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Who Should Pay for Forwarding
Packets?
Heiner Ackermann, Patrick Briest, Alexander Fanghänel, and
Berthold Vöcking

Abstract. We present a game-theoretic study of hybrid communication networks in
which mobile devices can connect to a base station, The maximal number of allowed
hops might be bounded in order to guarantee small latency. We introduce hybrid
connectivity games to study the impact of selfishness on this kind of infrastructure.

Mobile devices are represented by selfish players, each of which aims at establishing
an uplink path to the base station minimizing its individual cost. Our model assumes
that intermediate nodes on an uplink path are reimbursed for transmitting the packets
of other devices. Depending on the model, the reimbursements can be paid either by
a benevolent network operator or by the senders of the packets using micropayments
via a clearing agency that possibly collects a small percentage as commission.

Our main findings are these: If there is no constraint on the number of allowed hops
on the path to the base station, then the existence of equilibria is guaranteed regardless
of whether the network operator or the senders pay for forwarding packets. If there is
an upper bound on the number of allowed hops on the uplink path, then the existence
of equilibria depends on who pays for forwarding packets. If the network operator pays,
then the existence of equilibria is guaranteed only if at most one intermediate node is
allowed. If the senders pay for forwarding their packets, then equilibria are guaranteed
to exist given any upper bound on the number of allowed hops.

Our equilibrium analysis gives a first game-theoretic motivation for the implementa-
tion of micropayment schemes in which senders pay for forwarding their packets. We
further support this evidence by giving an upper bound on the “price of anarchy” for
this kind of hybrid connectivity game that is independent of the number of nodes but
depends only on the number of hops and the power gradient.
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1. Introduction

Hybrid communication networks are a promising direction in which to com-
bine the features of wireless ad hoc networks with the advantages of wired net-
works guaranteeing flexible connectivity at low cost in combination with a high
throughput. In such an infrastructure, mobile devices connect in an ad hoc
fashion to a base station, i.e., an access point to the wired part of the network,
possibly via a few hops using other mobile devices as relay stations [Frodigh et
al. 01, Singh et al. 98, Tang et al. 05].

Since energy requirements increase superlinearly in the distance between two
devices, the use of intermediate nodes can significantly reduce the energy con-
sumption in comparison to directly connecting to the base station. This is of
particular importance for uplink connections from the mobile devices to the base
stations, since mobile devices have rather limited energy resources. Using mobile
devices as relay stations, on the one hand, might also increase the quality of ser-
vice (QoS) due to a reduction of interference. On the other hand, the QoS suffers
from an increase in latency if packages need to be forwarded several times until
they reach the wired part of the network. For this reason, only a relatively small
number of hops seems to be acceptable. We focus on energy consumption while
neglecting interference issues. The aspect of keeping the latency at a reasonable
level is modeled by introducing hop constraints, which ensure that uplink paths
are not too long.

Although the benefits of using multihop connections are convincing from a
global point of view, one might ask why participants in a commercially oper-
ated network should forward packets of other participants, since this drains the
battery of the forwarding node while offering no benefit to the participant, thus
bringing a negative utility to that participant. The usual response is that the
forwarding nodes should receive a payment for forwarding packets. Let us sim-
plify and assume that there is perfect information about the cost of forwarding
packets. More specifically, we assume that the energy consumption for sending
packets between any pair of nodes is publicly known and there is a common
valuation per unit energy among the players, so that intermediate nodes can be
reimbursed for forwarding packets. Nodes are reimbursed for forwarding packets
either by the network operator or by the senders of the packet. We assume that
these payments exactly compensate the cost of packet forwarding.

We introduce hybrid connectivity games as a game-theoretic model for hybrid
communication networks and study the existence, structure, and complexity of
Nash equilibria in these games depending on different kinds of payment schemes.
Mobile devices are represented by players that aim at connecting to an access
point via an uplink path.
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We study the effects of payments on the equilibrium topologies in hybrid
connectivity games depending on who is paying for reimbursing the intermediate
nodes on the uplink path for forwarding packets: The network operator might
pay for all reimbursements, or the senders of the forwarded packets might pay.
One can imagine that the first variant can be implemented internally within
the accounting system of the network operator/provider. The second variant
suggests itself for an implementation using micropayments as elucidated, e.g., in
[Jakobsson et al. 03]. A clearing agency realizing the micropayments possibly
collects a small additional percentage as commission from the senders. We will
incorporate these different variants into our model in the form of a parameter α

describing the fraction of payments made by the senders. Here α = 0 means that
the network operator completely pays for the reimbursements, whereas α ≥ 1
means that the senders reimburse the nodes forwarding their packets and the
additional payment, i.e., a fraction of α − 1, goes to the clearing agency.

1.1. The Model

A hybrid connectivity game consists of a complete, edge-weighted graph G =
(V, E) with V = P ∪̇A and two parameters α ≥ 0 and h ∈ N. We denote by P

the set of players, and by A the set of access points. In the following, let n = |P |.
The edge weights are assumed to be positive, and weight w(i, j) of edge {i, j}
describes the cost of transmitting a unit of data from i to j or vice versa.

Each player aims to establish an uplink path to an access point. To this end,
player i chooses a gateway gi ∈ V . The idea is that i sends its own packets and
all other packets that it receives to gi. Then this node forwards these packets to
its gateway and so on until the packets reach an access point. The path followed
by the packets to the access point is called i’s uplink path.

In the following, we call a vector s = (g1, . . . , gn) ∈ V n a state of the game and
assume that player i chooses gi as gateway. The cost ci(s) of player i in state s is
defined as follows. If i is connected via the uplink path i = p0, p1, . . . , pl−1, pl = a

to the access point a and this route has at most h hops, i.e., l ≤ h, then the cost
of i is

ci(s) = w(p0, p1) + α ·
l−1∑

j=1

w(pj , pj+1) . (1.1)

Otherwise, the cost of i is assumed to be infinitely large. We assume that each
player selfishly aims at minimizing its cost. A state s is called a Nash equilibrium
if no player has an incentive to change its gateway.

In the following, we assume without loss of generality that there exists a single
access point only, i.e., |A| = 1. In the case of multiple access points one can
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always merge them into a single one and choose for every player the weight of
the edge between the player and the new access point as the minimum over all
weights between the player and each access point from the set A.

1.2. Our Contribution

First, we consider the case that the network operator pays for reimbursing the
intermediate nodes, i.e., we assume α = 0. In this case, nodes can forward
packets along intermediate nodes for free, so that they aim solely at minimizing
the energy requirement for the first link on their path.

• We observe that if there is no hop constraint (i.e., h = n), then hybrid
connectivity games with α = 0 always have pure equilibria. A similar
observation has been made in [Eidenbenz et al. 03]; see Section 1.3.

• The situation changes, however, when hop constraints are introduced. We
prove that the existence of equilibria is guaranteed only for h ∈ {1, 2}. For
any h ≥ 3, there is an instance of the hybrid connectivity game with α = 0
that does not have an equilibrium.

Let us remark that both existence proofs are constructive and yield algorithms
computing equilibria efficiently.

Second, we study the case that intermediate nodes are reimbursed for for-
warding packets by the senders of the packets via an agency that might collect
a small percentage as commission, that is, we assume α ≥ 1. In this case, our
analysis shows that these games always have pure equilibria. Again our proof is
constructive and yields an efficient algorithm for computing an equilibrium.

We view our result as the first game-theoretic evidence that senders rather
than a benevolent network operator should pay for forwarding their packets.
This is true even if this causes some overhead for implementing the accounting
and payment, since our positive results about the existence of equilibria hold
even if there is a clearing agency taking some percentage as commission.

We complete our analysis by studying the price of anarchy (PoA) for hybrid
connectivity games. We start by presenting examples for different variants of
hybrid connectivity games, showing that the PoA is unbounded for general cost
matrices. For this reason, we restrict ourselves to cost matrices generated by
power graphs with an underlying Euclidean embedding. Assuming that senders
pay for forwarding their packets, as suggested by our preceding equilibrium anal-
ysis, we obtain an upper bound of hβ−1 for the PoA, with h denoting the hop
constraint and β the power gradient. Hence, the PoA is independent of the size
of the network.
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1.3. Related Work
In recent years, various papers have studied wireless networks from a game-
theoretic perspective. Among others, [Altman and Altman 03], [Heikkinen 06],
and [Krishnaswamy 02] observe that due to the increased complexity of mod-
ern wireless networks, resource-management tasks should be shifted from the
wired part of the infrastructure to the mobile devices. Such management tasks
include power assignments to, and channel allocation of, mobile devices. These
researchers propose to study such problems in the framework of potential games,
and they present potential functions showing that best-response dynamics con-
verge to stable assignments. Extended discussion of these and other models can
be found in [Srivastava et al. 05].

Most closely related to our work is [Eidenbenz et al. 03], which introduces
several topology control games. In such games, selfish mobile devices aim to be
connected to specified sets of other devices at the lowest cost. Although they
suggest that senders should pay for forwarding their packets, they do not take
into account the effects of these payments on the preferences of the players.
In our notation, they assume α = 0. They show that the connectivity games
they consider do not possess Nash equilibria in general. However, if each device
wishes to be connected to every other device, then the existence of equilibria is
guaranteed. Hop constraints are not taken into account.

Different approaches encouraging mobile devices to forward packets are pre-
sented, for instance, in [Anderegg and Eidenbenz 03, Eidenbenz et al. 07, Jakob-
sson et al. 03, Zhong et al. 05]. In [Jakobsson et al. 03] a micropayment scheme
is presented, whereas other works discuss incentive-compatible payment schemes
[Anderegg and Eidenbenz 03, Eidenbenz et al. 07, Zhong et al. 05].

Other branches of research related to our work are network design and network
formation games [Albers et al. 06, Anshelevich et al. 03, Bala and Goyal 00,
Demaine et al. 07, Fabrikant et al. 03]. In [Anshelevich et al. 03], a network-
creation game is considered in which players represent subsets of nodes of a graph
and can contribute toward the purchase of fixed-price edges. Among other results
they show that if each player wants to connect a single node to some common
source, there exist socially optimal Nash equilibria, or more formally, the price
of stability in this game is 1.

Another basic model of network formation, in which each node is represented
by a selfish agent, is introduced in [Fabrikant et al. 03]. Every player can create
incident links to other nodes and incurs a cost that equals α times the number
of created links plus the sum of distances to all other nodes. [Fabrikant et al. 03]
presented first results on the price of anarchy in these games. Several extensions
and improvements on these results appear in [Corbo and Parkes 05, Albers et
al. 06, Demaine et al. 07].
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2. Payments by the Network Operator

In this section, we consider hybrid connectivity games with α = 0, that is, we
consider games in which the network operator reimburses players for forwarding
packets. First we consider games without hop constraints.

Theorem 2.1. Every hybrid connectivity game with α = 0 and without hop constraints
possesses a Nash equilibrium that can be computed efficiently.

Proof. Consider an improvement sequence whereby players sequentially choose
new gateways decreasing their costs. Since a player’s improvement does not
change any other players’ costs, each player chooses each gateway at most once.
Therefore, starting from any initial state, after at most (n − 1)2 improvement
steps an equilibrium is reached.

We now turn our attention to hybrid connectivity games with α = 0 and hop
constraints. Recall that in this case an uplink path is feasible only if the number
of hops on this path does not exceed the hop constraint h. First, note that we
cannot apply the arguments of the previous proof to games with hop constraints.
This is because an improvement of a single player may violate the hop constraints
of other players, and thus the costs of other players may increase to infinity.

In the following, we prove that every game with hop constraint h ∈ {1, 2}
possesses a Nash equilibrium. In case of h = 1, all players connect to the access
point, an arrangement that is obviously a Nash equilibrium. In case of h = 2, we
present an efficient algorithm for computing an equilibrium. However, as shown
in Observation 4.1, other equilibria besides this one may exist. Additionally, we
observe that for every fixed hop constraint h ≥ 3 there exists a game that does
not possess a Nash equilibrium.

Theorem 2.2. Every hybrid connectivity game with α = 0 and hop constraint h = 2
possesses a Nash equilibrium, which can be computed efficiently.

Proof. In the following, we present an efficient algorithm for computing a Nash
equilibrium of such a game. The algorithm proceeds in two phases. Without
loss of generality, assume that w(1, a) ≤ w(2, a) ≤ · · · ≤ w(n, a).

Phase 1: Initially, all players are unconnected. The algorithm then processes
the players 1, . . . , n in that order and connects player i to the access point if
there exists no player j < i with the following properties: Player j has already
been connected to the access point, and w(i, j) < w(i, a). If such a player j

exists, player i remains unconnected.
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Phase 2: All players who have not been connected in the first phase are
connected to their closest gateway.

Players who were connected in the second phase do not have an incentive to
change their gateways, since they cannot decrease their cost by choosing players
connected in the second phase as their gateways, because of the hop constraint.
Thus, it remains to show that none of the players who were connected in the
first phase have an incentive to change their gateways. To obtain a contradiction,
assume that player i has an incentive to choose a new gateway gi. Note that gi

was connected in the first phase, too. Thus gi > i, since otherwise, i would not
have been connected in the first phase. We conclude that

w(i, a) ≤ w(gi, a), since i < gi,

w(gi, a) ≤ w(i, gi), since gi connected to the access point,

w(i, gi) < w(i, a) since i has an incentive to connect to gi.

Finally, we obtain a contradiction, since the inequalities implies that w(i, gi) <

w(i, gi).

Next, we show that in general, the existence of Nash equilibria cannot be
extended to games with hop constraint h ≥ 3.

Theorem 2.3. For every integer h ≥ 3, there exists a hybrid connectivity game with
α = 0 and hop constraint h that does not possess a Nash equilibrium.

The very technical construction of these games can be found in the appendix,
Section 6.

3. Payments by the Senders

In this section, we consider hybrid connectivity games with α ≥ 1, and prove
that every such game possesses a Nash equilibrium even in the presence of a hop
constraint. Our proof applies arguments similar to those used in showing the
correctness of Dijkstra’s shortest path algorithm.

Theorem 3.1. Every hybrid connectivity game with α ≥ 1 and hop constraint h ≥ 1
possesses a Nash equilibrium that can be computed efficiently.

Proof. First, we present an efficient iterative algorithm for computing an equilib-
rium. The algorithm works as follows. Initially, none of the players is connected.
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The algorithm then selects player i such that i = argminj∈P {w(j, a)} and con-
nects it to the access point a. Without loss of generality, assume that i = 1. This
state corresponds to an equilibrium when all unconnected players are ignored.
The algorithm then proceeds as follows. Suppose the algorithm has already con-
nected the players 1, . . . , i−1 via uplink paths to the access point such that none
of them has an incentive to change its gateway. For every unconnected player j,
let Cj(i − 1) be the cost of a cheapest uplink path via players 1, . . . , i − 1 that
does not violate the hop constraint. Let i be the player such that Ci(i − 1) is
minimal, i.e., i = argminj∈P\{1,...,i−1} Cj(i − 1). The algorithm then connects
i via its cheapest path. In order to prove that we obtain a Nash equilibrium
with i players, we claim that the cost Ci(i − 1) is not less than the cost of the
uplink path of each of the players 1, . . . , i − 1, that is, Ci(i − 1) ≥ Cj(i − 1) for
1 ≤ j ≤ i − 1.

We prove our claim by induction on the number of players. First, note that the
algorithm connects player 1 first, i.e., one of the players with the cheapest edge
to the access point. By the construction of our algorithm, C2(1) ≥ w(1, a). As
our induction hypothesis let the first i−1 players be connected by the algorithm
and let Ck(k − 1) ≥ Cj(k − 1) for all j, k, 1 ≤ j < k ≤ i − 1. We fix a player
j < i. Since the algorithm connected player j before player i, we have Ci(j−1) ≥
Cj(j − 1). Now we distinguish the following two cases. In the first case, player
i chooses j as its gateway. In the second case, it chooses a device k �= j or the
access point itself as its gateway. In the first case, Ci(i − 1) ≥ Cj(i − 1), since
Ci(i − 1) = w(i, j) + (α − 1)ωj + Cj(i − 1) ≥ Cj(i − 1), where ωj denotes the
cost of the first edge on the uplink path of player j. The second case divides
into two subcases. If k < j, then Ci(i − 1) = Ci(j − 1) ≥ Cj(j − 1) = Cj(i − 1).
Otherwise, if k > j, then Ck(k−1) ≥ Cj(k−1) by the induction hypothesis. Then
Ci(i− 1) = w(i, k)+ (α− 1)ωk + Ck(k− 1) ≥ Ck(k− 1) ≥ Cj(k− 1) = Cj(i− 1).

We conclude that no player j < i has an incentive to choose player i as gateway.

In the following, we assume that each player has a strict preference in the case
of a tie of the cost of two paths. We then show that the Nash equilibrium is
unique, except for sets of players with mutual distance zero. Again, our proof
applies arguments similar to those used for showing the correctness of Dijkstra’s
shortest path algorithm.

Theorem 3.2. Consider a hybrid connectivity game with α ≥ 1, wi,j > 0, for all i, j ∈
V , hop constraint h ≥ 1, and suppose that every player has strict preferences in
the case of a tie for the cost of two paths. Then the Nash equilibrium of the game
is unique.
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Proof. In the following, we denote the gateway of player i in state s by gi(s).
Suppose that there exist two Nash equilibria s1 and s2. Then there exists at
least one player i such that gi(s1) �= gi(s2). Among all such players, let player k

be the one with smallest index with respect to the following order of the players.
Without loss of generality, assume that

c1(s1) ≤ c2(s1) ≤ · · · ≤ cn(s1) . (3.1)

Thus, the players 1, . . . , k−1 are connected in the same manner in both equilibria,
i.e., for every j < k, we have gj(s1) = gj(s2). Next, we distinguish two cases,
both of which lead to a contradiction.

Case 1: gk(s2) ∈ {a, 1, . . . , k − 1}. In this case, player k has an incentive to
change its gateway either in s1 or in s2. In both cases it switches to the gateway
it has in the other state, which is a feasible choice, since the players 1, . . . , k − 1
are connected in the same manner in both equilibria. If k has the same cost in
both states, then we obtain a contradiction to our assumption that k has a strict
preference in the case of a tie. However, if the cost in one of the two states is
strictly less than in the other one, then k can strictly decrease its costs in the
more expensive one.

Case 2: gk(s2) ∈ {k + 1, . . . , n}. In this case, we distinguish three subcases.

(a) ck(s1) < ck(s2): Since the players 1, . . . , k − 1 are connected in the same
manner in both equilibria, player k has an incentive to switch to gk(s1) in s2.
This strictly decreases its cost.

(b) ck(s1) > ck(s2): Let k′ be the last player on the uplink path from k to the
access point in s2 such that k′ ∈ {k + 1, . . . , n} and gk′(s2) ∈ {a, 1, . . . , k − 1}.
Note that such a player always exists. In order to find such a k′, observe that
either gk(s2) has the desired properties, or ggk(s2)(s2) �∈ {a, 1, . . . , k − 1}. If
ggk(s2)(s2) ∈ {a, 1, . . . , k − 1}, then all subsequent players on the path belong
to this set as well. Thus, k′ = gk(s2). If ggk(s2)(s2) �∈ {a, 1, . . . , k − 1}, then
ggk(s2)(s2) is the next candidate to be considered. Repeating this finally yields
k′ with the desired properties, since the path terminates at the access point a.

Now we observe that ck′(s2) < ck(s2), since wi,j > 0 for every i, j, and since
α ≥ 1. Additionally, we observe that ck(s1) ≤ ck′(s1), due to (3.1) and since
gk(s2) ∈ {k + 1, . . . , n}. Thus,

ck′(s2) < ck(s2) < ck(s1) ≤ ck′(s1) .

In this case, however, player k′ has an incentive to change its gateway to gk′(s2)
in s1, since the players 1, . . . , k − 1 are connected in the same manner in s1

and s2.
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(c) ck(s1) = ck(s2): Since wi,j > 0 for every i, j, and since α ≥ 1, we conclude
that cgk(s2) < ck(s2). Furthermore, we conclude from (3.1) and the assumption
that gk(s2) ∈ {k + 1, . . . , n} that ck(s1) ≤ cgk

(s1). Thus

cgk(s2)(s2) < ck(s2) = ck(s1) ≤ cgk
(s1) . (3.2)

Now consider the gateway ggk(s2)(s2) of player k in s2. Suppose now that
ggk(s2)(s2) ∈ {a, 1, . . . , k − 1}. In this case, we can apply case 1 to ggk(s2)(s2),
which implies that one of the two states s1 and s2 is not an equilibrium. If, how-
ever, ggk(s2)(s2) ∈ {k+1, . . . , n}, then we can apply the second subcase of case 2
to ggk(s2)(s2). This is possible because (3.2) implies that cgk(s2)(s1) > cgk(s2)(s2).
We obtain that ggk(s2)(s2) has an incentive to change its gateway in s1. It follows
that the equilibrium is unique.

From a theoretical point of view, it would also be interesting to consider games
with α ∈ ]0, 1[ . In this case reimbursements would be shared among the sender
and the network operator. However, we conjecture that for every hop constraint
h ≥ 3 and α ∈ ]0, 1[ , there exists a hybrid connectivity game that does not have
an equilibrium.

4. Price of Anarchy

In this section we provide some results on the price of anarchy (PoA) in hybrid
connectivity games. As usual, the PoA is the ratio between the sum of the
players’ costs in a worst Nash equilibrium and in a socially optimal state. First,
we present examples for α ∈ {0, 1} showing that in general, the PoA cannot be
bounded by any constant. In the case of games with α = 0 this is true for any
h ≥ 2 and hence even without a hop constraint.

Observation 4.1. For any h ≥ 2 and any c ≥ 1, there is a two-player hybrid con-
nectivity game with α = 0 and hop constraint h whose price of anarchy is at
least c.

Proof. Consider the example depicted in Figure 1(a). In the socially optimal
state, player 1 connects to the access point, and player 2 connects to player 1. In
the worst Nash equilibrium, player 2 connects to the access point, and player 1
connects to player 2. In this case, the price of anarchy is (M + 1)/3. Since M

can be chosen arbitrarily, the observation follows for any fixed c.

Next, we consider hybrid connectivity games with α = 1. In the case of games
without hop constraints, the price of anarchy is trivially 1, because each player



�

�

“imvol5” — 2010/1/8 — 15:24 — page 469 — #11
�

�

�

�

�

�

Ackermann et al.: Who Should Pay for Forwarding Packets? 469

1

2 M

access point

player 1 player 2

(a) The price of anarchy is un-
bounded in hybrid connectiv-
ity games with α = 0.

1 1 1

3

M
M + 2

access point

player 1 player 2 player 3

(b) The price of anarchy in hybrid connectivity games
with α = 1 and hop constraint is unbounded.

Figure 1. Worst-case instances.

is connected to the access point via a globally shortest path. Unfortunately, this
positive result does not hold in games with hop constraints.

Observation 4.2. For any h ≥ 2 and any c ≥ 1, there is a three-player hybrid
connectivity game with α = 1 and hop constraint h whose price of anarchy is at
least c.

Proof. Consider the example depicted in Figure 1(b), and assume that the hop
constraint is 2. Then, in the only equilibrium, player 1 connects to the access
point, and players 2 and 3 to player 1. In contrast to this, in the socially optimal
state, player 2 connects to the access point, and player 3 to player 2. In this
case, the price of anarchy is (M + 4)/8. Since M can be chosen arbitrarily, the
observation follows for any fixed c.

In the aforementioned examples we did not make any assumptions about the
cost function. However, in real-world wireless networks, devices are embedded
into the Euclidean space R

2 or R
3, and costs are often assumed to depend on

the Euclidean distance and the path-loss or distance power gradient β ≥ 1. To
be precise, the cost for a successful transmission of a data packet between two
players p1 and p2 is w(p1, p2)β , where w(p1, p2) denotes the Euclidean distance
between the two players. The distance power gradient usually ranges from 2 to 6.

Next, we consider the price of anarchy in hybrid connectivity games with α = 1
that are embedded into Euclidean space. Given the distance power gradient β,
we call these games β-embedded. We show that for such β-embedded games,
the PoA is bounded above by hβ−1. Since the distance power gradient β and the
hop constraint are usually expected to be small constants, we conclude that
the impact of selfish players is not too great and in particular does not depend
on the number of players.
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Theorem 4.3. The price of anarchy in β-embedded hybrid connectivity games with
α = 1 and hop constraint h is bounded above by hβ−1.

Proof. In a Nash equilibrium s of a β-embedded hybrid connectivity game with
α = 1 and hop constraints, the cost of player i is trivially bounded above by
w(i, a)β . Additionally, in a socially optimal state s∗, the cost of i is bounded
below by h · (w(i, a)/h)β . Thus, in every Nash equilibrium each player pays at
most

w(i, a)β

h · (w(i, a)/h)β
= hβ−1

times what would be paid in a socially optimal state. Hence, the price of anarchy
is bounded above by hβ−1.

5. Conclusion

By taking into account different kinds of payments, our analysis is a first step
toward studying the impacts of selfishness stretching across the network and
the data link layer. The major simplifying assumption in our model is that the
energy consumption for sending packets between any pair of players is public
knowledge and that there is a common valuation per unit of energy. Because of
this assumption, reimbursements can be chosen in such a way that they precisely
cover the cost of forwarding a packet.

One way to get rid of the assumption of global knowledge about the cost
matrix might be simply to set a fixed price for forwarding packets, regardless of
the required energy. In this case, only those nodes participate as relay stations
that can forward packets along edges whose energy cost is not larger than the
fixed price per packet. An alternative approach could be to use mechanisms
like VCG to let the players truthfully report their cost values as described, for
example, in [Anderegg and Eidenbenz 03, Eidenbenz et al. 07]. Both approaches
have the problem that players might have an incentive to increase the number
of packets they have to forward, because the payment that they receive is larger
than the cost for forwarding a packet. For example, they might decrease the
number of hops on their path to the base station in order to become more
attractive to serve as a gateway for other nodes. That is, overpayments change
the strategic behavior of the players and hence are not covered by our analysis.

We think that it would be an important step toward more practical models
and a challenging open problem to investigate the effects of different payment
schemes in a game-theoretic study.
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a p1 p2 p3 p4 p5

a - 20 58 60 97 85
p1 20 - 65 46 33 82
p2 58 65 - 48 71 15
p3 60 46 48 - 34 72
p4 97 33 71 34 - 18
p5 85 82 15 72 18 -

Table 1. A counterexample with h = 3.

6. Appendix: Proof of Theorem 2.3

First, we present a hybrid connectivity game with α = 0 and hop constraint
h = 3 that does not possess a Nash equilibrium. In this game there are five
players and a single access point. Edge weights are defined according to Table 1.

In order to prove that this game does not possess a Nash equilibrium, one could
check every state of the game. Observe, however, that it suffices to consider a
preference list for every player p in which a player pi occurs before pj if w(p, pi) <

w(p, pj). In case of ties, players can be listed in arbitrary order. Then each
player wishes to be connected to the first player in its preference list under the
assumption that this player is connected to the access point and that its own
hop constraint is not violated. Additionally, in an equilibrium state no player is
connected to some gateway that occurs after the access point a in its preference
list. Further, p1 is always connected to the access point and therefore p1 is always
an appropriate gateway. Thus, we obtain the following preference lists:

p1 : a
p2 : p5, p3, a
p3 : p4, p1

p4 : p5, p1

p5 : p2, p4, p3, p1

In the following we do an exhaustive search over all possible states with respect
to the shortened preference lists. Each line begins with the list of gateways chosen
by the players p2, p3, p4, p5, followed by one out of several reasons why this state
is not an equilibrium:

p5, p4, p5, p2: p2 is not connected
p5, p4, p5, p4: p2 is not connected
p5, p4, p5, p3: p2 is not connected
p5, p4, p5, p1: p3 violates the hop constraint

p5, p4, p1, p2: p2 is not connected
p5, p4, p1, p4: p2 violates the hop constraint
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p5, p4, p1, p3: p2 violates the hop constraint
p5, p4, p1, p1: p4 can decrease its cost

p5, p1, p5, p2: p2 is not connected
p5, p1, p5, p4: p2 is not connected
p5, p1, p5, p3: p2 violates the hop constraint
p5, p1, p5, p1: p5 can decrease its cost

p5, p1, p1, p2: p2 is not connected
p5, p1, p1, p4: p2 violates the hop constraint
p5, p1, p1, p3: p2 violates the hop constraint
p5, p1, p1, p1: p3 can decrease its cost

p3, p4, p5, p2: p2 is not connected
p3, p4, p5, p4: p2 is not connected
p3, p4, p5, p3: p2 is not connected
p3, p4, p5, p1: p2 violates the hop constraint

p3, p4, p1, p2: p2 violates the hop constraint
p3, p4, p1, p4: p2 violates the hop constraint
p3, p4, p1, p3: p2 violates the hop constraint
p3, p4, p1, p1: p2 violates the hop constraint

p3, p1, p5, p2: p4 violates the hop constraint
p3, p1, p5, p4: p4 is not connected
p3, p1, p5, p3: p2 violates the hop constraint
p3, p1, p5, p1: p2 can decrease its cost

p3, p1, p1, p2: p5 violates the hop constraint
p3, p1, p1, p4: p3 can decrease its cost
p3, p1, p1, p3: p3 can decrease its cost
p3, p1, p1, p1: p3 can decrease its cost

a, p4, p5, p2: p3 violates the hop constraint
a, p4, p5, p4: p3 is not connected
a, p4, p5, p3: p3 is not connected
a, p4, p5, p1: p3 violates the hop constraint

a, p4, p1, p2: p4 can decrease its cost
a, p4, p1, p4: p5 can decrease its cost
a, p4, p1, p3: p5 violates the hop constraint
a, p4, p1, p1: p4 can decrease its cost

a, p1, p5, p2: p2 can decrease its cost
a, p1, p5, p4: p4 is not connected
a, p1, p5, p3: p4 violates the hop constraint
a, p1, p5, p1: p2 can decrease its cost

a, p1, p1, p2: p2 can decrease its cost
a, p1, p1, p4: p2 can decrease its cost
a, p1, p1, p3: p2 can decrease its cost
a, p1, p1, p1: p2 can decrease its cost

In order to extend the example to arbitrary hop constraints h > 3, one simply
replaces the former access point by a sequence of h − 3 players and attaches a
new access point to this sequence. The weights are chosen in such a way that
the new players always line up and such that none of the old players connect to
a new one.

This completes the proof.
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