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Finding Strongly Knit Clusters in
Social Networks
Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E. Tarjan

Abstract. Social networks are ubiquitous. The discovery of closely knit clusters in these
networks is of fundamental and practical interest. Existing clustering criteria are lim-
ited in that clusters typically do not overlap, all vertices are clustered, and/or external
sparsity is ignored. We introduce a new criterion that overcomes these limitations by
combining internal density with external sparsity in a natural way.

This paper explores combinatorial properties of internally dense and externally sparse
clusters. A simple algorithm is given for provably finding such clusters assuming a
sufficiently large gap between internal density and external sparsity. Experimental
results show that the algorithm is able to identify over 90% of the clusters in real
graphs, assuming conditions on external sparsity.

1. Introduction

Social networks have gained in popularity recently with the advent of sites such as
MySpace, Friendster, and Facebook. The number of users participating in these
networks is large, e.g., hundreds of millions in MySpace, and growing. These
networks are becoming a rich source of data as users populate their profiles with
personal information. Of particular interest in this paper is the graph structure
induced by the friendship links.

A fundamental problem related to these networks is the discovery of clusters,
or communities. Intuitively, a cluster is a collection of individuals with dense
friendship patterns internally and sparse friendships externally. There are many
reasons to seek tightly knit communities in networks; for instance, targeted mar-
keting schemes can be designed based on clusters.
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What defines a cluster in a social network? At first glance, the answer would
seem to be identical to a traditional cluster in a graph. However, it turns out
that the notions are quite different. The reason stems from some of the initial
motivations for studying graph clustering: to partition a large graph into mul-
tiple processors so that interprocessor communication is minimized and load is
approximately balanced. In a multiprocessing environment, each vertex of the
graph is assigned to exactly one cluster, and the number of vertices assigned to
each processor is approximately the same. The number of edges crossing the cut
is an important component of the optimization. This criterion does not apply
to a social network: a person can belong to multiple clusters, not every person
needs to be clustered, and clusters can contain a varying number of members.
Further, internal density of a cluster matters: the number of edges crossing be-
tween two clusters may be quite large, but any person outside a cluster should
have little adjacency into the cluster.

Closer to our work is the notion of a community, which has been considered
in prior work. A subset of vertices is said to form a community [Flake et al.
00] if each vertex has at least as many edges into the community as outside
the community. One problem with such a definition is that individuals with a
high degree of connectivity will ultimately not belong to any community. Such
highly connected individuals are crucial to understanding network structure.
While this definition is closer to what we seek, it is still missing many important
components: external sparsity, overlapping clusters where not every vertex is
clustered, and internal density.

In this paper, we formulate a new graph-clustering criterion that is ideally
suited for social networks. We consider an induced subgraph to be a cluster
if its internal density is sufficiently large (β) and if vertices outside the cluster
have sufficiently sparse connectivity into the cluster (α). Specifically, a subset
of vertices forms an (α, β)-cluster if every vertex in the cluster is adjacent to at
least a β-fraction of the cluster and every vertex outside the cluster is adjacent
to at most an α-fraction of the cluster (see Definition 3.1). Our analysis provides
a rigorous understanding of the combinatorics of (α, β)-clusters, together with
a provable algorithm for finding them. The (α, β)-criterion allows clusters to
overlap and does not necessarily cluster every vertex.

1.1. Contributions

Clusters in social networks take on different characteristics, e.g., overlapping,
internally dense, and externally sparse. We give a novel formulation, (α, β)-
clustering, specifically suited to these networks.
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We investigate combinatorial properties of (α, β)-clusters. We bound the ex-
tent to which two clusters can overlap. For two clusters of equal size, we show
that they overlap in at most a (1− (β − α)) fraction of the vertices. For certain
values of α and β, it is possible for one cluster to be contained in another. We
show that if the ratio of the size of the largest cluster to the smallest cluster is at
most (1 − α)/(1 − β), then one cluster cannot be contained in another. Finally,
we give a loose upper bound on the number of (α, 1)-clusters of size s, namely

(
n

αs + 1

)/(
s

αs + 1

)
,

where n is the number of vertices.
Next, we introduce the notion of a ρ-champion of a cluster, which is a vertex

in the cluster with a bounded number of neighbors outside of the cluster, specifi-
cally, no more than a ρ fraction of the cluster. If ρ is less than β, then intuitively
the champion has more neighbors inside the cluster than out. We assume that
the goal of clustering is to find (α, β)-clusters that have at least one ρ-champion.

How can one find such clusters? We show that if there is a large gap between
α/2 and β, i.e., β > 1

2 + ρ+α
2 , then there is a deterministic algorithm for finding

all clusters that runs in time roughly quadratic in the number of vertices.
To validate our ρ-champion assumption and algorithms, we conduct an exper-

iment that evaluates the effectiveness of the clustering algorithm. We demon-
strate that our clustering algorithm succeeds in finding all (α, 1)-clusters with
ρ-champions. We compare the clusters we discover with a ground-truth algo-
rithm for finding all maximal cliques in a graph. The experiments demonstrate
that our algorithm finds over 90% of the clusters in the graph, assuming con-
ditions on external sparsity. Furthermore, (α, β)-clusters truly exist in these
graphs.

2. Related Work

Our (α, β)-clustering formulation is new but has been considered in restricted
settings under different guises. The problem of finding the connected (0, β)-
clusters in a graph can be reduced to first finding connected components and then
outputting the components that are β-connected. This problem can be solved
efficiently via depth-first search in O(|E|+|V |) time for a graph G = (V, E). Also,
the problem of finding

(
1 − 1

n , 1
)
-clusters is equivalent to finding the maximal

cliques in a graph. This problem has a rich history. Known algorithms find all
maximal cliques in time that depends polynomially on the size of the graph and
the number of maximal cliques [Tsukiyama et al. 77, Johnson et al. 88].
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The problem of finding ((1− ε)β, β)-clusters, for small ε, has also been studied
under the name of finding quasicliques. A method is presented in [Abello et al. 02]
for finding subgraphs with average connectivity β. In [Hartuv and Shamir 00],
the authors find densely connected subgraphs in which β > 1

2 via a min-cut
algorithm. In the bipartite case, [Mishra et al. 04] considers the problem of find-
ing dense, well-separated bipartite subgraphs. These algorithms ignore external
sparsity (α). External sparsity turns out to be quite important: an example in
Figure 2 shows that there is only one

(
1
n , 1 − 1

2n

)
-cluster, but if α is ignored,

then there are 2n
(

n−1
n , 1

)
-clusters, an undesirable consequence.

Spectral clustering is a very popular method that involves recursively splitting
the graph using various criteria, e.g., the principal eigenvector of the adjacency
matrix. Successful approaches have been employed in [Kannan et al. 00, Shi and
Malik 00, Karypis and Kumar 98, Spielman and Teng 96, Newman 06], among
many others. All of these approaches do not allow overlapping clusters, which is
one of the main goals of our work.

Newman and others have advocated modularity as an optimization criterion
for graph partitioning [Newman 06]. The modularity of a partition is the amount
by which the number of edges between vertices in the same subset exceeds the
number predicted by the degree-distribution-preserving random-graph model of
[Aiello et al. 00]. Newman proposed several methods for optimizing modularity,
among them a spectral approach, and others have found competitive methods
as well.

In [Flake et al. 04], the authors use a recursive cut approach intended to
optimize the expansion of the clustering but use Gomory–Hu trees [Gomory and
Hu 62] instead of eigenvectors to find the cut. The expansion of a cut is very
similar to the conductance of a cut. The minimum quality of the clustering
is guaranteed by adding a sink to the graph. Again, the goal of this work is
different from ours in that a partitioning is constructed, disallowing overlapping
clusters.

Modeling flow through a network is another way to cluster a graph [Flake
et al. 04, Van Dongen 98]. MCL models flow through two alternating Markov
processes: expansion and inflation. MCL has been widely used for clustering in
biological networks but requires that the graph be sparse, and it finds overlapping
clusters only in restricted cases. In contrast, (α, β)-clustering has no restrictions
on the general structure of the graph and allows clusters of different sizes to
overlap.

There has also been considerable work in finding communities on the Web
[Kumar et al. 99, Gibson et al. 98, Capocci et al. 05, Flake et al. 00, Ino et
al. 05]. For instance, in [Kumar et al. 99] the problem is approached as one
of finding bicliques as the cores of communities. Dourisboure et al. consider a
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very similar internal density community definition [Dourisboure et al. 09]. Their
methods are able to find clusters in graphs with hundreds of millions of nodes.
A key difference between their work and ours is the notion of external sparsity.

Finally, there has been previous work finding overlapping clusters: [Gregory
07, Palla et al. 05, Zhang et al. 07] have all developed distinct methods for
uncovering overlapping community structures. For example, [Palla et al. 05]
defines a community as a series of connected k-cliques, while [Zhang et al. 07]
adapts the modularity definition for use with fuzzy c-means clustering. While
both methods allow overlapping clusters, neither considers our external sparsity
criterion.

3. Preliminaries

In this section, we give some notation that will be useful for the rest of the paper
and also formally define the (α, β)-clustering problem.

3.1. Notation

We use the following notation to describe our results. For a graph G = (V, E), n

denotes the number of vertices and m denotes the number of edges. For a subset
of vertices A ⊆ V , |A| denotes the number of vertices in A, and E(v, A) denotes
the set of edges between a vertex v and a subset of vertices A. For B ⊆ V ,
E(A, B) denotes the set of edges between A and B. The neighbors of a vertex
v are denoted by Γ(v). The vertices that are in a ball of radius r around v are
denoted by Br(v) and include vertices that are 1, 2, . . . , r hops from v. Thus, for
instance, B2(v) = Γ(v) ∪ Γ(Γ(v)). The affinity that a vertex v has with a set X

is exactly |Γ(v) ∩ X |.

3.2. Formal Definition of (α, β)-Clustering

What is a good cluster in a social network? There are numerous existing criteria
for defining good graph clusters, and a multitude of algorithms accompanies each
criterion. One popular criterion is based on finding clusters of high conductance.
The conductance of a cut A, B is the ratio of the number of edges crossing the
cut to the minimum of the volumes of A and B, where the volume of A is the
number of edges emanating from the vertices in A. Intuitively, conductance is
the fraction of edges coming out of A that cross the cut. The conductance of a
cluster is the minimum conductance of any cut in the cluster.

A spectral algorithm typically uses the eigenvector of a matrix related to the
adjacency matrix to find a good cut of the graph into subgraphs A, B. The
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Figure 1. Overlapping clusters.

process is then recursively repeated (on A and B) until k clusters are found
(where k is an input parameter) or until the conductance of the next-best cut is
larger than some threshold. Formal guarantees can be proved for some variants
of this basic algorithm [Kannan et al. 00].

Cut-based graph-clustering algorithms produce a strict partition of the graph,
which is particularly problematic for social networks, as illustrated in Figure
1. In this graph, d belongs to two clusters {a, b, c, d} and {d, e, f, g}. Further-
more, h and i need not be clustered. A cut-based approach will either put
{a, b, c, d, e, f, g} into one cluster, which is not desirable, since e, f, g have no
edges to a, b, c, or else cut at d, putting d into one of the clusters, say {a, b, c, d},
but leaving d out of {e, f, g}, which leaves a highly connected vertex outside of
the cluster.

The example in Figure 1 motivates a new formulation of the graph-clustering
problem that does not stipulate that each vertex belong to exactly one cluster.
Our objective is to identify clusters that are internally dense, i.e., each vertex
in the cluster is adjacent to at least a β-fraction of the cluster, and externally
sparse, i.e., any vertex outside of the cluster is adjacent to at most an α-fraction
of the vertices in the cluster.

Definition 3.1. Given a graph G = (V, E) in which every vertex has a self-loop,1

C ⊂ V is an (α, β)-cluster if it is

1. internally dense: ∀v ∈ C, |E(v, C)| ≥ β|C|;
2. externally sparse: ∀u ∈ V \ C, |E(u, C)| ≤ α|C|.

Given 0 ≤ α < β ≤ 1, the (α, β)-clustering problem is to find all (α, β)-clusters.

The new clustering criterion does not seek a strict partitioning of the data. To
see why clusters can overlap, return to Figure 1. Both {a, b, c, d} and {d, e, f, g}
are

(
1
4 , 1

)
-clusters. Furthermore, h and i do not fall into an (α, β)-cluster if

0 ≤ α < 1
2 < β ≤ 1, and consequently would not be clustered.

1This is a technical assumption needed to ensure that β = 1 clusters are possible.
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Observe that when β → 1, an (α, β)-cluster approaches a clique, and when
α → 0, an (α, β)-cluster tends to a disconnected component. We want α < β,
since vertices outside of a cluster should have fewer neighbors in the cluster than
vertices that belong to the cluster.

4. Combinatorics of (α, β)-Clusters

In this section, we discuss several combinatorial properties of (α, β)-clusters in-
cluding cluster overlap, containment, and number of clusters.

4.1. Cluster Overlap

Given two (α, β)-clusters A, B, where |A| ≥ |B|, we now determine the maximum
size of the overlap, namely |A ∩ B|. In the case β = 1, |A ∩ B| can be no larger
than α|B| (otherwise, there would be a vertex outside of B that is adjacent to
more than α of B). Alternatively, in the case α = 0, |A ∩ B| must be 0. More
generally, we seek a bound for arbitrary values of α and β. We express the
overlap as the fraction of vertices in A, i.e., γ = |A ∩ B|/|A|.

Proposition 4.1. For two (α, β)-clusters A and B, where |A| ≥ |B| and A 
= B, an
upper bound on γ is 1 − (β − α |B|

|A| ).

Proof. Let u ∈ A \ B. From the α criterion we know that no element of A \ B

is connected to more than α of B. Formally, α|B| ≥ |E(u, A ∩ B)|. Similarly,
|E(u, A ∩ B)| ≥ |A ∩ B| − (1 − β)|A|, since u is connected to at least β of A.
Combining these inequalities, we get α|B| ≥ |A ∩ B| − (1 − β)|A|, and solving
for |A ∩ B|, we have

|A ∩ B| ≤ (1 − β)|A| + α|B|, γ =
|A ∩ B|
|A| , (4.1)

so γ ≤ 1 − (β − α|B|/|A|) .

When β = 1, the above bound implies that γ ≤ α|B|/|A|, which is tight.
However, if we let α = 0, the bound indicates that γ ≤ (1−β), which is weak; γ

should be 0, since α = 0 implies that each cluster is disconnected from the rest
of the graph. We now prove a bound that is tight in the case that α = 0 and
β > 1

2 . This bound is not useful when β is close to or less than 1
2 .
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Corollary 4.2. For two (α, β)-clusters A and B, where |A| ≥ |B| and β > 1
2 , an

upper bound on the ratio of the intersection |A ∩ B| to the larger one, |A|, is

γ ≤ α

2β − 1
|B|
|A| .

Proof. Let u ∈ A \ B. From the definition of an (α, β)-cluster we know that
|E(u, A ∩ B)| ≤ α|B|. Therefore,

|E(A \ B, A ∩ B)| ≤ α|B||A \ B|. (4.2)

Let x ∈ A ∩ B. It follows that

|E(x, A \ B)| ≥ β|A| − |A ∩ B|

and
|E(A ∩ B, A \ B)| ≥ (β|A| − |A ∩ B|)|A ∩ B|. (4.3)

Combining (4.2) and (4.3), we have that

(β|A| − |A ∩ B|)|A ∩ B| ≤ α|B||A \ B|.

To simplify the equation, let |A ∩ B| = γ|A| and |A \ B| = (1 − γ)|A|. Also,
recall from (4.1) that |A ∩ B| ≤ (1 − β)|A| + α|B|. We have

(β|A| − [(1 − β)|A| + α|B|])γ|A| ≤ α|B|(1 − γ)|A|,
(β|A| − |A| + β|A| − α|B|)γ ≤ α|B| − αγ|B|,

(2β − 1)|A|γ ≤ α|B|,

γ ≤ α

2β − 1
|B|
|A| ,

which completes the proof.

If we have the situation in which β > 1
2 , then the appropriate bound on the

overlap is

γ ≤ min
(

1 −
(

β − α
|B|
|A|

)
,

α

2β − 1
|B|
|A|

)
.

Moreover, it can be shown that when

β − α
|B|
|A| >

1
2
,
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then
α

2β − 1
|B|
|A|

is the minimum, and otherwise,

1 −
(

β − α
|B|
|A|

)

is the minimum.

4.2. Cluster Containment

Given that clusters can overlap, it is natural to ask whether one cluster can be
contained in another. In some circumstances, α and β may be such that clusters
are contained in each other. For example, consider two cliques, C and D, each
containing k ≥ 3 vertices. Assume that each vertex in C is adjacent to two
vertices in D. When

β =
1
2

+
1
k

and α =
2
k

,

then C, D, and C ∪D are all (α, β)-clusters and C ∪D contains both C and D.
If we want to prevent our algorithm from finding clusters one of which is

contained in another, we can do so by requiring that the ratio of the larger to
the smaller cluster be at most (1 − α)/(1 − β).

Corollary 4.3. Let A and B be (α, β)-clusters and assume that |B| ≤ |A|. If

|A|
|B| <

1 − α

1 − β
,

then B cannot be contained in A.

The proof follows directly from Proposition 4.1 where the assumption implies
that γ is upper bounded by |B|

|A| . The larger the gap between α and β, the larger
the bound. For example, if α = 1

4 and β = 3
4 , then the larger cluster must be at

least three times the size of the smaller before the smaller can be contained in
the larger. Similarly, if α = 1

8 and β = 7
8 , then the ratio is 7.

4.3. Bounding the Number of (α, 1)-Clusters

We next consider the problem of bounding the number of (α, 1)-clusters from
above. We give a superpolynomial bound on the number of clusters of a fixed
size s = f(n). More generally, it would be interesting to bound the number of
possible (α, β)-clusters, but our analysis here is focused on cliques.
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· · ·
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Figure 2. A graph G in which G has exponentially many clusters.

We wish to bound the number of (α, 1)-clusters of size s = f(n) in a graph
G = (V, E) where |V | = n. We know from Proposition 4.1 that no two clusters
can overlap in more than αs vertices.

Proposition 4.4. Let G = (V, E), where |V | = n. If C is the set of (α, 1)-clusters of
size s in G, then

|C| ≤
(

n

αs + 1

)/(
s

αs + 1

)
.

Proof. From Proposition 4.1, two (α, 1)-clusters of size s can share at most αs

vertices. In this analysis, we upper bound the number of subsets of vertices
that can be (α, 1)-clusters. The analysis does not utilize the graph structure.
Instead, consider the clusters as a collection of subsets of vertices of size s. Now
we can say that every subset of size αs + 1 must appear in at most one set in
our collection. There is a total of

(
n
s

)
subsets of size s, and each of these subsets

contains
(

s
αs+1

)
subsets of size αs + 1. By simple combinatorics we can have at

most (
n

αs + 1

)/(
s

αs + 1

)

clusters of size s.2

We note that this bound is tight when α = 0 and when α approaches 1. If
we let α = 0 then the bound indicates that the number of clusters is at most
n/s. This is tight, because clusters cannot overlap at all. At the other extreme,
consider the complement of the graph shown in Figure 2. Let α = (j − 1)/j and
β = 1. Observe that B = {b1 · · · bj |bi = xi ∨ yi} are all legitimate (α, β)-clusters
and further that |B| = 2j. When s = j, Proposition 4.4 also yields an upper
bound of 2j clusters. Thus, Proposition 4.4 is tight when α = (j − 1)/j.

We believe that the bound given in Proposition 4.4 overcounts the number of
clusters when α ≤ 1

2 because the edges are completely ignored. Consider K4,

2This exactly corresponds to the construction of a Steiner system [Anderson 74].
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where s = 3 and α = 1
3 . The bound allows three clusters of size 3. In reality,

due to α violations, there are none.

5. Gaps and Champions

In this section, we make some restrictions to the general (α, β)-clustering problem
and motivate these restrictions.

5.1. Gap between Internal Density and External Sparsity

To motivate a gap between internal density and external sparsity, consider Figure
2. Observe that depending on the choice of α and β, the number of clusters
may be exponential in the size of the graph. In practice, an algorithm that
outputs more clusters than vertices is quite undesirable, especially given that
social networks are massively large data sets. Thus, we seek a restriction that
will reduce the number of clusters.

5.2. Champions

Intuitively, a vertex champions a cluster if it has more affinity into the cluster
than out of it. To motivate champions, observe that for G of G given in Figure 2,
each vertex in each cluster has as many neighbors outside the cluster as within
it. There is no vertex that “champions” the cluster in the sense that many
of its neighbors are in the cluster. For example, theoretical physicists form a
community in part because there are some champions that have more friends
that are theoretical physicists than not. Specifically, if every vertex in a subset
A has as many neighbors out of A as into A, then it is arguable whether A

is really even a cluster. This motivates us to define formally the notion of a
ρ-champion.

Definition 5.1. A vertex c ∈ C ρ-champions a cluster C if |Γ(c) ∩ V \ C| ≤ ρ|C| for
some 0 ≤ ρ ≤ 1.

6. Finding Strongly Knit Clusters

In this section we prove that if

β >
1
2

+
ρ + α

2
,
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Algorithm 1. (Deterministic clustering algorithm, when β > 1
2 + α+ρ

2 .)

1. Input: α, β, G, s.

2. For each c ∈ V :

(a) C = ∅.

3. For each v ∈ τ(c):

(a) If |Γ(v) ∩ Γ(c)| ≥ (2β − 1)s then add v to C.

4. If C is an (α, β)-cluster then output C.

then there are at most n clusters with ρ-champions and further that there is a
simple deterministic algorithm for finding the clusters.

Lemma 6.1. If β > 1
2 + ρ+α

2 , then there are at most n (α, β)-clusters with ρ-
champions of a fixed size s.

Proof. Under the conditions of the lemma, we show that a vertex can champion
at most one cluster. If c champions a cluster C, then for any other cluster C′,

|Γ(c) ∩ C′| = |Γ(c) ∩ (C′ ∩ C)| + |Γ(c) ∩ C′ \ C| ≤ (1 − β + α)|C′| + ρ|C′|.

Thus by assumption, we have that (1−β+ρ+α)|C′| < β|C′|, and consequently c

does not have enough neighbors in C′ to be β-connected into C′. Note that this
proof relies on the fact that, for fixed size s, neither C nor C′ can be contained
in the other.

A large gap between β and 1
2 + α+ρ

2 yields a simple algorithm (Algorithm 1) for
deterministically pinning down all the clusters. Let the input to the algorithm
be α, β, the graph G, and the size s of the clusters to be found.

The following lemma shows that if v and c share sufficiently many neighbors,
then v is necessarily part of the cluster C that c champions. When the size of
the cluster is fixed, Lemma 6.2 also implies that C is unique. Additional bounds
to guarantee uniqueness when the size of the cluster is allowed to vary can be
easily obtained.

Lemma 6.2. Let C be an (α, β)-cluster and c its ρ-champion. Let β > 1
2 + ρ+α

2 .
A vertex v is in the cluster C if and only if |Γ(v) ∩ Γ(c)| ≥ (2β − 1)|C|.
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Proof. We begin by establishing two facts: (1) Any vertex in cluster C shares
at least (2β − 1)|C| neighbors with c. (2) Any vertex not in C shares at most
(ρ + α)|C| neighbors with c.

Regarding (1), let v ∈ C. We can bound the number of neighbors that c and
v share from below using the fact that v intersects at least β of C and c misses
at most (1 − β)|C|. Therefore, we have that |Γ(c) ∩ Γ(v)| ≥ (2β − 1)|C|.

Regarding (2), let v ∈ V \ C. We can bound the number of neighbors that c

and v share from above by separating the neighbors that v and c could have in C

and outside of C. Due to the α-disconnectedness of C, the number of neighbors
that v has inside of C is at most α|C|. Further, because c champions C, the
number of neighbors that c and v can share outside of C is at most ρ|C|. Thus,
|Γ(c) ∩ Γ(v)| ≤ (ρ + α)|C|.

The assumption that β > 1
2 + ρ+α

2 implies that (ρ + α)|C| < (2β − 1)|C|.
Consequently,

|Γ(v) ∩ Γ(c)| ≤ (ρ + α)|C| < (2β − 1)|C| ≤ |Γ(c) ∩ Γ(v)|.
We have shown if v ∈ C, then v and c share at least (2β − 1)|C| neighbors,

and if v �∈ C, then v and c share strictly fewer than (2β − 1)|C| neighbors.

Consequently, we have the following theorem.

Theorem 6.3. Let G = (V, E) be a graph and β > 1
2 + ρ+α

2 . Algorithm 1 finds exactly
all the (α, β)-clusters of size s that have ρ-champions in time O(m0.7n1.2 +
sn2+o(1)).

To interpret the theorem, when clusters have ρ-champions with ρ = α, a
separation of 1

2 is needed between β and α in order for the algorithm to find all
the clusters. When ρ is larger, the gap between α and β must also be larger for
the algorithm to provably succeed. For example, if ρ = 3α, then the gap between
β and α must be larger, namely β > 2α + 1

2 .
The running time follows from the fact that the algorithm computes the

number of neighbors that each pair of vertices share. We can precompute
|Γ(vi) ∩ Γ(vj)| for all i, j ∈ V by noting that if A is the adjacency matrix of G,
then (AT A)i,j = |Γ(vi)∩Γ(vj)|. In [Yuster and Zwick 05] it is shown that matrix
multiplication can be performed in O(m0.7n1.2+n2+o(1)) time. Checking the α, β

conditions for a cluster of size s requires at most O(ns) time, so in total, our algo-
rithm requires time O(m0.7n1.2 +n2+o(1) +n(n+ns)) = O(m0.7n1.2 + sn2+o(1)).

In the case that G is a typical social network, G has small average degree
and A is a sparse matrix. If we let d be the average degree of the graph, then
m = dn/2. Thus, for small d, the algorithm runs in time O(d0.7n1.9 + sn2+o(1)).
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6.1. Lifting the Cluster Size Assumption

We have previously assumed that the cluster size s was input to the algorithm.
In order to find all clusters of any size, the deterministic algorithm would have
to be run once for each value of n, requiring O(n4) time. We show how to lift
this assumption by calling the previous deterministic algorithm with values of
s in powers of (1 + θ), where 0 < 1 + θ < 1−α

1−β . In order to prove that the
algorithm can still find all the clusters, we need a slightly larger gap, specifically
(1− β + α + ρ)(1 + θ) < β. Assuming such a gap, we show that each vertex can
champion at most one cluster of size between (1 + θ)i and (1 + θ)i+1, which in
turn implies that there are at most n log1+θ n clusters. Furthermore, we give a
small modification to the deterministic algorithm that will find all the clusters.

We begin by showing that each vertex can champion at most one cluster of
size between (1 + θ)i and (1 + θ)i+1, assuming a slightly larger gap.

Lemma 6.4. Let 1 + θ < 1−α
1−β . There are at most n clusters of size between (1 + θ)i

and (1 + θ)i+1, provided that (1 − β + α + ρ)(1 + θ) < β, for all i.

Proof. Let C and C′ be two (α, β)-clusters of size between (1 + θ)i and (1 + θ)i+1.
Further, let c be a champion of C. We show that c cannot also champion C′.

Assume that |C| ≥ |C′|. By Corollary 4.3, C′ is not a subset of C. Note
that |C ∩ C′| ≤ (1 − β)|C| + α|C′| from the proof that bounds the size of the
intersection, Proposition 4.1. We now bound the number of neighbors that c has
in C′ from above:

|Γ(c) ∩ C′| = |Γ(c) ∩ C′ ∩ C| + |Γ(c) ∩ C′ \ C|
≤ (1 − β)|C| + α|C′| + ρ|C|
≤ (1 + θ)i+1(1 − β + α + ρ).

Given the assumption that (1 − β + α + ρ)(1 + θ)i+1 < β(1 + θ)i, observe that
c does not have enough neighbors in C′ to be a member of the cluster C′. A
similar argument holds in the event that |C′| > |C|.

To find the clusters, we repeatedly call the previous deterministic algorithm
O(log n) times with values of s in the range (1 + θ)1, . . . , (1 + θ)log1+θ n.

To see why the algorithm works, observe that if (1 + θ)i ≤ |C| ≤ (1 + θ)i+1,
then any vertex in the cluster neighbors at least (1+θ)i(2β−1) vertices in C, and
any vertex outside the cluster neighbors at most (1+θ)i+1(α+ρ) vertices in C. If
there is a gap between (1+θ)(α+ρ) and (2β−1), then the modified deterministic
algorithm will find all clusters. Our assumed gap of (1 − β + α + ρ)(1 + θ) < β

implies that (α + ρ)(1 + θ) < 2β − 1.
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Theorem 6.5. Let α, β, ρ, θ be such that (1− β + α + ρ)(1 + θ) < β and 1 + θ < 1−α
1−β .

All (α, β)-clusters with ρ-champions can be found via O(log1+θ(n)) calls to the
deterministic algorithm.

As stated, the total running time to find all clusters of any size is O(n3 log1+θ n).
However, this assumes that the maximum cluster size is n. In practice, the max-
imum degree in a social network is usually significantly smaller than n, and
consequently, the maximum cluster size is also much smaller than n. Specifi-
cally, if ∆ is the maximum degree in the graph, no cluster can be of size greater
than 1

β ∆. Thus, when β > 1
2 , we need to call the deterministic algorithm only

log1+θ ∆ times. Also, the upper bound on the cluster size improves the time
it takes to check the α and β criteria from O(n2) to O(∆n). Thus, the total
running time of the algorithm is O(n2∆ log1+θ ∆).

7. Experiments

We have introduced the notion of a ρ-champion and given an algorithm for
finding (α, β)-clusters with ρ-champions. A natural next question is, do (α, β)-
clusters with ρ-champions even exist in real graphs? And if so, do most (α, β)-
clusters have ρ-champions? To answer the first question, we study two real
networks induced by coauthorship among high-energy physicists and coauthor-
ship among theoretical computer scientists. To answer the second question, we
need an algorithm that can find (α, β)-clusters independently of whether they
have ρ-champions. The best previous algorithm for this problem appeared in
[Tsukiyama et al. 77]. It finds all maximal cliques in a graph, i.e., all (α, 1)-
clusters.

Our experiments uncovered a few surprising facts. First, our deterministic
algorithm was able to find about 90% of the maximal cliques in these graphs for
which α ≤ 1

2 . Next, among the cliques we missed, we found that there was no
strong ρ-champion. Finally, our algorithm was orders of magnitude faster than
Tsukiyama’s. In short, our algorithm more quickly discovers clusters of practical
interest, i.e., small α, small ρ, and large β.

7.1. Data Sets and Tsukiyama’s Algorithm

As mentioned, two data sets were used: the High-Energy Physics Theory Co-
Author Graph (HEP)3 and the Theory Co-Author Graph (TA). In these graphs,
authors are vertices and edges correspond to coauthorship. Some basic statistics
about these graphs are given in Table 1.

3Available online (http://www.cs.cornell.edu/projects/kddcup/datasets.html).



�

�

“imvol5” — 2009/7/16 — 15:51 — page 168 — #16
�

�

�

�

�

�

168 Internet Mathematics

Data Set Size of V Average Degree
∑

v∈V |B2(v)|/V

HEP 8,392 4.86 40.58
TA 31,862 5.75 172.85

Table 1. Some basic statistics about the High-Energy Physics Theory Co-Author
Graph (HEP) and the Theory Co-Author Graph (TA).

Tsukiyama’s algorithm finds all maximal cliques in a graph via an inductive
characterization: given the maximal cliques involving the first i vertices, the
algorithm shows how to extend this set to the maximal cliques involving the first
i+1 vertices. The algorithm’s running time is polynomial in the size of the graph
and the number of maximal cliques. More details can be found in [Tsukiyama
et al. 77].

7.2. Results

In this section we present numerical results comparing the ground truth of
Tsukiyama’s algorithm with our Algorithm 1. For this experiment we were
interested only in cliques of size 5 or larger with α values of 0.5 or less. These
are the cliques that Algorithm 1 could reasonably be expected to find. We
found that the HEP graph had a total of 126 cliques satisfying this defini-
tion; our algorithm found 115, or 91%. Similarly, the theory graph had 854
cliques, and our algorithm found 797, or 93%. In Figure 3 we show the α

and ρ distributions of the cliques found by Tsukiyama compared with the dis-
tribution of those found by Algorithm 1. When a bar is cut off, a number
is placed next to the bar to indicate the true value. Bars have been cut off
only when Algorithm 1 found all of the cliques that Tsukiyama’s algorithm
found.

In both theory and HEP graphs, the distribution of ρ-values among the clusters
found is exactly as our theorems claim, i.e., we find all clusters for which ρ is
less than 1

2 and, as a bonus, a few for which ρ is larger.

Running Time. Our experiments were run on a 3-GHz Intel Xeon with 16 gigabytes
of RAM. In Table 2, we report wall-clock time. The numbers for Algorithm 1
reflect the cumulative time taken with the parameter s ranging from 5 to 25.

Experiment HEP TA

Algorithm 1, (α, β) = (0.5, 1) 8 sec 2 min 4 sec
Tsukiyama 8 hours 36 hours

Table 2. Report of wall-clock times.
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Figure 3. The figure shows α (left) and ρ (right) distributions for the cliques found
by Tsukiyama’s algorithm versus the cliques found by Algorithm 1. (top) HEP:
Our algorithm found 115 out of 126 maximal cliques. (bottom) TA: Our algo-
rithm found 797 out of 854 maximal cliques.

8. Summary and Future Work

In this paper, we introduced a new criterion for discovering overlapping clusters
that captures intuitive notions of internal density and external sparsity. We stud-
ied several combinatorial properties of these clusters to better understand how
they interact. We next introduced the idea of a ρ-champion and developed an
algorithm to find (α, β)-clusters. Finally, we tested the ρ-champion assumption
by comparing our algorithm with Tsukiyama’s clique-finding algorithm.

With respect to future work on clustering, the most obvious direction is to
develop algorithms that work when β < 1

2 . The primary difficulty in this direc-
tion is that the current definition of (α, β)-clusters allows disconnected clusters
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when β < 1
2 . For example, two disjoint K5-cliques form a (0, 1

2 )-cluster. Ad-
ditional connectivity assumptions will have to be made to develop appropriate
algorithms.

In addition to improving the gap between α and β, future work on general-
izations of (α, β)-clustering to weighted and directed graphs is of interest. Our
work assumes that edges are unweighted. But in real social networks, there is a
strength of connectivity between pairs of individuals corresponding to how often
they communicate. This weight could be exploited in the discovery of closely knit
communities. In addition, some networks induce directed graphs; for instance,
the direction of edges in email networks plays an important role in defining com-
munities; otherwise, spam mailers would belong to every cluster. Many of our
existing algorithms and theorems can be easily generalized to a directed case,
but there may be other interesting results available only when directed edges are
assumed.

Decentralized and streaming algorithms are essential for modern networks such
as instant messaging and email graphs. In particular, it is often difficult to
collect the graph in one centralized location [Kempe and McSherry 04]. Thus,
algorithms that can compute clusters with only local information are needed.
Further, given that social networks are dynamic data sets, i.e., users and links
come and go, streaming graph-clustering algorithms are an important avenue for
future research.
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