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Local Computation of PageRank
Contributions
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Vahab Mirrokni, and Shang-Hua Teng

Abstract. Motivated by the problem of detecting link-spam, we consider the following
graph-theoretic primitive: Given a webgraph G, a vertex v in G, and a parameter
δ ∈ (0, 1), compute the set of all vertices that contribute to v at least a δ-fraction of
v’s PageRank. We call this set the δ-contributing set of v. To this end, we define the
contribution vector of v to be the vector whose entries measure the contributions of
every vertex to the PageRank of v. A local algorithm is one that produces a solution by
adaptively examining only a small portion of the input graph near a specified vertex.
We give an efficient local algorithm that computes an ε-approximation of the contri-
bution vector for a given vertex by adaptively examining O(1/ε) vertices. Using this
algorithm, we give a local approximation algorithm for the primitive defined above.
Specifically, we give an algorithm that returns a set containing the δ-contributing set
of v and at most O(1/δ) vertices from the δ/2-contributing set of v, and that does so
by examining at most O(1/δ) vertices. We also give a local algorithm for solving the
following problem: If there exist k vertices that contribute a ρ-fraction to the PageRank
of v, find a set of k vertices that contribute at least a (ρ− ε)-fraction to the PageRank
of v. In this case, we prove that our algorithm examines at most O(k/ε) vertices.

1. Introduction

In numerous applications of PageRank one needs to know, in addition to the rank
of a given web page, which pages or sets of pages contribute most to its rank.
These PageRank contributions have been used for link-spam detection [Benczúr
et al. 05, Gyöngyi et al. 06a] and in the classification of web pages [Gyöngyi et
al. 06b]. A set of pages that contributes significantly to the PageRank of a page
is often called a contribution set or supporting set of the page [Benczúr et al.
05, Gyöngyi et al. 06a].
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The contribution that a vertex u makes to the PageRank of a vertex v is defined
rigorously in terms of personalized PageRank. For a webgraph G = (V, E) and a
teleportation constant α (sometimes called the restart probability), let Pα be the
matrix whose uth row is the personalized PageRank vector of u. The PageRank
contribution of u to v, written prα(u → v), is defined to be the entry (u, v) of
this matrix. The PageRank of a vertex v is the sum of the vth column of the
matrix Pα, and thus the PageRank of a vertex can be viewed as the sum of the
contributions from all other vertices. The contribution vector of v is defined to
be the vth column of the matrix Pα, whose entries are the contributions of every
vertex to the PageRank of v.

Given that the web graph is massive and getting larger at a substantial rate,
it is essential to compute contribution vectors and identify supporting sets by
examining as small a fraction of the graph as possible. In particular, it is helpful
to design a local algorithm for computing the supporting sets of a particular
vertex. Local algorithms search for a solution near a specified vertex by adap-
tively examining only a small subset of the input graph. They have been studied
previously in distributed computing [Naor and Stockmeyer 95] and in graph par-
titioning and clustering [Spielman and Teng 04, Andersen et al. 06]. Personalized
PageRank vectors can be approximated locally. Using one of several possible al-
gorithms [Jeh and Widom 03, Berkhin 06, Sarlós et al. 06], it is possible to
compute an approximation of the personalized PageRank vector of a vertex u by
examining only O(1/ε) vertices, where ε is the desired amount of error at each
vertex.

1.1. Problem Formulation

Inspired by local algorithms for computing personalized PageRank, and moti-
vated by the importance of supporting sets in link-spam detection, we consider
the problem of directly computing the contribution vector of a given vertex
to quickly identify its supporting sets. In particular, we consider the following
graph-theoretic primitive: Given a webgraph G, a vertex v in G, and a parameter
δ ∈ (0, 1), compute the set of all vertices each contributing at least a δ-fraction
to the PageRank of v. We call this set the δ-contributing set of v.

Such a primitive is useful for spam detection, since given a webpage whose
PageRank has recently increased suspiciously, we can quickly identify the set
of pages that contribute significantly to the PageRank of that suspicious page.
The above primitive may also be useful for analyzing social networks. In social
networks in which the links capture the influence of vertices on each other, we
can identify the nodes with the most influence to a given node.

1.2. Our Results

We give an efficient local algorithm for computing an ε-approximation of the
contribution vector for a given vertex v, a vector whose difference from the
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contribution vector is at most ε at each vertex. We prove that the number of
vertices examined by the algorithm is O(1/ε). The algorithm performs a se-
quence of probability-pushing operations on vertices of the graph, which we call
pushback operations. When the pushback operation is applied to a vertex u, we
perform a small amount of computation for each in-neighbor of u. Particularly,
we add a fraction of a number stored at u to a number stored at each in-neighbor
of u. The number of such operations that our algorithm performs is O(1/ε), and
its running time can be bounded by the sum of the in-degrees of the vertices
from which these operations were performed. To derive this algorithm, we adapt
Jeh and Widom’s technique for computing personalized PageRank vectors [Jeh
and Widom 03] to directly compute contribution vectors. To analyze the algo-
rithm’s running time and error bounds, we use techniques developed for the local
clustering algorithm in [Andersen et al. 06].

Using our algorithm for approximating contribution vectors, we give an ap-
proximation algorithm to the primitive defined above. Explicitly, we give a local
algorithm that returns a set containing the δ-contributing set of v and at most
O(1/δ) vertices from the δ/2-contributing set of v. Our algorithm applies at
most O(1/δ) pushback operations. We also give a local algorithm for solving
the following problem: If there are k vertices that contribute a ρ-fraction to the
PageRank of v, find a set of k vertices that contribute at least a (ρ− ε)-fraction
to the PageRank of v. In this case, we prove that our algorithm needs at most
O(k/ε) pushback operations.

After presenting our local algorithm and its applications to computing con-
tributing sets, we introduce the notion of PageRank traffic, which provides a
different way to measure the influence of a node on the PageRank of another
node. We prove a result that shows that PageRank traffic, while seemingly quite
different from our definition of PageRank contributions, is closely related to a
certain weighted version of PageRank contributions.

Finally, we remark that in principle, one could directly compute the contribu-
tion vector for a vertex v by approximating the personalized PageRank vector
of v in the time-reversal of the random-walk Markov chain. We describe the
computation required for this approach, and argue that for most graphs it is not
as efficient as the method we propose.

1.3. Related Work

Supporting sets and PageRank contributions have been studied before as a
tool for spam detection, notably in the SpamRank algorithm of Benczúr et al.
[Benczúr et al. 05], and in the Spam Mass algorithm of Gyöngyi et al. [Gyöngyi
et al. 06a]. However, none of these papers developed a local algorithm for com-
puting the contribution vector or supporting set. In the SpamRank algorithm,
the contribution vectors are computed in the following way. One computes an
approximation of each personalized PageRank vector in the graph to create an
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approximate PageRank matrix, and then takes the transpose of this matrix to
obtain the approximate contribution vectors. This method is efficient for the
task of computing the contribution vectors for every vertex in the graph, and
it leverages fast algorithms for computing many personalized PageRank vectors
simultaneously [Fogaras and Racz 04, Sarlós et al. 06], but it does not provide
an efficient way to compute the contribution vectors of a few selected suspicious
vertices. Furthermore, the relative error in the resulting approximate contribu-
tion vectors may be larger than the relative error in the computed personalized
PageRank vectors, since this is not preserved by the transpose operation.

PageRank contributions have also been used to estimate the PageRank of a
target vertex. The algorithm in [Chen et al. 04] heuristically identifies the top
contributors to a vertex v by adaptively choosing vertices with high likelihood
of being large contributors, and then locally computes personalized PageRank
from those vertices. This is different from our approach of directly computing
the contribution vector, and more difficult to analyze rigorously.

Local algorithms have been studied in distributed computing [Naor and Stock-
meyer 95] and in graph partitioning and clustering [Spielman and Teng 04, An-
dersen et al. 06]. Personalized PageRank vectors can be computed locally using
a number of methods [Berkhin 06, Andersen et al. 06, Sarlós et al. 06], many
of which are based on the algorithm of Jeh and Widom [Jeh and Widom 03].
None of these algorithms can be used directly to compute a contribution vector
or supporting set.

There are numerous methods for detecting link spam besides the SpamRank-
type algorithms we have mentioned here. Examples include applying machine
learning to link-based features [Becchetti et al. 06], the analysis of page con-
tent [Mishne et al. 05, Ntoulas et al. 06], TrustRank [Gyöngyi et al. 04] and
Anti-TrustRank [Krishnan and Raj 06], and statistical analysis of various page
features [Fetterly et al. 04].

1.4. Organization

This paper will be organized as follows. In Section 2 we review the basic con-
cepts used in this paper, including PageRank, personalized PageRank, and Page-
Rank contribution vectors. In Section 3 we derive an alternative formula for the
PageRank contribution vector. Using this formula, we present an efficient local
algorithm for computing PageRank contribution and analyze its performance.
In Section 4 we consider several notions of supporting sets, which are sets of
vertices that contribute significantly to the PageRank of a target vertex, and
show how to efficiently compute approximate supporting sets. In Section 5 we
introduce PageRank traffic, and relate this new concept to a weighted variation
of PageRank contributions. In Section 6 we make a few concluding remarks.
We also show that in principle, the time-reverse Markov chain can be used to
compute the contribution vector, but argue that our method is more efficient.
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2. Preliminaries

The web can be modeled by a directed graph G = (V, E), where V are webpages
and a directed edge (u → v) ∈ E represents a hyperlink in u that references v.
Although the web graph is usually viewed as an unweighted graph, our discussion
can be extended to weighted models. To deal with the problem of dangling nodes
with no out-edges, we assume that an artificial node with a single self-loop has
been added to the graph, and an edge has been added from each dangling node
to this artificial node. Let A denote the adjacency matrix of G. For each u ∈ V ,
let dout(u) denote the out-degree of u and let din(u) denote the in-degree of u.
Let Dout be the diagonal matrix of out-degrees.

We will now define PageRank vectors and contribution vectors. For conve-
nience, we will view all vectors as row vectors, unless explicitly stated otherwise.

For a teleportation constant α, the PageRank vector prα defined by Brin and
Page [Brin and Page 98] satisfies the following equation:

prα = α · 1 + (1 − α) · prα · M, (2.1)

where M is the random walk transition matrix given by M = D−1
outA and 1 is the

row vector of all ones (always of proper size). The PageRank of a page u is then
prα(u). When there is no danger of confusion, we may drop the subscript α. Note
that the above definition corresponds to the normalization

∑
u prα(u) = |V |.

Similarly, the personalized PageRank vector ppr(α, u) of a page u ∈ V , defined
by Haveliwala [Haveliwala 03], satisfies the following equation:

ppr(α, u) = α · eu + (1 − α) · ppr(α, u) · M, (2.2)

where eu is the row unit vector whose uth entry is equal to 1.
Let Pα denote the (personalized) PageRank matrix, whose uth row is the

personalized PageRank vector ppr(α, u). The (global) PageRank vector prα is
then 1 · Pα, the sum of all the personalized PageRank vectors. The PageRank
contribution of u to v is defined to be the (u, v)th entry of Pα, and will be written
pprα(u → v). The contribution vector cpr(α, v) for the vertex v is defined to be
the row vector whose transpose is the vth column of Pα. If c = cpr(α, v) is the
contribution vector for v, then we denote by c(S) the total contribution of the
vertices in S to the PageRank of v. In particular, we have c(V ) = prα(v) and
c(u) = pprα(u → v).

3. Local Approximation of PageRank Contributions

In this section, we describe an algorithm for computing an approximation of the
contribution vector c = cpr(α, v) of a vertex v.
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Definition 3.1. (Approximate contribution.) A vector c̃ is an ε-approximation of the
contribution vector c = cpr(α, v) if c̃ ≥ 0 and, for all vertices u,

c(u) − ε · prα(v) ≤ c̃(u) ≤ c(u).

A vector c̃ is an ε-absolute-approximation of the contribution vector c = cpr(α, v)
if c̃ ≥ 0 and, for all vertices u,

c(u) − ε ≤ c̃(u) ≤ c(u).

Clearly, an ε-approximation of cpr(α, v) is an (ε·prα(v))-absolute-approximation
of cpr(α, v). In the algorithm below, we will focus on the computation of an
ε-absolute-approximation of the contribution vector.

The support of a nonnegative vector c̃, denoted by Supp(c̃), is the set of all
vertices whose entries in c̃ are strictly positive. The vector c has a canonical
ε-absolute-approximation. Let c̄ denote the vector

c̄(u) =

{
c(u) if c(u) > ε,

0 otherwise.

Clearly, c̄ is the ε-absolute-approximation of c with the smallest support. More-
over, ‖c̄‖1 ≤ ‖c‖1, and thus |Supp(c̄)| ≤ ‖c‖1/ε. Our local algorithm attempts
to find an approximation c̃ of c that has a similar support structure to that of c̄.

3.1. High-Level Idea of the Local Algorithm

It is well known that for each α, the personalized PageRank vector that satisfies
(2.2) also satisfies

ppr(α, u) = α

∞∑
t=0

(1 − α)t · (euM t
)
. (3.1)

The contribution of u to v can then be written in the following way:

pprα(u → v) = 〈ppr(α, u) , ev 〉 (3.2)

=

〈
α

∞∑
t=0

(1 − α)t(euM t) , ev

〉
(3.3)

=

〈
eu , α

∞∑
t=0

(1 − α)t(evM
T )t

〉
. (3.4)

The standard way to compute the contribution of u to v is based on (3.3). We
refer to this approach as the time-forward calculation of pprα(u → v). Recall
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that euM t is the t-step random walk distribution starting from u. In the time-
forward calculation, we emulate the random walk from u step by step and add
up the walk distributions scaled by the power sequence of (1 − α)t. Without
knowing in advance which vertices u make large contributions to v, one may
have to perform the time-forward calculation of ppr(α, u) for many vertices u
to obtain a good approximation of cpr(α, v).

To overcome this difficulty, we can directly calculate cpr(α, v) in the manner
suggested by (3.4). This equation implies that

cpr(α, v) = α

∞∑
t=0

(1 − α)t · (ev(MT )t
)
. (3.5)

Thus, the contribution vector can be computed by starting with ev, iteratively
computing ev(MT )t, and adding up the resulting vectors scaled by the power
sequence of (1 − α)t. Note that the matrix MT is no longer a random walk
matrix, since the sum of each row will in general not be equal to 1. Unlike
the time-forward calculation, the direct calculation of cpr(α, v) is no longer an
emulation of the random walk starting from v. This fact complicates the error
analysis of the next subsection.

We remark that (3.5) can also be derived quickly and easily from the fact that
the contribution vector is a column of Pα, and from the matrix equation Pα =
α

∑∞
t=0(1−α)tM t. We derived it using (3.4) to highlight the difference between

directly computing the contribution vector and computing several personalized
PageRank vectors.

The discussion above provides one way to directly compute cpr(α, v), but
our local algorithm will perform a different calculation. Instead of iteratively
computing the vectors ev(MT )t, we adapt the technique of Jeh and Widom [Jeh
and Widom 03] for computing personalized PageRank to the task of computing
contribution vectors. Using this method, we can compute the contribution vector
in a decentralized way, and avoid spending computational effort manipulating
small numerical values. This enables us to bound the running time required to
obtain a fixed level of error.

The formula in (3.5) also enables us to compute the vector of contributions to a
specified subset S of vertices, which we define to be cpr(α, S) =

∑
v∈S cpr(α, v).

Let eS =
∑

v∈S ev. Then,

cpr(α, S) = α

∞∑
t=0

(1 − α)t · (eS(MT )t
)
. (3.6)

To further abuse notation, for any nonnegative vector s, we define

cpr(α, s) = α

∞∑
t=0

(1 − α)t · (s(MT )t
)
. (3.7)
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3.2. The Local Algorithm and Its Analysis

The theorem below describes our algorithm ApproxContributions for comput-
ing an ε-absolute-approximation of the contribution vector of a target vertex v.
We give an upper bound on the number of vertices examined by the algorithm
that depends on prα(v), ε, and α, but is otherwise independent of the number of
vertices in the graph. The algorithm performs a sequence of operations, which
we call pushback operations. Each pushback operation is performed on a single
vertex of the graph, and requires time proportional to the in-degree of that ver-
tex. We place an upper bound on the number of pushback operations performed
by the algorithm, rather than the total running time of the algorithm. The
total running time of the algorithm depends on the in-degrees of the sequence
of vertices on which the pushback operations were performed. The number of
pushback operations is an upper bound on the number of vertices in the support
of the resulting approximate contribution vector.

Theorem 3.2. The algorithm ApproxContributions(v, α, ε,pmax) has the following
properties. The input is a vertex v, two constants α and ε in the interval (0, 1],
and a real number pmax. The algorithm computes a vector c̃ such that 0 ≤ c̃ ≤ c,
and either

1. c̃ is an ε-absolute approximation of cpr(α, v), or

2. ‖c̃‖1 ≥ pmax.

The number of pushback operations P performed by the algorithm satisfies the
following bound:

P ≤ min (prα(v),pmax)
αε

+ 1.

The proof of Theorem 3.2 is based on a series of facts that we describe below.
The starting point is the following observation, which is easy to verify from (3.7).
For any vector s,

cpr(α, s)MT = cpr(α, sMT ). (3.8)

We can further derive the following equation:

cpr(α, s) = αs + (1 − α) · cpr(α, s)MT = αs + (1 − α) · cpr(α, sMT ). (3.9)

This is the transposed version of the equation that was used by Jeh and Widom
to compute approximate personalized PageRank vectors [Jeh and Widom 03].
Very naturally, we will use it to compute approximate contribution vectors.

The algorithm ApproxContributions(v, α, ε,pmax) maintains a pair of vectors
p and r with nonnegative entries, starting with the trivial approximation p = �0
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Algorithm 1. (pushback (u))
Let p′ = p and r′ = r, except for these changes:

1. p′(u) = p(u) + αr(u).

2. r′(u) = 0.

3. For each vertex w such that w → u:
r′(w) = r(w) + (1 − α)r(u)/dout(w).

and r = ev, and applies a series of pushback operations that increase ‖p‖1 while
maintaining the invariant p + cpr(α, r) = cpr(α, v). Each pushback operation
picks a single vertex u, moves an α-fraction of the mass at r(u) to p(u), and
then modifies the vector r by replacing r(u)eu with (1 − α)r(u)euMT . Note
that ‖r‖1 may increase or decrease during this operation. We will define the
pushback operation more formally as Algorithm 1, and then verify that each
pushback operation does indeed maintain the invariant.

Lemma 3.3. (Invariant.) Let p′ and r′ be the result of performing pushback(u) on p
and r. If p and r satisfy the invariant p + cpr(α, r) = cpr(α, v), then p′ and r′

satisfy the invariant p′ + cpr(α, r′) = cpr(α, v).

Proof. After the pushback operation, we have, in vector notation,

p′ = p + αr(u)eu.

r′ = r − r(u)eu + (1 − α)r(u)euMT .

We will apply equation (3.9) to r(u)eu to show that p + cpr(α, r) = p′ +
cpr(α, r′):

cpr(α, r) = cpr(α, r − r(u)eu) + cpr(α, r(u)eu)

= cpr(α, r − r(u)eu) + αr(u)eu + cpr(α, (1 − α)r(u)euMT )

= cpr(α, r − r(u)eu + (1 − α)r(u)euMT ) + αr(u)eu

= cpr(α, r′) + p′ − p,

which completes the proof.

During each pushback operation, the quantity ‖p‖1 increases by αr(u). The
quantity ‖p‖1 can never exceed ‖cpr(α, v)‖1, which is equal to prα(v). By per-
forming pushback operations only on vertices where r(u) ≥ ε, we can ensure that
‖p‖1 increases by a significant amount at each step, which allows us to bound the
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Algorithm 2. (ApproxContributions(v, α, ε,pmax))

1. Let p = �0, and r = ev.

2. While r(u) > ε for some vertex u:

(a) Pick any vertex u where r(u) ≥ ε.

(b) Apply pushback (u).

(c) If ‖p‖1 ≥ pmax, halt and output c̃ = p.

3. Output c̃ = p.

number of pushes required to compute an ε-absolute-approximation of the con-
tribution vector. This is the idea behind the algorithm ApproxContributions
(Algorithm 2).

This algorithm can be implemented by maintaining a queue containing those
vertices u satisfying r(u) ≥ ε. Initially, v is the only vertex in the queue. At
each step, we take the first vertex u in the queue, remove it from the queue, and
perform a pushback operation from that vertex. If the pushback operation raises
the value of r(x) above ε for some in-neighbor x of u, then x is added to the back
of the queue. This continues until the queue is empty, at which point all vertices
satisfy r(u) < ε, or until ‖p‖1 ≥ pmax. We now show that this queue-based
algorithm has the properties promised in Theorem 3.2.

Proof of Theorem 3.2. Let T be the total number of push operations performed
by the algorithm, and let pt and rt be the states of the vectors p and r after
t pushes. The initial setting of p0 = �0 and r0 = ev satisfies the invariant
pt+cpr(α, rt) = cpr(α, v), which is maintained throughout the algorithm. Since
rt is nonnegative at each step, the error term cpr(α, rt) is also nonnegative, so
we have cpr(α, v) − pt ≥ 0. In particular, this implies ‖pt‖1 ≤ ‖cpr(α, v)‖1 =
prα(v).

Let c̃ = pT be the vector output by the algorithm. When the algorithm
terminates, we must have either ‖c̃‖1 ≥ pmax or ‖rT ‖∞ ≤ ε. In the latter
case, the following calculation shows that c̃ is an ε-absolute-approximation of
cpr(α, v):

‖cpr(α, v) − c̃‖∞ = ‖cpr(α, rT )‖∞ ≤ ‖rT ‖∞ ≤ ε.

The inequality ‖cpr(α, rT )‖∞ ≤ ‖rT ‖∞ holds because rT is nonnegative and
each row of M sums to 1.

The vector pT−1 must have satisfied ‖pT−1‖1 < pmax, since the algorithm
decided to push one more time. We have already observed that ‖pT−1‖1 ≤
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prα(v). Each push operation increased ‖p‖1 by at least αε, so we have

αε(T − 1) ≤ ‖pT−1‖1 ≤ min (‖cpr(α, v)‖1,pmax).

This gives the desired bound on T .

It is possible to perform a pushback operation on the vertex u, and to per-
form the necessary queue updates, in time proportional to din(u). Therefore, the
running time of the algorithm is proportional to the sum over all pushback op-
erations of the in-degree of the pushed vertex. We remark that a useful heuristic
for choosing the next vertex to push is to maintain a priority queue rather than
a queue, and to push from the vertex u with the highest value of r(u). That
approach was used previously by Berkhin [Berkhin 06] for the related task of
computing personalized PageRank vectors.

We can compute an ε-approximation of cpr(α, v), provided that prα(v) is
known, by calling the algorithm ApproxContributions(v, α, ε · prα(v), prα(v)).

Corollary 3.4. (ε-approximation of contribution vectors.) Given prα(v), an ε-approximation
of cpr(α, v) can be computed with 1

αε + 1 pushback operations.

We also observe that using (3.6), our algorithm can be easily adapted to
compute an ε-absolute-approximation and ε-approximation of cpr(α, S) for a
group S of vertices, with a similar bound on the number of pushback operations.

3.3. The Support of the Approximate Contribution Vector

The number of vertices in the support of the ε-approximate contribution vector
c̃ is bounded above by the number of pushback operations used to compute it,
which is at most 1

αε +1. In this section, we introduce a small modification to the
algorithm in the previous section, and show that for this modified algorithm we
can prove a stronger upper bound on the size of the support of the approximate
contribution vector. In particular, consider the following modified pushback op-
eration: instead of moving all the mass from r(u) during the pushback operation,
move all but ε/2 units of mass, and leave ε/2 units on r(u). This will give us a
lower bound on the value of r(u) on each vertex u from which a push operation
has ever been performed, which will in turn allow us to bound the size of the
support.

For the remainder of this section, assume that ApproxContributions uses
the modified pushback operation described above. The number of pushback
operations performed by the modified algorithm is at most 2

αε +1, which is twice
the bound we proved for the unmodified algorithm, and which can be proved by
the same argument. The modified algorithm ensures that r(x) ≥ ε/2 at each
vertex in Supp(c̃). Below, we will use this fact to give a family of bounds on
the size of Supp(c̃). These bounds do not necessarily hold for the unmodified
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algorithm, so one must implement the modified version for the stronger support
bounds to hold.

We will abuse our notation a bit by defining

prα(x → y) = 〈xMα , y 〉,
where Mα = Pα is the PageRank matrix. In particular, prα(x → eS) is the
amount of probability from the PageRank vector with starting distribution x on
the set S.

Proposition 3.5. Let c̃ be the ε-approximate contribution vector for v computed by the
modified algorithm described above, and let S = Supp(c̃). For any nonnegative
vector z, we have the following upper bound on S:

prα(z → eS) ≤ 2
ε
prα(z → ev).

Proof. Note that ppr(α, v) = evMα and cpr(α, v) = evM
T
α . We know that

cpr(α, r) ≤ cpr(α, ev), which can also be written rMT
α ≤ evM

T
α . Let S =

Supp(c̃) and recall that r(x) ≥ ε/2 for any vertex x ∈ S. Then,

〈 zMα , ev 〉 =
〈
z , evM

T
α

〉 ≥ 〈
z , rMT

α

〉
= 〈 zMα , r 〉 ≥ (ε/2)〈zMα , eS 〉.

In the second step we needed z to be nonnegative, and in the last step we needed
zMα to be nonnegative, which is true whenever z is nonnegative.

In words, this proposition states that for any starting vector z, the amount
of probability from the PageRank vector ppr(α, z) on the set S = Supp(c̃) is at
most 2/ε times the amount on the vertex v. If we let z = eV , then we obtain a
bound on the amount of global PageRank on the set S,

prα(S) ≤ 2
ε
prα(v).

To see that this bound is at least as strong as what we knew before, recall that
the PageRank of any given vertex is at least α. If we make the pessimistic
assumption that prα(u) = α for each u ∈ Supp(c̃), then the bound we have just
proved reduces to our earlier bound on the number of pushback operations,

|Supp(c̃)| ≤ 2prα(v)/αε.

4. Computing Supporting Sets

In this section, we use our local algorithm for approximating contribution vec-
tors to compute approximate supporting sets, sets of vertices that contribute
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significantly to the PageRank of a target vertex. There are several natural no-
tions of supporting sets, which we define below. For a vertex v, let πv be the
permutation that orders the entries cpr(α, v) from the largest to the smallest.
Ties may be broken arbitrarily.

• top k contributors: the first k pages of πv.

• δ-significant contributors: {u | pprα(u → v) > δ}.
• ρ-supporting set: a set S of pages such that

pprα(S → v) ≥ ρ · prα(v).

In addition, let kρ(v) be the smallest integer such that

pprα(πv(1 : kρ(v)) → v) ≥ ρ · prα(v).

Clearly the set of the first kρ(v) pages of πv is the minimum-size ρ-supporting
set for v. Also, we define ρk(v) = pprα(πv(1 : k) → v)/prα(v) to be the fraction
of v’s PageRank contributed by its top k contributors.

4.1. Approximating Supporting Sets

Without precisely computing cpr(α, v) it might be impossible to identify sup-
porting sets exactly, so we consider approximate supporting sets. For a precision
parameter ε, we define the following:

• ε-precise top k contributors: a set of k pages that contains all pages
whose contribution to v is at least pprα(πv(k) → v) + ε · prα(v), but no
page with contribution to v less than pprα(πv(k) → v) − ε · prα(v).

• ε-precise δ-significant contributors: a set that contains the set of δ-
significant contributors and is contained in the set of (δ − ε)-significant
contributors.

Later in this section, we will also consider the computation of approximate ρ-
supporting sets. The results in the remainder of this section assume that prα(v)
is known.

Theorem 4.1. An ε-precise set of top k contributors of a vertex v can be found by
performing 1

αε + 1 pushback operations.

Proof. Call c̃ = ApproxContributions(v, α, ε · prα(v), prα(v)). Let C = Supp(c̃).
If |C| > k, then return the vertices with the top k entries in c̃; otherwise,
return C augmented with k − C arbitrarily chosen vertices not in C. Consider
a page u with cpr(u, v) ≥ cpr(πv(k), v) + ε · prα(v). Clearly u ∈ C because
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c̃(u) ≥ cpr(πv(k), v), implying that c̃(u) is among the top k entries in c̃. On
the other hand, c̃(πv(j)) is at least cpr(πv(k), v) − ε · prα(v) for all j ∈ [1 : k].
Thus, each of the vertices with the top k entries in c̃ must contribute at least
cpr(πv(k), v) − ε · prα(v) to v.

Theorem 4.2. An ε-precise δ-significant contributing set of a vertex v can be found
by performing 1

αε + 1 pushback operations.

Proof. Call c̃ = ApproxContributions(v, α, ε · prα(v), prα(v)) and return the
vertices whose entries in c̃ are at least (δ − ε) · prα(v). Clearly, the set contains
the δ-contributing set of v and is contained in the (δ − ε)-supporting set of v.
Moreover, the number of pages not in the δ-supporting set that are included is
at most 1/(δ − ε).

In the remainder of this section, we consider the computation of approximate
ρ-supporting sets. We give two different algorithms, one for finding a supporting
set on a fixed number of vertices with the largest contribution possible, and
one for finding a supporting set with a fixed contribution on as few vertices as
possible.

Theorem 4.3. Given a vertex v and an integer k, a set of k vertices that is a (ρk−ε)-
supporting set for v can be found by performing k

αε + 1 pushback operations.

Proof. Compute c̃ = ApproxContributions(v, α, εprα(v)/k, prα(v)). Let Sk be
the set of k top contributors to v, which are the k vertices with the highest values
in c, and let S̃k be the set of k vertices with the highest values in c̃. The set S̃k

meets the requirements of the theorem, since we have

c̃(S̃k) ≥ c(Sk) − k(εprα(v)/k) ≥ ρk · prα(v) − ε · prα(v) = prα(v)(ρk − ε).

The proof is complete.

Theorem 4.4. Assume that we are given ρ but not kρ. A set of at most kρ vertices
that is a (ρ− ε)-supporting set for v can be found by performing O(kρ log kρ/αε)
pushback operations.

Proof. The challenge here is that we do not know kρ, so we need to use a binary
search procedure to find a proxy for kρ. We will proceed in two phases. In
the first phase, we guess a value of k, starting with k = 1, and compute c̃ =
ApproxContributions(v, α, ε · prα(v)/k, prα(v)). As in Theorem 4.3, let S̃k be
the set of k vertices with the highest values in c̃, which we know satisfies c̃(S̃k) ≥
(ρk − ε). If we observe that c̃(S̃k) < (ρ − ε), then we double k and repeat the
procedure. If we observe that c̃(S̃k) ≥ (ρ − ε), then we halt and proceed to the
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second phase, and set k1 to be the value of k for which this happens. We must
have k1 ≤ 2kρ, since we are guaranteed to halt if k ≥ kρ.

Let k0 = k1/2 be the value of k from the step before the first phase halted. In
the second phase, we perform binary search within the interval [k0, k1] to find the
smallest integer kmin for which c̃(S̃kmin) ≥ (ρ− ε), which must satisfy kmin ≤ kρ.
We output S̃kmin .

Each time we call the subroutine

c̃ = ApproxContributions(v, α, εprα(v)/k, prα(v)),

it requires k
αε +1 push operations. In the first phase we call this subroutine with a

sequence of k values that double from 1 up to at most 2kρ, so the number of push
operations performed is O(kρ/αε+log kρ). In the second phase, the binary search
makes at most log kρ calls to the subroutine, with k set to at most 2kρ in each
step, so the number of push operations performed is O(kρ log kρ/αε+log kρ). The
total number of push operations performed in both phases is O(kρ log kρ/αε).

4.2. Local Estimation of PageRank

Up to this point, we have assumed when computing the supporting set of a vertex
that its PageRank is known. We now consider how to apply our approximate
contribution algorithm when nothing is known about the PageRank of the target
vertex. In particular, we consider the problem of computing a lower bound on
the PageRank of a vertex using local computation.

A natural lower bound on the PageRank prα(v) is provided by the contribution
to v of its top k contributors, pk = cpr(πv(1 : k), v). The theorem below shows
that given k, we can efficiently certify that prα(v) is approximately as large as
pk without prior knowledge of prα(v) or pk. This should be contrasted with the
algorithms from the previous section, for which we needed to know the value
prα(v) in order to set ε appropriately to obtain the stated running times. This
result is useful for determining the amount of contribution a node receives from
its top contributors. The fraction of a node’s PageRank that it receives from its
top k contributors can vary greatly between nodes, and depends on the structure
of the graph.

Theorem 4.5. Given k and δ, we can compute a real number p such that

pk(1 + δ)−2 ≤ p ≤ prα(v),

where pk = cpr(πv(1 : k), v), by performing 10k log(k/αδ)/α pushback opera-
tions.

Proof. Fix k and δ, choose a value of p, and compute

c̃ = ApproxContributions(v, α, ε, p)
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with ε = δp/k. The number of pushback operations performed is at most

1 +
p

αε
= 1 +

p

α(δp/k)
= 1 +

10k

α
.

When the algorithm halts, either we have ‖c̃‖1 ≥ p, in which case we have
certified that prα(v) ≥ p, or else we have ‖c̃ − cpr(α, v)‖∞ ≤ δp/k, in which
case we have certified that pk ≤ (1 + δ)p, by the following calculation:

pk = cpr(πv(1 : k), v) ≤ c̃(πv(1 : k), v) + (δp/k)k ≤ p + δp.

We now perform binary search over p in the range [α, k]. Let plow be the
largest value of p for which we have certified that prα(v) ≥ p, and let phigh be
the smallest value of p for which we have certified that pk ≤ (1+δ)p. We perform
binary search until phigh ≤ plow(1 + δ), which requires at most log(k/αδ) steps.
Then, plow has the property described in the theorem,

prα(v) ≥ plow ≥ phigh(1 + δ)−1 ≥ pk(1 + δ)−2.

The total number of pushback operations performed during the calls to Approx-
Contributions during the binary search is at most 10k log(k/αδ)/α.

5. Weighted Contributions and PageRank Traffic

In this section we introduce two alternative ways to measure the effect a given
node has on the PageRank of another node: weighted contributions and Page-
Rank traffic. Weighted contributions capture the idea that contributions from
nodes with high PageRank should count more than contributions from nodes
with low PageRank. PageRank traffic is a natural way to define the amount
of PageRank that is contributed through a given node. We derive an equation
that shows that these two concepts are closely related, and show that both can
be computed by computing PageRank contributions. This helps to unify seem-
ingly different notions of how PageRank is contributed and transmitted within
a graph.

We first define the weighted contribution from u to v, which is simply the
contribution from u to v multiplied by the PageRank of u.

Definition 5.1. (Weighted contributions.) The weighted contribution from u to v is defined
to be the product prα(u) · pprα(u → v).

While weighted contributions are a natural way to take into account the im-
portance of nodes, the significance of this quantity in terms of the graph is not
immediately clear. We will give a concrete interpretation of weighted contribu-
tions by introducing the concept of PageRank traffic.
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PageRank traffic is defined in terms of the paths followed by a collection
of random surfers. To motivate this definition, we first review the standard
definition of PageRank contributions in terms of these random surfers. Consider
a random surfer beginning at a specified node x0. At each step, the surfer moves
to a random neighbor of the current node with probability 1 − α, and with
probability α the surfer stops at the current node. The path followed by the
random surfer is the sequence of nodes p = x0 . . . xl, where l = l(p) is the length
of the path and xl is the node at which the surfer stops. We define the path
weight wα(p) to be the probability that a random surfer starting from x0 follows
the path p. This probability can be written as follows:

wα(p) = α(1 − α)l(p)

l(p)−1∏
i=0

(
1

dout(xi)

)
.

We let P(u,v) be the set of paths that begin at u and end at v. The contribution
pprα(u → v) can be viewed as the probability that a random surfer that starts
from u stops at v, which is the sum of the path weights in P(u,v),

pprα(u → v) =
∑

p∈P(u,v)

wα(p). (5.1)

It can be seen from (3.1) that this definition of contributions is equivalent to the
definition we presented earlier.

We can now define PageRank traffic. The PageRank traffic from u to v through
x, which will be written pprα(u → x → v), is defined to be the expected number
of times a random surfer that starts from u travels through x and stops at v,
taking into account the multiplicity of times the surfer travels through x.

Definition 5.2. (PageRank traffic.) Let I(x, p) be the number of times node x appears in
path p. The PageRank traffic from u to v through x is written pprα(u → x → v),
and is defined to be

pprα(u → x → v) =
∑

p∈P(u,v)

wα(p)I(x, p). (5.2)

We believe that PageRank traffic is a natural way to define the amount of
PageRank that is contributed from u to v through a given node x. As an impor-
tant special case, we define global PageRank traffic.

Definition 5.3. (Global PageRank traffic.) The global PageRank traffic routed through x
to v is defined to be

pprα(1 → x → v) =
∑
u∈V

pprα(u → x → v). (5.3)
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If we consider a collection of random surfers, one starting from each node, the
global PageRank traffic measures the expected number of these random surfers
that travel through x and end up at v. It is a natural way to measure the total
amount of PageRank that is contributed to v through a given node x. The global
PageRank traffic through x provides an alternative to the PageRank contribution
from x for measuring how the PageRank of v is influenced by the presence of
node x.

We now show that PageRank traffic can be written as the product of two
PageRank contributions.

Proposition 5.4.

pprα(u → x → v) =
1
α

pprα(u → x) · pprα(x → v). (5.4)

Proof. Given two paths p and q, where the last node in p is the first node in q, let
p ◦ q denote the composition of the two paths:

pprα(u → x → v) =
∑

p∈P(u,v)

wα(p)I(x, p)

=
∑

(p,q)∈P(u,x)×P(x,v)

wα(p ◦ q)

=
∑

(p,q)∈P(u,x)×P(x,v)

1
α

wα(p)wα(q)

=
1
α

( ∑
p∈P(u,x)

wα(p)
)( ∑

q∈P(x,v)

wα(q)
)

=
1
α

pprα(u → x) · pprα(x → v),

which completes the proof.

As an immediate corollary we arrive at the main result of this section, which
relates the global PageRank traffic through a node to the weighted PageRank
contributions from that node.

Corollary 5.5.

pprα(1 → x → v) =
1
α

prα(x) · pprα(x → v).
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6. Concluding Remarks

6.1. Improving the Dependency on In-Degrees

In our performance analysis, we give a bound of prα(v)/(αε) + 1 on the total
number of pushback operations performed by our algorithm. In a pushback at
a vertex u, we update the entry for u in the vector p as well as the entries in r
for all vertices that point to u. As a result, the overall time complexity of our
algorithm is proportional to the sum of the in-degrees of the sequence of vertices
that we push back from. A possible direction for future research is to devise an
algorithm whose running time can be bounded in terms of the total in-degree
of the supporting set that the algorithm attempts to approximate. This type of
bound would offer stronger control over the running time than the result obtained
in this paper, where the number of pushback operations is bounded in terms of
the number of vertices in the supporting set, but the running time depends on
the in-degrees of the vertices from which the sequence of push operations is
performed.

6.2. Computing Contribution Vectors via the Time-Reverse Chain

As noted earlier, the matrix MT in the formula of (3.5) may not be Markov. It
is natural ask whether the time-reverse Markov chain of the random-walk matrix
M may be used to compute the contribution vector for a vertex v, and, if so,
whether this method is efficient.

For the following discussion, we assume that M has a unique stationary distri-
bution, which will not be true for general directed graphs. Recall the following
definition of the time-reverse Markov chain.

Definition 6.1. (Time-reverse chain.) Given a Markov chain M with transition probability
mij , and stationary distribution π, the time-reverse chain is the Markov chain
R with transition probability rij = π(j)mji/π(i).

In other words, let Π be the matrix whose (i, j) entry is π(j)/π(i). Then
R = Π · ∗MT , where the operation ·∗ is the componentwise multiplication of two
matrices. The time-reverse chain has the following properties:

• R has the same stationary distribution as M ,

• for all i, k, and t, consider the t-step random walk starting from i in M
and k in R; then

〈
eiM

t , ek

〉
=

(
π(k)
π(i)

) 〈
ekRt , ei

〉
(6.1)
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Recall that 〈 eiM
t , ek 〉 is equal to the probability that k is the vertex reached

by a t-step random walk from i. Let pprM
α (u → v) denote the personalized

PageRank contribution from u to v in a Markov chain M .

Theorem 6.2. Suppose a Markov chain M has a stationary distribution π and R is
its time-reverse chain. Then

pprM
α (u → v) =

(
π(v)
π(u)

)
pprR

α (v → u). (6.2)

Proof. The result follows from (3.3) and (6.1).

Thus, if the stationary distribution exists, we can in principle compute the
contribution vector of M by computing the personalized PageRank vector for v
in the time-reverse chain. We argue that the method we presented in Section 3
is preferable to the time-reverse Markov chain method for the following reasons.
Our method does not require that M have a stationary distribution. Computing
a personalized PageRank vector in the time-reverse Markov chain requires that
we first compute the stationary distribution π of M , which may be computation-
ally expensive. Perhaps most important is the difference in the error analysis.
If the stationary distribution exists, one can compute an ε-approximate contri-
bution vector by computing a personalized PageRank vector in R for which the
error at each vertex i is at most επ(i). If π(i) is extremely small at some vertices,
and it may be exponentially small in the number of vertices in the graph, this
will require a large amount of computation.

We prefer the method presented in Section 3 to the time-reverse method for
most graphs that are likely to be encountered in practice. However, there are
special cases in which the time-reverse method will be efficient. In particular, if
the Markov chain has a stationary distribution that is nearly proportional to the
in-degrees of the vertices, as it would be in an undirected graph, then computing
a personalized PageRank vector in the time-reverse chain is an efficient way to
compute a contribution vector.
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