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A Singular Perturbation Approach
for Choosing the PageRank
Damping Factor
Konstantin Avrachenkov, Nelly Litvak, and Kim Son Pham

Abstract. We study the PageRank mass of principal components in a bow-tie web graph
as a function of the damping factor c. It is known that the web graph can be divided
into three principal components: SCC, IN, and OUT. The giant strongly connected
component (SCC) contains a large group of pages having a hyperlink path connecting
them. The pages in the IN (OUT) component have a path to (from) the SCC, but not
back. Using a singular perturbation approach, we show that the PageRank share of the
IN and SCC components remains high even for very large values of the damping factor,
in spite of the fact that it drops to zero when c tends to one. However, a detailed study
of the OUT component reveals the presence of “dead ends” (small groups of pages
linking only to each other) that receive an unfairly high ranking when c is close to 1.
We argue that this problem can be mitigated by choosing c as small as 1

2
.

1. Introduction

The link-based ranking schemes such as PageRank [Page et al. 98], HITS [Klein-
berg 99], and SALSA [Lempel and Moran 00] have been successfully used in
search engines to provide adequate importance measures for web pages. In the
present work we restrict ourselves to the analysis of the PageRank criterion and
use the following definition of PageRank from [Langville and Meyer 03]. Denote
by n the total number of pages on the web and define the n×n hyperlink matrix
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W as follows:

wij =

⎧⎪⎨
⎪⎩

1/di, if page i links to j,

1/n, if page i is dangling,
0, otherwise,

(1.1)

for i, j = 1, . . . , n, where di is the number of outgoing links from page i. A page
is called dangling if it does not have outgoing links. The PageRank is defined
as a stationary distribution of a Markov chain whose state space is the set of all
web pages, and the transition matrix is

G = cW + (1 − c)(1/n)11T . (1.2)

Here and throughout this paper we use the symbol 1 for a column vector of
ones having by default an appropriate dimension. In (1.2), 11T is a matrix all
of whose entries are equal to one, and c ∈ (0, 1) is the parameter known as a
damping factor. Let π be the PageRank vector. Then by definition, πG = π,
and ‖π‖ = π1 = 1, where we write ‖x‖ for the L1-norm of the vector x.

The damping factor c is a crucial parameter in the PageRank definition. It
regulates the level of the uniform noise introduced to the system. Based on
publicly available information, Google originally used c = 0.85, which appears to
be a reasonable compromise between the true reflection of the web structure and
numerical efficiency (see [Langville and Meyer 06] for more details). However, it
was mentioned in [Boldi et al. 05] that a value of c too close to one results in
distorted ranking of important pages. This phenomenon was also independently
observed in [Avrachenkov and Litvak 06]. Moreover, with smaller c, PageRank
is more robust, that is, one can bound the influence of outgoing links of a page
(or a small group of pages) on the PageRank of other groups [Bianchini et al.
05] and on its own PageRank [Avrachenkov and Litvak 06].

In this paper we explore the idea of relating the choice of c to specific proper-
ties of the web structure. The authors of [Broder et al. 00, Kumar et al. 00] have
shown that the web graph can be divided into three principal components. The
giant strongly connected component (SCC) contains a large group of pages hav-
ing a hyperlink path connecting them. The pages in the IN (OUT) component
have a path to (from) the SCC, but not back. Furthermore, the SCC component
is larger than the second-largest strongly connected component by several orders
of magnitude.

In Section 3 we consider a Markov walk governed by the hyperlink matrix W

and explicitly describe the limiting behavior of the PageRank vector as c → 1
with the help of singular perturbation theory [Avrachenkov 99, Korolyuk and
Turbin 93, Pervozvanskii and Gaitsgori 88, Yin and Zhang 05]. We experimen-
tally study the OUT component in more detail to discover a so-called pure OUT
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component (the OUT component without dangling nodes and their predecessors)
and show that pure OUT contains a number of small sub-SCCs, or dead ends,
that absorb the total PageRank mass when c = 1. In Section 4 we analyze the
shape of the PageRank of IN+SCC as a function of c. The dangling nodes turn
out to play an unexpectedly important role in the qualitative behavior of this
function.

Our analytical and experimental results suggest that the PageRank mass of
IN+SCC is sustained on a high level for quite large values of c, in spite of the fact
that it drops to zero as c → 1. Furthermore, the PageRank mass of IN+SCC has
a unique maximum. Then in Section 5 we show that the total PageRank mass
of the pure OUT component increases with c. We argue that c = 0.85 results in
an inadequately high ranking for pure OUT pages, and we present an argument
based on singular perturbation theory for choosing c as small as 1

2 . We confirm
our theoretical argument by experiments with log files.

We would like to mention that the value c = 1
2 was also used in [Chen et al.

06] to find gems in scientific citations. This choice was justified intuitively by
the observation that researchers may check references in cited papers, but on
average they hardly go deeper than two levels. Nowadays, when search engines
work really fast, this argument also applies to web search. Indeed, it is easier
for the user to refine a query and receive a more relevant page in a fraction of a
second than to look for this page by clicking on hyperlinks. Therefore, we may
assume that a surfer searching for a page does not go deeper on average than
two clicks.

2. Data Sets

We have collected two web graphs, which we denote by INRIA and FrMath-
Info. The web graph INRIA was taken from the site of INRIA,1 the French Na-
tional Institute for Research in Computer Science and Control. The seed for the
INRIA collection was the web page www.inria.fr. It is a typical large web site
with around 300,000 pages and two million hyperlinks. We have collected all
pages belonging to INRIA. The web graph FrMathInfo was crawled with the
initial seeds of 50 French mathematics and informatics laboratories, taken from
Google Directory. The crawl was executed by a breadth-first search of depth 6.
The FrMathInfo web graph contains around 700,000 pages and eight million hy-
perlinks. Because the web seems to have a fractal structure [Dill et al. 02], we
expect our data sets to be sufficiently representative.

1Institut National de Recherche en Informatique et en Automatique.
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# INRIA FrMathInfo

total nodes 318585 764119
nodes in SCC 154142 333175

nodes in IN 0 0
nodes in OUT 164443 430944

nodes in ESCC 300682 760016
nodes in Pure OUT 17903 4103

SCCs in OUT 1148 1382
SCCs in Pure Out 631 379

Table 1. Component sizes in the INRIA and FrMathInfo data sets.

The link structure of the two web graphs is stored in an Oracle database.
We are able to store the adjacency lists in RAM to speed up the computation
of PageRank and other quantities of interest. This enables us to make more
iterations, which is extremely important when the damping factor c is close to
one. Our PageRank computation program consumes about one hour to make
500 iterations for the FrMathInfo data set and about half an hour for the INRIA
data set for the same number of iterations. Our algorithms for discovering the
structures of the web graph are based on breadth-first search and depth-first
search methods, which are linear in the sum of the number of nodes and links.

3. The Structure of the Hyperlink Transition Matrix

Let us refine the bow-tie structure of the web graph [Broder et al. 00, Kumar et
al. 00]. We recall that the transition matrix W induces artificial links to all pages
from dangling nodes. Obviously, the graph with many artificial links has a much
higher connectivity than the original web graph. In particular, if the random
walk can move from a dangling node to an arbitrary node with the uniform
distribution, then the giant SCC component increases further in size. We refer
to this new strongly connected component as the extended strongly connected
component (ESCC). Due to the artificial links from the dangling nodes, the
SCC component and IN component are now interconnected and are parts of the
ESCC. Furthermore, if there are dangling nodes in the OUT component, then
these nodes together with all their predecessors become a part of the ESCC.

In the mini-example in Figure 1, node 0 represents the IN component, nodes
1 to 3 form the SCC component, and the rest of the nodes, 4 to 11, are in the
OUT component. Node 5 is a dangling node, and thus artificial links go from
the dangling node 5 to all other nodes. After addition of the artificial links, all
nodes from 0 to 5 form the ESCC.
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Figure 1. Example of a graph.

The part of the OUT component without dangling nodes and their prede-
cessors forms a block that we refer to as a pure OUT component. In Table 1
the pure OUT component consists of nodes 6 to 11. Typically, the pure OUT
component is much smaller than the extended SCC.

The sizes of all components for our two data sets are given in Table 1. Here the
size of the IN components is zero, because in the web crawl we used breadth-first
search, and we started from important pages in the giant SCC. For the purposes
of the present research this makes no difference, since we always consider IN and
SCC together.

Let us now analyze the structure of the pure OUT component in more detail.
It turns out that inside pure OUT there are many disjoint strongly connected
components. We refer to these sub-SCCs as “dead ends,” since once the random
walk induced by transition matrix W enters such a component, it will not be able
to leave it. In Figure 1 there are two dead-end components, {8, 9} and {10, 11}.
We have observed that in our two data sets the majority of dead ends are of size
2 or 3.

Let us now characterize the new refined structure of the web graph in terms
of the ergodic structure of the Markov chain induced by the matrix W . First,
we note that all states in the dead ends are recurrent, that is, the Markov chain
started from any of these states always returns to it. In contrast, all the states
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from ESCC are transient, that is, with probability 1, the Markov chain induced
by W eventually leaves this set of states and never returns. The stationary
probability of all these states is zero. We note that the pure OUT component
also contains transient states that eventually bring the random walk into one of
the dead ends. For simplicity, we add these states to the giant transient ESCC
component.

By appropriate renumbering of the states, we can now refine the matrix W

by subdividing all states into one giant transient block and a number of small
recurrent blocks as follows:

W =

⎡
⎢⎢⎢⎣

Q1 0 0
. . .

0 Qm 0
R1 · · · Rm T

⎤
⎥⎥⎥⎦

dead end (recurrent)

· · ·
dead end (recurrent)

ESCC + [transient states in pure OUT] (transient)

Here for i = 1, . . . , m, a block Qi corresponds to transitions inside the ith re-
current block, and a block Ri contains transition probabilities from transient
states to the ith recurrent block. Block T corresponds to transitions between
the transient states. For instance, in the example of the graph from Figure 1,
nodes 8 and 9 correspond to block Q1, nodes 10 and 11 correspond to block Q2,
and all other nodes belong to block T . Let us denote by π̄OUT,i the stationary
distribution corresponding to block Qi.

We would like to emphasize that the recurrent blocks here are really small,
constituting altogether about 5% for INRIA and about 0.5% for FrMathInfo. We
believe that for larger data sets, this percentage will be even less. By far the most
important portion of the pages is contained in the ESCC, which constitutes the
major part of the giant transient block. However, if the random walk is governed
by transition matrix W , it is absorbed with probability 1 into one of the recurrent
blocks.

The use of the Google transition matrix G with c < 1 (1.2) instead of W

ensures that all the pages are recurrent states with positive stationary probabil-
ities. However, if c = 1, the majority of pages turn into transient states with
stationary probability zero. Hence, the random walk governed by the Google
transition matrix G is in fact a singularly perturbed Markov chain. Informally,
by singular perturbation we mean relatively small changes in elements of the
matrix that lead to altered connectivity and stationary behavior of the chain.
Using the results of singular perturbation theory (see, e.g., [Avrachenkov 99, Ko-
rolyuk and Turbin 93, Pervozvanskii and Gaitsgori 88, Yin and Zhang 05]), in
the next proposition we characterize explicitly the limiting PageRank vector
as c → 1.
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Proposition 3.1. Let π̄OUT,i be a stationary distribution of the Markov chain governed
by Qi, i = 1, . . . , m. Then we have

lim
c→1

π(c) = [πOUT,1 · · · πOUT,m 0] ,

where

πOUT,i =
(

# nodes in block Qi

n
+

1
n
1T [I − T ]−1Ri1

)
π̄OUT,i (3.1)

for i = 1, . . . , m, I is the identity matrix, and 0 is a row vector of zeros that
correspond to stationary probabilities of the states in the transient block.

Proof. First, we note that if we make a change of variables ε = 1 − c, the Google
matrix becomes a transition matrix of a singularly perturbed Markov chain as
in Lemma 6.1 (see the appendix, Section 6) with A = W and C = 1

n11T − W .
Specifically, Ai = Qi, Li = Ri, E = T , and µi = π̄OUT,i. Next, define the
aggregated generator matrix D as follows:

D =
1
n
11T B − I =

1
n
1[n1 + 1[I − T ]−1R11, . . . , nm + 1[I − T ]−1Rm1] − I.

(3.2)

Using the definition of C together with identities π̄OUT,i(1/n)11T = (1/n)11T

and π̄OUT,iQi = π̄OUT,i, it is easy to verify that the matrix D in (3.2) has been
computed in exactly the same way as the matrix D in Lemma 6.1. Furthermore,
since the aggregated transition matrix D + I has identical rows, its stationary
distribution ν is simply equal to each of these rows. Thus, invoking Lemma 6.1,
we obtain (3.1).

The second term inside the parentheses in formula (3.1) corresponds to the
PageRank mass received by a dead end from the extended SCC. If c is close to
one, then this contribution can outweigh by far the fair share of the PageRank,
whereas the PageRank mass of the giant transient block decreases to zero. How
large is the neighborhood of one where the ranking is skewed toward the pure
OUT? Is the value c = 0.85 already too large? We will address these questions
in the remainder of the paper. In the next section we analyze the PageRank
mass IN+SCC component, which is an important part of the transient block.

4. PageRank Mass of IN+SCC

In Figure 2 we depict the PageRank mass of the giant component IN+SCC for
FrMathInfo as a function of the damping factor.
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Figure 2. The PageRank mass of IN+SCC as a function of c.

Here we see a typical behavior also observed for several pages in the mini-web
from [Boldi et al. 05]: the PageRank first grows with c and then decreases to
zero. In our case, the PageRank mass of IN+SCC drops drastically starting from
some value c close to one. Our goal now is to explain this behavior. Clearly, since
IN+SCC is a part of the transient block, we do expect that the corresponding
PageRank mass drops to zero when c goes to one. Thus, the two phenomena
that remain to be justified are the growth of the PageRank mass when c is not
too large, and the abrupt drop to zero after reaching a (unique) extreme point.

The plan of the analysis in this section is as follows. First, we write the ex-
pression for ‖πIN+SCC‖, the PageRank mass of IN+SCC, as a function of c. Then
we consider the derivative of ‖πIN+SCC(c)‖ at c = 0 and prove that surprisingly,
this derivative is always positive in a graph with a sufficiently large fraction
of dangling nodes. This explains the fact that ‖πIN+SCC(c)‖ is initially increas-
ing. Further, we use singular perturbation theory to show that the derivative of
‖πIN+SCC(c)‖ at c = 1 is a large negative number, and that ‖πIN+SCC(c)‖ can have
only one extreme point in (0, 1).

We base our analysis on the model in which the web graph sample is subdivided
into three subsets of nodes: IN+SCC, OUT, and the set of dangling nodes DN.
We assume that all links to dangling nodes come from IN+SCC. This simplifies
the derivation but does not alter our conclusions. Then the web hyperlink matrix
W in (1.1) can be written in the form

W =

⎡
⎣ Q 0 0

R P S
1
n11T 1

n11T 1
n11T

⎤
⎦ OUT

IN+SCC

DN
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where the block Q corresponds to the hyperlinks inside the OUT component,
the block R corresponds to the hyperlinks from IN+SCC to OUT, the block P

corresponds to the hyperlinks inside the IN+SCC component, and the block S

corresponds to the hyperlinks from SCC to dangling nodes. In the above, n is
the total number of pages in the web graph sample, and the blocks 11T are the
matrices of ones adjusted to appropriate dimensions.

Let us derive the expression for the PageRank mass of IN+SCC. Dividing
the PageRank vector into segments corresponding to the blocks OUT, IN+SCC,
and DN, namely π = [πOUT, πIN+SCC, πDN], we can rewrite the well-known formula
(see, e.g., [Moler and Moler 03])

π =
1 − c

n
1T [I − cW ]−1 (4.1)

as a system of three linear equations:

πOUT[I − cQ] − πIN+SCCcR − c

n
πDN11T =

1 − c

n
1T , (4.2)

πIN+SCC[I − cP ] − c

n
πDN11T =

1 − c

n
1T , (4.3)

−πIN+SCCcS + πDN − c

n
πDN11T =

1 − c

n
1T . (4.4)

Now we would like to solve (4.2)–(4.4) for πIN+SCC. To this end, we first observe
that if πIN+SCC and πDN1 are known, then from (4.2) it is straightforward to
obtain πOUT:

πOUT = πIN+SCC cR[I − cQ]−1 +
(

1 − c

n
+ πDN1

c

n

)
1T [I − cQ]−1.

Therefore, let us solve equations (4.3) and (4.4). We sum the elements of the
vector equation (4.4), which corresponds to the postmultiplication of equation
(4.4) by the vector 1:

−πIN+SCC cS1 + πDN1− c

n
πDN11T1 =

1 − c

n
1T1.

Now denote by nIN, nOUT, nIN+SCC, and nDN the number of pages in the IN com-
ponent, the OUT component, the SCC component, and the number of dangling
nodes. Since 1T1 = nDN, we have

πDN1 =
n

n − cnDN

(
πIN+SCC cS1 +

1 − c

n
nDN

)
.

Substituting the above expression for πDN1 into (4.3), we get

πIN+SCC

[
I − cP − c2

n − cnDN

S11T

]
=

c

n − cnDN

1 − c

n
nDN1T +

1 − c

n
1T .
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Denote by α = (nIN + nIN+SCC)/n and β = nDN/n the fractions of nodes in
IN+SCC and DN, respectively, and let uIN+SCC = (nIN + nIN+SCC)−11T be a
uniform probability row vector of dimension nIN + nIN+SCC. Then from the last
equation we directly obtain

πIN+SCC(c) =
(1 − c)α
1 − cβ

uIN+SCC

[
I − cP − c2α

1 − cβ
S1uIN+SCC

]−1

. (4.5)

Equation (4.5) gives the desired expression for the PageRank mass of IN+SCC
as a function of c, and we can analyze the behavior of this function by looking
at its derivatives. Define

k(c) =
(1 − c)α
1 − cβ

and U(c) = P +
cα

1 − cβ
S1uIN+SCC . (4.6)

Then the derivative of πIN+SCC(c) with respect to c is given by

π′
IN+SCC(c) = uIN+SCC

{
k′(c)I + k(c)[I − cU(c)]−1(cU(c))′

}
[I − cU(c)]−1, (4.7)

where from (4.6) after simple calculations we get

k′(c) = −(1 − β)α/(1 − cβ)2,

(cU(c))′ = U(c) + cα(1 − cβ)−2S1uIN+SCC.

Now we are ready to explain the fact that ‖πIN+SCC(c)‖ is increasing when c is
small. Consider the point c = 0. Using (4.7), we get

π′
IN+SCC(0) = −α(1 − β)uIN+SCC + αuIN+SCCP. (4.8)

One can see from the above equation that the PageRank of pages in IN+SCC
with many incoming links will increase as c increases from zero, which explains
the graphs presented in [Boldi et al. 05]. Next, for the total mass of the IN+SCC
component, from (4.8) we obtain

‖π′
IN+SCC(0)‖ = −α(1 − β)uIN+SCC + αuIN+SCCP1 = α(−1 + β + p1),

where p1 = uIN+SCCP1 is the probability that a random walk on the hyperlink
matrix stays in IN+SCC for one step if the initial distribution is uniform over
IN+SCC. If 1 − β < p1, then the derivative at 0 is positive. Since dangling
nodes typically constitute more than 25% of the graph [Eiron et al. 04], and p1

is usually close to one, the condition 1−β < p1 seems to be comfortably satisfied
in web samples. Thus, the total PageRank of IN+SCC increases in c when c is
small. Note, by the way, that if β = 0, then ‖πIN+SCC(c)‖ is strictly decreasing
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in c. Hence, surprisingly, the presence of dangling nodes qualitatively changes
the behavior of the IN+SCC PageRank mass.

Now let us consider the point c = 1. Again using (4.7), we get

π′
IN+SCC(1) = − α

1 − β
uIN+SCC

[
I − P − α

1 − β
S1uIN+SCC

]−1

. (4.9)

We will show that the derivative above is a negative number with a large absolute
value. Note that the matrix in the square brackets is close to singular. Denote by
P̄ the hyperlink matrix of IN+SCC when the outer links are neglected. Then P̄ is
an irreducible stochastic matrix. Denote its stationary distribution by π̄IN+SCC.
Then we can apply Lemma 6.2 from singular perturbation theory to (4.9) by
taking

A = P̄ and εC = P̄ − P − α(1 − β)−1S1uIN+SCC,

and noting that
εC1 = R1 + (1 − α − β)(1 − β)−1S1.

Combining all terms and using

π̄IN+SCC1 = ‖π̄IN+SCC‖ = 1 and uIN+SCC1 = ‖uIN+SCC‖ = 1,

by Lemma 6.2 we obtain

‖π′
IN+SCC(1)‖ ≈ − α

1 − β

1
π̄IN+SCCR1 + 1−β−α

1−β π̄IN+SCCS1
.

It is expected that the value in the denominator of the second fraction is typically
small (indeed, in our data set INRIA, the value is 0.022), and hence the mass
‖πIN+SCC(c)‖ decreases very fast as c approaches one.

Having described the behavior of the PageRank mass ‖πIN+SCC(c)‖ at the
boundary points c = 0 and c = 1, now we would like to show that there is
at most one extremum in (0, 1). It is sufficient to prove that if ‖π′

IN+SCC(c0)‖ ≤ 0
for some c0 ∈ (0, 1) then ‖π′

IN+SCC(c)‖ ≤ 0 for all c > c0. To this end, we apply
the Sherman–Morrison formula to (4.5), which yields

πIN+SCC(c) = π̃IN+SCC(c) +
c2α

1−cβuIN+SCC[I − cP ]−1S1

1 + c2α
1−cβ uIN+SCC[I − cP ]−1S1

π̃IN+SCC(c), (4.10)

where

π̃IN+SCC(c) =
(1 − c)α
1 − cβ

uIN+SCC[I − cP ]−1 (4.11)
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represents the main term on the right-hand side of (4.10). (The second summand
in (4.10) is about 10% of the total sum for the INRIA data set for c = 0.85.)
Now the behavior of πIN+SCC(c) in Figure 2 can be explained by means of the
following proposition.

Proposition 4.1. The term ‖π̃IN+SCC(c)‖ given by (4.11) has exactly one local maxi-
mum at some c0 ∈ [0, 1]. Moreover, ‖π̃′′

IN+SCC(c)‖ < 0 for c ∈ (c0, 1].

Proof. Multiplying both sides of (4.11) by 1 and taking the derivatives, after some
tedious algebra we obtain

‖π̃′
IN+SCC(c)‖ = −a(c) +

β

1 − cβ
‖π̃IN+SCC(c)‖, (4.12)

where the real-valued function a(c) is given by

a(c) =
α

1 − cβ
uIN+SCC[I − cP ]−1[I − P ][I − cP ]−11.

Differentiating (4.12) and substituting β
1−cβ‖π̃IN+SCC(c)‖ from (4.12) into the

resulting expression, we get

‖π̃′′
IN+SCC(c)‖ =

{
−a′(c) +

β

1 − cβ
a(c)

}
+

2β

1 − cβ
‖π̃′

IN+SCC(c)‖.

Note that the term in the curly braces is negative by the definition of a(c).
Hence, if ‖π̃′

IN+SCC(c)‖ ≤ 0 for some c ∈ [0, 1], then ‖π̃′′
IN+SCC(c)‖ < 0 for this

value of c.

We conclude that ‖π̃IN+SCC(c)‖ is decreasing and concave for c ∈ [c0, 1], where
‖π̃′

IN+SCC(c0)‖ = 0. This is exactly the behavior we observe in our experiments.
The analysis and experiments suggest that c0 is definitely larger than 0.85 and
actually is quite close to one. Thus, one may want to choose a large value for
c in order to maximize the PageRank mass of IN+SCC. However, in the next
section we will indicate important drawbacks of this choice.

5. PageRank Mass of ESCC

Let us now consider the PageRank mass of the extended SCC component (ESCC)
described in Section 3 as a function of c ∈ [0, 1]. Subdividing the PageRank
vector in the blocks π = [πPureOUT, πESCC], from (4.1) we obtain

πESCC(c) = (1 − c)γuESCC[I − cT ]−1 = (1 − c)γuESCC

∞∑
k=1

ckT k, (5.1)
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where T represents the transition probabilities inside the ESCC block, γ =
|ESCC|/n is the fraction of pages contained in the ESCC, and uESCC is a uniform-
probability row vector over ESCC. Clearly, we have that ‖πESCC(0)‖ = γ and
‖πESCC(1)‖ = 0. Furthermore, it is easy to see that ‖πESCC(c)‖ is a concave
decreasing function, since

d

dc
‖πESCC(c)‖ = −γuESCC[I − cT ]−2[I − T ]1 < 0

and
d2

dc2
‖πESCC(c)‖ = −2γuESCC[I − cT ]−3T [I − T ]1 < 0.

The next proposition establishes upper and lower bounds for ‖πESCC(c)‖.

Proposition 5.1. Let λ1 be the Perron–Frobenius eigenvalue of T , and let p1 =
uESCCT1 be the probability that the random walk started from a randomly chosen
state in ESCC stays in ESCC for one step. If p1 ≤ λ1 and

p1 ≤ uESCCT k1
uESCCT k−11

≤ λ1 for all k ≥ 1, (5.2)

then
γ(1 − c)
1 − cp1

< ‖πESCC(c)‖ <
γ(1 − c)
1 − cλ1

, c ∈ (0, 1). (5.3)

Proof. From condition (5.2) it follows by induction that

pk
1 ≤ uESCCT k1 ≤ λk

1 , k ≥ 1,

and thus the statement of the proposition is obtained directly from the series
expansion of πESCC(c) in (5.1).

The conditions of Proposition 5.1 have a natural probabilistic interpretation.
The value p1 is the probability that the Markov random walk on the web sample
stays in the block T for one step, starting from the uniform distribution over T .
Furthermore, pk = uESCCT k1/(uESCCT k−11) is the probability that the random
walk stays in T for one step provided that it has stayed there for the first k − 1
steps.

It is a well-known fact that as k → ∞, pk converges to λ1, the Perron–
Frobenius eigenvalue of T . Let π̂ESCC be the probability-normed left Perron–
Frobenius eigenvector of T . Then π̂ESCC, also known as a quasistationary distri-
bution of T , is the limiting probability distribution of the Markov chain given
that the random walk never leaves the block T (see, e.g., [Seneta 06]). Since
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Figure 3. PageRank mass of ESCC and bounds for INRIA .

π̂ESCCT = λ1π̂ESCC, the condition p1 < λ1 means that the chance of staying in
ESCC for one step in the quasistationary regime is higher than that in starting
from the uniform distribution uESCC. This is quite natural, since the quasista-
tionary distribution tends to avoid the states from which the random walk is
likely to leave the block T .

Furthermore, the condition in (5.2) says that if the random walk is about to
make its kth step in T , then it leaves T most easily at step k = 1, and it is
most difficult to leave T after an infinite number of steps. Both conditions of
Proposition 5.1 are satisfied in our experiments on both data sets. Moreover, we
noticed that the sequence (pk), k ≥ 1, was increasing from p1 to λ1.

With the help of the derived bounds we conclude that ‖πESCC(c)‖ decreases
very slowly for small and moderate values of c, and it decreases extremely fast
when c becomes close to 1. This typical behavior is clearly seen in Figures 3 and
4, where ‖πESCC(c)‖ is plotted with a solid line. The bounds are plotted with
dashed lines. For the INRIA data set we have p1 = 0.97557, λ1 = 0.99954, and
for the FrMathInfo data set we have p1 = 0.99659, λ1 = 0.99937.

From the above we conclude that the PageRank mass of ESCC is smaller than
γ for any value c > 0. In contrast, the PageRank mass of pure OUT increases
in c beyond its “fair share” δ = |pure OUT|/n. With c = 0.85, the PageRank
mass of the pure OUT component in the INRIA data set is equal to 1.95δ. In
the FrMathInfo data set, the unfairness is even more pronounced: the PageRank
mass of the pure OUT component is equal to 3.44δ. This gives users an incentive
to create dead ends: groups of pages that link only to each other. Clearly, this
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Figure 4. PageRank mass of ESCC and bounds for FrMathInfo.

can be mitigated by choosing a smaller damping factor. Below we propose one
way to determine an “optimal” value of c.

Since the PageRank mass of ESCC is always smaller than γ, we would like to
choose the damping factor in such a way that the ESCC receives a “fair” fraction
of γ. Formally, we would like to define a number ρ ∈ (0, 1) such that a desirable
PageRank mass of ESCC could be written as ργ, and then find the value c∗ that
satisfies

‖πESCC(c∗)‖ = ργ. (5.4)

Then c ≤ c∗ will ensure that ‖πESCC(c)‖ ≥ ργ. Naturally, ρ should somehow
reflect the properties of the substochastic block T . For instance, as T becomes
closer to a stochastic matrix, ρ should also increase. One possibility is to define

ρ = vT1,

where v is a row vector representing some probability distribution on ESCC.
Then the damping factor c should satisfy

c ≤ c∗,

where c∗ is given by
‖πESCC(c∗)‖ = γvT1. (5.5)

In this setting, ρ is the probability of staying in ESCC for one step if the initial
distribution is v. For a given v, this number increases as T becomes closer to
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v c INRIA FrMathInfo

π̂ESCC c1 0.0184 0.1956
c2 0.5001 0.5002
c∗ .02 .16

uESCC c1 0.5062 0.5009
c2 0.9820 0.8051
c∗ .604 .535

πESCC/‖πESCC‖ 1/(1 + λ1) 0.5001 0.5002
1/(1 + p1) 0.5062 0.5009

Table 2. Values of c∗ with bounds.

a stochastic matrix. The problem of choosing ρ comes down to the problem of
choosing v. The advantage of this approach is twofold. First, we have lost no
flexibility, because depending on v, the value of ρ may vary considerably, except
it cannot become too small if T is really close to a stochastic matrix. Second,
we can use a probabilistic interpretation of v to make a reasonable choice.

One can think, for instance, of the following three intuitive choices of v: (1)
π̂ESCC, the quasistationary distribution of T , (2) the uniform vector uESCC, and
(3) the normalized PageRank vector πESCC(c)/‖πESCC(c)‖. The first choice re-
flects the proximity of T to a stochastic matrix. The second choice is inspired
by the definition of PageRank (restart from the uniform distribution), and the
third choice combines both these features.

If the conditions of Proposition 5.1 are satisfied, then (5.3) holds, and thus
the value of c∗ satisfying (5.5) must be in the interval (c1, c2), where

1 − c1

1 − p1c1
= ‖vT ‖, 1 − c2

1 − λ1c2
= ‖vT ‖.

Numerical results for all three choices of v are presented in Table 2.
If v = π̂ESCC then we have ‖vT ‖ = λ1, which implies c1 = (1− λ1)/(1− λ1p1)

and c2 = 1/(λ1 +1). In this case, the upper bound c2 is only slightly larger than
1
2 , and c∗ is close to zero in our data sets (see Table 2). Such small c, however,
leads to ranking that takes into account only local information about the web
graph (see, e.g., [Fortunato and Flammini 06]). The choice v = π̂ESCC does
not seem to represent the dynamics of the system, probably because the “easily
bored surfer” random walk that is used in PageRank computations never follows
a quasistationary distribution, since it often restarts itself from the uniform
probability vector.

For the uniform vector v = uESCC, we have ‖vT ‖ = p1, which gives c1, c2, c
∗,

presented in Table 2. We have obtained a higher upper bound, but the values of
c∗ are still much smaller than 0.85.
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Finally, consider the normalized PageRank vector v(c) = πESCC(c)/‖πESCC(c)‖.
This choice of v can also be justified as follows. Consider the derivative of the
total PageRank mass of ESCC. Since [I − cT ]−1 and [I − T ] commute, we can
write

d

dc
‖πESCC(c)‖ = −γuESCC[I − cT ]−1[I − T ][I − cT ]−11,

or equivalently,

d

dc
‖πESCC(c)‖ = − 1

1 − c
πESCC[I − T ][I − cT ]−11

= − 1
1 − c

(
πESCC − ‖πESCC‖ πESCC

‖πESCC‖T

)
[I − cT ]−11

= − 1
1 − c

(πESCC − ‖πESCC‖v(c)T ) [I − cT ]−11,

with v(c) = πESCC/‖πESCC‖. It is easy to see that

‖πESCC(c)‖ = γ − γ(1 − uESCCT1)c + o(c).

Consequently, we obtain

d

dc
‖πESCC(c)‖

= − 1
1 − c

(πESCC − γv(c)T + γ(1 − uESCCT1)cv(c)T + o(c)) [I − cT ]−11.

Since in practice T is very close to stochastic, we have

1 − uESCCT1 ≈ 0 and [I − cT ]−11 ≈ 1
1 − c

1.

The latter approximation follows from Lemma 6.2. Thus, satisfying condition
(5.5) means keeping the value of the derivative small.

Let us now solve (5.5) for v(c) = πESCC(c)/‖πESCC(c)‖. Using (5.1), we rewrite
(5.5) as

‖πESCC(c)‖ =
γ

‖πESCC(c)‖πESCC(c)T1 =
γ2(1 − c)
‖πESCC(c)‖uIN+SCC[I − cT ]−1T1.

Multiplying by ‖πESCC(c)‖, after some algebra we obtain

‖πESCC(c)‖2 =
γ

c
‖πESCC(c)‖ − (1 − c)γ2

c
.
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Solving the quadratic equation for ‖πESCC(c)‖, we get

‖πESCC(c)‖ = r(c) =

{
γ if c ≤ 1

2 ,
γ(1−c)

c if c > 1
2 .

Hence, the value c∗ solving (5.5) corresponds to the point where the graphs of
‖πESCC(c)‖ and r(c) cross each other. There is only one such point in (0, 1),
and since ‖πESCC(c)‖ decreases very slowly unless c is close to one, whereas r(c)
decreases relatively fast for c > 1

2 , we expect that c∗ is only slightly larger than
1
2 . Under the conditions of Proposition 5.1, r(c) first crosses the line γ(1 − c)
÷(1 − λ1c), then ‖πESCC(c)‖1, and then γ(1 − c)/(1 − p1c). Thus, we obtain
(1 + λ1)−1 < c∗ < (1 + p1)−1. Since both λ1 and p1 are very close to 1, this
suggests that c should be chosen around 1

2 . This is also reflected in Table 2.
Last but not least, to support our theoretical argument about the undeserved

high ranking of pages from pure OUT, we carry out the following experiment.
In the INRIA data set we have chosen an absorbing component in pure OUT
consisting just of two nodes. We have added an artificial link from one of these
nodes to a node in the giant SCC and recomputed the PageRank.

In Table 3 in the column “PR rank w/o link” we give a ranking of a page
according to the PageRank value computed before the addition of the artificial
link, and in the column “PR rank with link” we give a ranking of a page according
to the PageRank value computed after the addition of the artificial link. We have
also analyzed the log file of the site INRIA Sophia Antipolis (www-sop.inria.fr)
and ranked the pages according to the number of clicks for the period of one
year up to May 2007. We note that since we have access only to the log file
of the INRIA Sophia Antipolis site, we also use the PageRank ranking only for
the pages from the INRIA Sophia Antipolis site. For instance, for c = 0.85, the
ranking of page A without an artificial link is 731 (this means that 730 pages
are ranked higher than page A among the pages of INRIA Sophia Antipolis).
However, its ranking according to the number of clicks is much lower, 2588.

This confirms our conjecture that the nodes in pure OUT obtain unjustifiably
high ranking. Next, we note that the addition of an artificial link significantly
diminishes the ranking. In fact, it brings it close to the ranking provided by the
number of clicks. Finally, we draw the reader’s attention to the fact that choosing
c = 1

2 also significantly reduces the gap between the ranking by PageRank and
the ranking by the number of clicks.

To summarize, our results indicate that with c = 0.85, the pure OUT com-
ponent receives an unfairly large share of the PageRank mass. Remarkably, in
order to satisfy any of the three intuitive criteria of fairness presented above,
the value of c should be drastically reduced. The experiment with the log files
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c PR rank w/o link PR rank with link rank by no. of clicks

Node A

0.5 1648 2307 2588
0.85 731 2101 2588
0.95 226 2116 2588

Node B

0.5 1648 4009 3649
0.85 731 3279 3649
0.95 226 3563 3649

Table 3. Comparison between PR- and click-based rankings.

confirms the same. Of course, a drastic reduction of c also considerably accel-
erates the computation of PageRank by numerical methods [Avrachenkov et al.
07, Langville and Meyer 06, Berkhin 05].

6. Appendix: Results from Singular Perturbation Theory

Lemma 6.1. Let A(ε) = A+ εC be a transition matrix of a perturbed Markov chain.
The perturbed Markov chain is assumed to be ergodic for sufficiently small ε

different from zero. Let the unperturbed Markov chain (ε = 0) have m ergodic
classes. Namely, the transition matrix A can be written in the form

A =

⎡
⎢⎢⎢⎣

A1 0 0
. . .

0 Am 0
L1 · · · Lm E

⎤
⎥⎥⎥⎦ ∈ R

n×n.

Then the stationary distribution of the perturbed Markov chain has a limit

lim
ε→0

π(ε) = [ν1µ1 · · · νmµm 0],

where zeros correspond to the set of transient states in the unperturbed Markov
chain, µi is a stationary distribution of the unperturbed Markov chain corre-
sponding to the ith ergodic set, and νi is the ith element of the aggregated sta-
tionary distribution vector that can be found by solving

νD = ν, ν1 = 1,
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where D = MCB is the generator of the aggregated Markov chain and

M =

⎡
⎢⎣

µ1 0 0
. . .

0 µm 0

⎤
⎥⎦ ∈ R

m×n, B =

⎡
⎢⎢⎢⎣

1 0
. . .

0 1
φ1 · · · φm

⎤
⎥⎥⎥⎦ ∈ R

n×m,

with φi = [I − E]−1Li1.

The proof of this lemma can be found in [Avrachenkov 99, Korolyuk and
Turbin 93, Yin and Zhang 05].

Lemma 6.2. Let A(ε) = A−εC be a perturbation of an irreducible stochastic matrix
A such that A(ε) is substochastic. Then for sufficiently small ε the following
Laurent series expansion holds:

[I − A(ε)]−1 =
1
ε
X−1 + X0 + εX1 + · · · , (6.1)

with

X−1 =
1

µC1
1µ, (6.2)

where µ is the stationary distribution of A. It follows that

[I − A(ε)]−1 =
1

µεC1
1µ + O(1) as ε → 0. (6.3)

Proof. The proof of this result is based on the approach developed in [Avrachenkov
99, Avrachenkov et al. 01]. The existence of the Laurent series (6.1) is a par-
ticular case of more-general results on the inversion of analytic matrix functions
[Avrachenkov et al. 01]. To calculate the terms of the Laurent series, let us
equate the terms with the same powers of ε in the following identity:

(I − A + εC)
(

1
ε
X−1 + X0 + εX1 + · · ·

)
= I,

which results in

(I − A)X−1 = 0, (6.4)

(I − A)X0 + CX−1 = I, (6.5)

(I − A)X1 + CX0 = 0. (6.6)
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From equation (6.4) we conclude that

X−1 = 1µ−1, (6.7)

where µ−1 is some vector. We find this vector from the condition that (6.5) has
a solution. In particular, (6.5) has a solution if and only if

µ(I − CX−1) = 0.

By substituting the expression (6.7) into the above equation, we obtain

µ − µC1µ−1 = 0,

and consequently,

µ−1 =
1

µC1
µ,

which together with (6.7) gives (6.2).
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