned 33

nonrelevant pages in this category. We also considered the query “middle east”

(using the single category “Recreation/Travel”), the query “conservative” (using

the single category “News/Religion and Spirituality”), and the query “jaguar”

(using the single category “Sports/Football”) with regard to precision over the

top ten and observed that PSP performed qualitatively much better than TSPR.

We report on these results in the experimental result 3 of our web page.

We further compared the PSP and TSPR rankings using a variant of the

Kendall tau similarity measure [Haveliwala 03, Fagin et al. 03]. Consider two

partially ordered rankings σ1 and σ2, each of length n, and let U be the union

of the elements in σ1 and σ2. Let σ′
1 be the extension of σ1, where σ′

1 contains

the pages in σ2 − σ1 appearing after all the URLs in σ1. We do the analogous

σ′
2 extension of σ2. Using the measure

KTSim(σ1, σ2) =
|{(u, v) : σ′

1, σ
′
2 agree on order of (u, v), u �= v}|

|U‖U − 1| ,

we computed the pairwise similarity between the PSP and TSPR rankings with

respect to each query. Averaging over all queries, the KTSim value for the top

100 pages is 0.58, while the average KTSim value for the top 20 pages is 0.43,

indicating a substantial difference in the rankings.

7.2. Monotonicity and Locality

How is the absence of monotonicity (as shown in Theorem 6.4) reflected in the

ODP data? We searched our ODP data set and randomly selected 19,640,761

pairs7 of sites (x, y) that share precisely one common cluster CI(x,y); i.e., CS(x)∩
CS(y) = {CI(x,y)} and TR(x,CI(x,y)) < TR(y, CI(x,y)). We computed the final

TSPR(x) and TSPR(y) by uniformly weighting all 549 categories (or clusters).

We found that 431,116 (approximately 2%) of these pairs violated monotonicity;

that is, the ranking in CI(x,y) was opposite to the ranking produced by TSPR

without favoring any particular category (or clusters). This would lead to a vio-

lation of monotonicity in the sense of Theorem 6.4 if, for example, we generated

a query using the intersection of common terms in x and y. We report on the

distribution of pairs violating monotonicity in Figure 1.

7The pairs were selected in such way that they were reasonably distributed with respect to
the common cluster.
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Distribution (with respect to the top level 17 categories of ODP) of pair pages violating

monotonicity

Distribution (with respect to the top level 17 categories of ODP) of original pair pages

Figure 1. Monotonicity results.

We also conducted a study on how sensitive the algorithms are to change in

search preferences. We argued that such sensitivity is theoretically captured

by the notion of locality in Section 6, and showed that the PSP algorithm is

robust to the change in search preferences, while Topic-Sensitive PageRank is

not. Our experimental evidence indicates that the Topic-Sensitive PageRank

algorithm is somewhat more sensitive to the change in search preferences. For

each query we randomly chose seven equally weighted categories so as to define

a fixed preference vector.

Let ΔN
α refer to the class of perturbations induced by deleting some set of α

categories. To compare the personalized ranking vectors produced under differ-

ent perturbations, we again use the above KTSim measure [Haveliwala 03, Fagin

et al. 03]. In particular, we varied α as 1, 3, and 5 and for each fixed α and
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α PSP Topic-Sensitive PageRank

1 0.91 0.92
3 0.77 0.69
5 0.79 0.66

Table 4. Average KTSim values of rankings under different perturbation sizes
across all queries.

for five random ∂i ∈ ΔN
α , we computed the resulting rankings and then all

(
5
2

)
pairs of (KTSim) values considering the top 100 pages. We report on the average

pairwise similarity across all queries for each fixed α in Table 4.8

8. The Correctness of the PSP Algorithm

The following theorem formalizes the correctness of the PSP algorithm with

respect to the generative model formulated in Section 5.

Theorem 8.1. Assume that the link structure for clusters, term content for clusters,

and search query are generated as described in our model: W is an instantiation

of W̃ = H̃ÃT , S is an instantiation of S̃ = ÃS̃T
A + H̃S̃T

H , q is an instantiation of

q̃ = vT S̃T
H , the user’s preference is provided by the vector p, and R(q) is a vector

whose entries correspond to the generic ranks of pages (i.e., R(x, q) corresponds

to the generic rank of page x with respect to query q). Additionally, we have the

following:9

(1) q has ω(k · rk(W )2r2k(M)2rk(Z)) nonzero terms.

(2) σk(W ) ∈ ω(r2k(M)rk(Z)
√
m) and σ2k(M) ∈ ω(rk(W ) r2k(M)rk(Z)

√
m),

(3) W , HS
T

A and S
T

H are of rank k, M = [W
T |S] is rank 2k, l = O(m), and

m = O(k).

Then the PSP algorithm computes a vector of personalized ranks that is very

close to the correct ranking. More precisely, we have

‖VPSP − Vexpected‖2
‖Vexpected‖2 ∈ O(1),

8In [Fagin et al. 03], the authors note that this KTSim variant has a mild personalization
factor for items not common to both orderings, whence the rather large values.

9The assumption � = O(m) may seem somewhat artificial, since it may suggest that the
number of terms is of order the number of clusters. We acknowledge that there will be many
more terms than clusters, but we argue that the number of terms is much closer to the number
of clusters than it is to the number of documents.
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where VPSP = diag(R)Z diag(P )q′
T
M

∗−1

r W
∗
t and Vexpected = diag(R)Z

· diag(P̃ )vT ÃT . The proof of this theorem is given in the appendix (Section 11).

9. Online Considerations

Given the dynamic nature of the Web, it is important to consider personalized

search engines in an online scenario whereby pages are incrementally added,

deleted, or updated. As a consequence, clusters are updated, and this may in

turn result in a desired change of the clustering (i.e., whereby existing clusters

are merged or split). Online considerations have not received much attention in

this context.

The preprocessing phase of the PSP algorithm relies on the SVD computation

of M , representing the linkage and semantic relations between clusters. The on-

line addition, deletion, or update of pages would then correspond to the addition,

deletion, or update of fragments of rows and columns in M and the consequent

online updating of the SVD. There is a rich literature concerning online SVD

updating.

Recently, [Brand 03] proposed a family of sequential update rules for adding

data to a “thin” SVD data model, revising or removing data already incorpo-

rated into the model, and adjusting the model when the data-generating process

exhibits nonstationarity. Moreover, the author experimentally tested the practi-

cability of the proposed approach in an interactive graphical movie recommender

that predicts and displays ratings/rankings of thousands of movie titles in real

time as a user adjusts ratings of a small arbitrary set of movies. By applying

such methods, the relevant aspects of the preprocessing phase becomes an online

computation.

If the existing clustering structure is modified by (say) merging the existing

clusters (without affecting the existing pages), the online updating of our PSP

algorithm can be efficiently implemented by merging ranks of affected clusters

while renormalizing ranks of unaffected clusters, illustrated in the following: We

first define what a merging of clusters means. We briefly consider how the online

PSP handles merges (and analogously, splits). By a merging operation μ over

a clustering C, we refer to a transformation that modifies the given clustering

C = {C1, . . . , Cm} into a new clustering such that two clusters are merged.

After clusters are renamed, the new clustering of G is C̃ = {C̃1, . . . , C̃m−1}
with C̃m−1 = Cm−1 ∪ Cm and C̃s = Cs for every s ≤ m − 2. When the

existing clustering structure is modified by such a merging, the online updating

of the PSP cluster ranking can be efficiently implemented by merging ranks of
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affected clusters while renormalizing ranks of unaffected clusters as justified by

the following theorem.

Theorem 9.1. Let

Λ =

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 0 0
0 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · 1 0 0
0 0 · · · 0 1 1

⎤
⎥⎥⎥⎥⎦ ,

and let q′
T

= [0m|qT ] and q′′
T

= [0m−1|qT ]. Let M ′ = [W ′T |S′] and M ′′ =

[W ′′T |S′′] = [ΛW ′TΛT |ΛS′], where W ′T , S′ are the original link and term/docu-

ment matrices and W ′′T , S′′ are the newly created link and term/document ma-

trices (as produced by merging). Then

q′′
T
M ′′

r

−1
W ′′

t = q′
T
M ′

r

−1
W ′

tΛ
T . (9.1)

Proof. One can first verify that M ′′ = ΛM ′Λ∗, where Λ∗ is given in the form

Λ∗ =

[
ΛT 0l×l

0l×m−1 Il×l

]
,

where Il×l denotes the identity matrix of size l × l, and 0l×m−1 denotes the

l × (m − 1) zero matrix. Let M ′ = U1D1V
T
1 and M ′′ = U2D2V

T
2 be the SVD

compositions for matrices M ′ and M ′′. We have that the pseudoinverse M ′′
r

−1

is given as

M ′′
r

−1
= V2D

−1
2 UT

2 = V2(U
−1
2 ΛU1D1V

T
1 Λ∗V T

2

−1
)
−1

UT
2

= V2V
T
2 (Λ∗−1V1D

−1
1 UT

1 Λ−1U2)U
T
2

= Λ∗−1V1D
−1
1 UT

1 Λ−1 = Λ∗−1M ′
r

−1
Λ−1.

Thus, one can verify that (9.1) holds, since

q′′
T
M

−1

r′′ W
′
t = q′′

T
Λ∗−1M ′

r

−1
Λ−1ΛW tΛ

T = q′
T
M ′

r

−1
W tΛ

T .

To complete the merging operation, we define a preference vector

P̃ (C̃m−1, q) =
P (Cm−1, q) + P (Cm, q)

2
.

and P̃ (C̃s, q) = P (Cs, q) for s ≤ m− 2. Finally, it is important to note that as

new pages arrive and are placed into their relevant pages, the PSP ranking will

change only gradually.
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10. Conclusion

We have developed and implemented a computationally efficient “local-cluster”

algorithm (PSP) for personalized search. Following [Achilioptas et al. 01], we

can prove the correctness of the PSP algorithm relative to a probabilistic genera-

tive model. We propose some formal criteria for evaluating personalized ranking

algorithms, and demonstrate both theoretically and experimentally that our al-

gorithm is a good alternative to the Topic-Sensitive PageRank algorithm.

11. Appendix: Proof of Theorem 8.1

Using the Cauchy–Schwarz inequality yields

‖VPSP−Vexpected‖=‖diag(R)Z diag(P )q′
T
M

∗−1

r W
∗
t−diag(R)Z diag(P̃ )vT ÃT‖2

≤ ‖R‖2‖Z diag(P )q′
T
M

∗−1

r W
∗
t − Z diag(P̃ )vT ÃT ‖2.

Similarly,

‖Vexpected‖ = ‖ diag(R)Z diag(P )vT ÃT ‖2 ≥ min
i=1,...,n

|Ri|‖Z diag(P )vT ÃT ‖2.

Thus, it is sufficient to prove a lower bound on ‖Z diag(P )vT ÃT ‖2 and an upper

bound on

‖Z diag(P̃ )q′
T
M

∗−1

r W
∗
t − Z diag(P̃ )vT ÃT ‖2,

where diag(P ) denotes diag(pTS
∗
o

T
), while diag(P̃ ) denotes diag(pT S̃T ).

We first introduce some claims that will be used to prove lower and upper

bounds. Let M̃ = [W̃T |S̃] ∈ �m×(m+l), and let q̃′T = [0m|q̃T ] ∈ �m+l.

Claim 11.1. We claim that q̃′T is in the row space of M̃ .

Proof. We can rewrite M̃ as follows:

M̃ = [W̃T |S̃] = [ÃH̃T |ÃS̃T
A + H̃S̃T

H ] = [Ã|H̃]

[
H̃T S̃T

A

0k×m S̃T
H

]
. (11.1)

If rank(M̃) = 2k, then the row space of M̃ is equal to the row space of the

right-hand matrix in (11.1). We have

q̃′
T
= [0m|q̃T ] = [0m|vT S̃T

H ] = vT [0k×m|S̃T
H ],
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which implies that q̃′
T

is in the row space of M̃ . Therefore, there exists some

u ∈ �m in the column space of M̃ such that uTM̃ = q̃′T .

Claim 11.2. Let u ∈ �m be such that uT M̃ = q̃′T . Then uT W̃ = vtÃt.

Proof. We can write

M̃ = [ÃH̃T |H̃S̃T
H + ÃS̃T

A ].

We know that uT M̃ = q̃′T = [0m|q̃T ]. From this we learn that uT ÃH̃T = 0m.

since H̃T is of rank k, it follows that uT Ã = [0k]. Thus, uT M̃ = [0m|uT H̃S̃T
H ] =

q̃′T , which implies uT H̃S̃T
H = vT S̃T

H . Since rank(S̃T
H) = k, this implies that

utH̃ = vT . Multiplying by Ã gives us the required result utW̃ = uT H̃ÃT =

vT ÃT .

Claim 11.3. Let M+ = [0k×m|H̃S̃T
H ]. Then uT M̃ = q̃′T iff uTM+ = qT . It is

important to note that M+ is spanned by the columns of H̃, which is of rank k,

whereas our assumption on M̃ is that it is of rank 2k.

Proof. In the course of arguing Claim 11.2, we showed that

uT M̃ = q̃′T = [0m|q̃T ] = [0m | uT H̃S̃T
H ],

but it is also true that uTM+ = [0m | uT H̃S̃T
H ].

Claim 11.4. Let uT M̃ = q̃′T , let (M+)−1 be the pseudoinverse of M+, and let M̃−1

be the pseudoinverse of M̃ . Then uT = q̃′T (M+)−1 = q̃′T M̃−1.

Proof. It is easy to see that q̃′T is in the row space M+. From Claims 11.3 and

11.1, we have

uTM+ = q̃′T = uT M̃.

Therefore,

uT = q̃′TM+−1
= q̃′T M̃−1.

Claim 11.5. Let q̃T = vT S̃T
H , q̃′T = [0m | q̃T ], M+ = [0k×m | H̃S̃T

H ]. Then we have

vT ÃT = uT W̃ (from Claim 11.2)

= q̃′T (M+)−1W̃ = q̃′T (M̃)−1W̃ (from Claim 11.4)

Claim 11.6. Let q̃T = vT S̃T
H , q̃′T = [0m|q̃T ]. Then (q̃′T M̃−1)T is in the column

space of W̃ .
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Proof. Recall that M+ = [0k×m|H̃S̃T
H ] and that the SVD composition of M+ is

given by UM+ΣM+V T
M+ . Given that M+ is of rank k, the columns of UM+ span

the same space as the columns of H̃. Since W̃ = H̃ÃT and W̃ is of rank k, the

columns of W̃ and the columns of H̃ span the same space: the column space of

UM+ is the same as the column space of W̃ . From Claim 11.4, we know that

q̃′T M̃−1 = q̃′TM+−1
= (q̃′TVM+Σ−1

M+), from which it follows that q̃′T M̃−1 is a

linear combination of the rows of UT
M+ , or alternatively that (q̃′T M̃−1) is in the

column space of UM+ , which is the same space as the column space of W̃ .

Lemma 11.7. [Achilioptas et al. 01] For any B ∈ �i×j, i ≥ j, whose columns have

2-norm 1 and are mutually orthogonal, and any z ∈ �i, a vector in the column

space of B, we have ‖zTB‖2 = ‖zT‖2.

Lemma 11.8. For any matrix A, q �= 0, we have

‖qTAT ‖2 ≥ ‖q‖2 · σk(A
T ).

Proof. We prove that

‖qTAT ‖2
‖q‖2 ≥ min

‖qTA‖2
‖q‖2 ≥ σk(A),

from which follows the claim.

We have

min
q �=0

‖qTA‖2
‖q‖2 = min

qTV T �=0

‖qTV ΣUT ‖2
‖qTV ‖2 = min

yT �=0

‖qTV Σ‖2
‖qTV ‖2 = min

yT �=0

‖yTΣ‖2
‖yT ‖2

= min
y �=0

√∑n
i=1 y

2
i σ

2
i∑n

i=1 y
2
i

≥ σk(A).

Lower Bound. We now prove the lower bound on ‖Z diag(pT S̃T )vT ÃT ‖2. From

Lemma 11.8, we have

‖Z diag(pT S̃T )vT ÃT ‖2 ≥ σ(Z) · ‖ diag(pT S̃T )vT ÃT ‖2.
Since diag(pT S̃T ) is a diagonal matrix, we have

σ(Z) · ‖ diag(pT S̃T )vT ÃT ‖2 ≥ σ(Z) ·min(pT S̃T ) · ‖vT ÃT ‖2.
From Claim 11.5, we know that

vT ÃT = q̃′T M̃−1W̃ = q̃′TV
M̃
Σ−1

M̃
UT
M̃
U
W̃
Σ

W̃
V T
W̃
.
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Therefore, we have

‖Z diag(pT S̃T )vT ÃT ‖2 ≥ σ(Z) ·min(pT S̃T ) · ‖vT ÃT ‖2
≥ σ(Z) ·min(pT S̃T ) · ‖q̃′TV

M̃
Σ−1

M̃
UT
M̃
U
W̃
Σ

W̃
V T
W̃
‖2

≥ σk(Z) ·min(pT S̃T ) · ‖q̃′TV
M̃
Σ−1

M̃
UT
M̃
U
W̃
Σ

W̃
‖2

≥ σk(Z) · σk(Z) ·min(pT S̃T ) · ‖q̃′TV
M̃
Σ−1

M̃
UT
M̃
U
W̃
‖2.

But since (q̃′T M̃−1)T is in the column space of W̃ (consequently, U
W̃
) from

Claim 11.6, and using Lemma 11.8, we may continue the chain of inequalities

≥ σk(Z) · σk(Z) ·min(pT S̃T ) · ‖q̃′TV
M̃
Σ−1

M̃
UT
M̃
‖2.

Furthermore, we may continue with

≥σk(Z) · σk(Z) ·min(pT S̃T ) · ‖q̃′TV
M̃
Σ−1

M̃
‖2 (Since V T

W̃
is orthogonal)

≥ σk(Z) · σk(W̃ )/σ1(M̃) ·min(pT S̃T ) · ‖q̃′TV
M̃
‖2.

Finally, since q̃′T is in the row space of M̃ (consequently in the column space of

V
M̃
) from Claim 11.1, we have

≥ σk(Z) · σk(W̃ )/σ1(M̃) ·min(pT S̃T ) · ‖q̃′T ‖2.

Upper Bound. We now prove the upper bound. Using the equality of Claim 11.5,

we have vT ÃT = q̃′T M̃−1W̃ . If we let e ∈ Rm+l be such that q′
T

= q̃′
T
+ e,

let E
M̃−1 ∈ R(m×l)×m be such that (M

∗
r)

−1 = M̃−1 + E
M̃−1 , let EW̃

∈ Rm×m,

W
∗
r = W̃ + E

W̃
, and let ES̃T ∈ Rm×l be such that S

∗
o

T
= S̃T + ES̃T , then we

can write

‖Z · diag(pT · S∗
o

T
)q′

T
M

∗−1

r W
∗
t − Z · diag(pT S̃T )vT ÃT ‖2

= ‖Z · diag(pT · (S̃T + ES̃T )) · ((q̃′T + eT )(M̃−1 + E
M̃−1)(W̃ + E

W̃
)

− Z diag(pT S̃T )q̃′T M̃−1W̃‖2
≤ ‖Z · diag(pT (S̃T ) + ES̃T )(e

T M̃−1W̃ )‖2 (11.2)

+ ‖Z · diag((pT )(S̃T + ES̃T )) · (q̃′T M̃−1E
W̃

+ eT M̃−1E
W̃
)‖2 (11.3)

+ ‖Z · diag((pT )(S̃T + ES̃T ))(q̃
′TE

M̃−1W̃ + eTE
M̃−1W̃ )‖2 (11.4)

+ ‖Z · diag((pT )(S̃T + ES̃T ))(q̃
′TE

M̃−1EW̃
+ eTE

M̃−1EW̃
)‖2. (11.5)

To prove upper bounds for (11.2), (11.3), (11.4), and (11.5), we need some

additional claims.



430 Internet Mathematics

Claim 11.9. For any fixed matrix B ∈ �(m+l)×j with constant rank i, ‖eTB‖2 ≤
O(1)

√
i · σ1(B) with high probability.

Claim 11.10. If σi(W̃ ) ∈ ω(
√
m) for 1 ≤ i ≤ k, then PSP chooses r = k and E

W̃
∈

O(
√
m) with high probability. Similarly, if σi(M̃) ∈ ω(

√
m+ l) for 1 ≥ i ≥ 2k,

then PSP chooses m = 2k and ‖E
M̃
‖2 ∈ O(

√
m+ l) with high probability, where

E
M̃

is the matrix such that M r = M̃ + E
M̃
. Finally, if σi(S̃

T ) ∈ ω(
√
m) for

1 ≥ i ≥ k, then PSP chooses r = k and ‖ES̃T ‖2 ∈ O(
√
m) with high probability.

Claim 11.11. If σi(M) ∈ ω(
√
m+ l) for 1 ≤ i ≤ 2k, then with high probability

‖E
M̃−1‖2 ≤ O(

√
m+ l)

(σ2k(M̃))2
.

The proofs for the above claims are very similar to the those of similar results

in [Achilioptas et al. 01].

Claim 11.12. We have

‖Z · diag(pT (S̃T + ES̃T ))(e
T M̃−1W̃ )‖2

‖Z · diag(pT S̃T )vT ÃT ‖2
≤ O(1) · (max(pT S̃T ) + max(pT )

min(pT S̃T )
.

Proof. We have

‖Z · diag(pT (S̃T + ES̃T ))(eT M̃−1W̃ )‖2
‖Z · diag(pT S̃T )vT ÃT ‖2

≤ ‖Z‖2‖pT ‖2‖(S̃T + ES̃T ‖2‖eT M̃−1W̃‖2
‖Z diag(pT S̃T )vT ÃT ‖2

≤ ((σ1(Z)(max(pT S̃T ) + max(pT )O(
√
m))O(1)

√

rank(M̃−1)σ1(M̃−1)σ1(W̃ )

‖Z diag(pT S̃T )vT ÃT ‖2

≤ (σ1(Z)(max(pT S̃T ) + max(pT )O(
√
m))O(1)

√

rank(M̃−1)σ1(M̃−1)σ1(W̃ )σ1(M̃)

σk(Z) min(pT S̃T )‖q̃′T ‖2σk(W̃ )

≤ rk(Z)(max(pT S̃T ) + max(pT )O(
√
m))O(1)

√

rank(M̃−1)σ1(M̃−1)σ1(W̃ )σ1(M̃)

rk(Z) min(pT S̃T )
√
Krk(W̃ )r2k(M̃)σk(W̃ )

≤ O(1)

√

rank(M̃−1)σ1(M̃−1)σ1(M̃)((max(pT S̃T ) + max(pT )O(
√
m)))

√
Kr2k(M̃)σk(W̃ ) min(pT S̃T )

≤ O(1) · (max(pT S̃T ) + max(pT )

min(pT S̃T )
.
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Claim 11.13. We have

‖Z · diag((pT )(S̃T + ES̃T ))(q̃
′T M̃−1E

W̃
+ eT M̃−1E

W̃
)‖2

‖Z · diag(pT S̃T )vT ÃT ‖2
≤ O(1) · (max(pT S̃T ) + max(pT )

min(pT S̃T ))
.

Proof.
‖Z · diag((pT )(S̃T +E

S̃T ))(q̃′T M̃−1E
W̃

+ eT M̃−1E
W̃

)‖2
‖Z · diag(pT S̃T ) · vT ÃT ‖2

≤ ‖Z · diag(pT (S̃T + E
S̃T )))‖2 · (‖(q̃′T M̃−1E

W̃
)‖2 + ‖eT M̃−1E

W̃
‖2)

‖Z · diag(pT S̃T ) · vT ÃT ‖2

≤ σ1(Z)(max(pT S̃T ) + max(pT )O(
√
m))

‖Z · diag(pT S̃T ) · vT ÃT ‖2

×
(‖q̃′T ‖2O(

√
m)

σ2k(M)
+ O(1)

√
rank(M̃−1)O(

√
M)σ1(M̃

−1)

)
≤ (max(pT S̃T ) + max(pT ))

min(pT S̃T )

σ1(Z)

σk(Z)

×

⎛⎜⎝ O(
√
m)σ1(M̃ )

σ2k(M̃)σk(W̃ )
+

O(1)

√
rank(M̃−1σ1(M̃−1O(

√
m)σ1(M̃)σ1(Z)

σk(W̃ )‖q̃′T ‖2σk(Z)

⎞⎟⎠
≤ (max(pT S̃T ) + max(pT ))

min(pT S̃T )

×

⎛⎜⎝O(
√
m)r2k(M̃)rk(Z)

σk(W̃ )
+

O(1)

√
rank(M̃−1σ1(M̃−1O(

√
m)σ1(M̃)rk(Z)

σk(W̃ )
√
Krk(W̃ )r2k(M̃rk(Z)

⎞⎟⎠
≤ (max(pT S̃T ) + max(pT ))
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⎛⎜⎝O(1) + O(1)

√
rank(M̃−1O(

√
(m))
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√
m
√
krk(W̃ )r2k(M̃)

⎞⎟⎠
≤ (max(pT S̃T ) + max(pT ))

min(pT S̃T )
O(1).

Claim 11.14. We have

‖Z · diag((pT )(S̃T + ES̃T ))(q̃′TEM̃−1W̃ + eTE
M̃−1W̃ )‖2

‖Z · diag(pT S̃T ) · vT ÃT ‖2
≤ O(1)

(max(pT S̃T ) + max(pT ))

min(pT S̃T )
.
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Proof.

‖Z · diag((pT )(S̃T + E
S̃T ))(q̃′TE

M̃−1W̃ + eTE
M̃−1W̃ )‖2

‖Z · diag(pT S̃T ) · vT ÃT ‖2

≤ (max(pT S̃T ) + max(pT ))

‖Z · diag(pT S̃T ) · vT ÃT ‖2
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‖q̃′T ‖2O(

√
m+ l)σ1(W̃ )σ1(Z)
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rank(E
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√
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O(1)

√
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)

≤ (max(pT S̃T ) + max(pT ))
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×
(
O(
√
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+
O(1)

√
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√
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)

≤ (max(pT S̃T ) + max(pT ))

min(pT S̃T )

×
(
O(
√

(m+ l))rk(W̃ )r2k(M̃ )

O(
√
m)rk(W̃ )r2k(M̃)

+
O(1)

√
rank(EM−1 )‖EM̃−1‖2σ1(W̃ )σ1(M̃)
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√
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)
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√
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+
O(1)

√
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√
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×
(
O(
√

(m + l))

O(
√
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+
O(1)

√
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O(
√
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√
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√
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√
m + l)√

krk(W̃ )r2k(M̃ )O(
√
m
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min(pT S̃T )
O(1).

Claim 11.15. We have

‖Z · diag((pT )(S̃T + ES̃T ))(q̃
′TE

M̃−1EW̃
+ eTE

M̃−1EW̃
)‖2

‖Z · diag(pT S̃T ) · vT ÃT ‖2
≤ O(1)

(max(pT S̃T ) + max(pT ))

min(pT S̃T )
.
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Proof.
‖Z · diag((pT )(S̃T + ES̃T ))(q̃′T E

M̃−1EW̃
+ eTE

M̃−1EW̃
)‖2

‖Z · diag(pT S̃T ) · vT ÃT ‖2

≤ (max(pT S̃T ) + max(pT ))

‖Z · diag(pT S̃T ) · vT ÃT ‖2

×
(
‖q̃′T ‖2

O(
√
m + l)O(

√
m)

σ2
2k(M̃)

σ1(Z) +O(1)
√

rank(E
M̃−1

)σ1(EM̃−1)O(
√
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√
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√
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min(pT S̃T )

×
(

O(
√
m + l)O(

√
m)

√
mσ2k(M̃)

+
O(1)

√
rank(E

M̃−1
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√
m)σ1(M̃)rk(Z))

‖q̃′T ‖2σk(W̃ )

⎞
⎟⎠
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×

⎛
⎜⎝O(

√
m + l)O(

√
m)

√
mσ2k(M̃)

+
O(1)

√
rank(E

M̃−1
)σ1(EM̃−1)O(

√
m)σ1(M̃))

√
m · √k · r2k(M̃)

⎞
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√
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m · r2k(M̃)rk(W̃ )rk(Z)
+

O(1)
√

rank(E
M̃−1

)σ1(EM̃−1)O(
√
m)σ1(M̃))

√
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⎞
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⎛
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√
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+
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√

rank(E
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√
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√
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⎞
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O(1).

Combining Claims 11.12–11.15, we obtain the desired proof of the theorem.
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