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A Two-Stage Algorithm for
Computing PageRank and
Multistage Generalizations
Chris P. Lee, Gene H. Golub, and Stefanos A. Zenios

Abstract. The PageRank model pioneered by Google is the most common approach
for generating web search results. We present a two-stage algorithm for computing the
PageRank vector where the algorithm exploits the lumpability of the underlying Markov
chain. We make three contributions. First, the algorithm speeds up the PageRank
calculation significantly. With web graphs having millions of webpages, the speed-
up is typically in the two- to three-fold range. The algorithm can also embed other
acceleration methods such as quadratic extrapolation, the Gauss-Seidel method, or the
Biconjugate gradient stable method for an even greater speed-up; cumulative speed-
up is as high as 7 to 14 times. The second contribution relates to the handling of
dangling nodes. Conventionally, dangling nodes are included only towards the end
of the computation. While this approach works reasonably well, it can fail in extreme
cases involving aggressive personalization. We prove that our algorithm is the generally
correct way of handling dangling nodes using probabilistic arguments. We also discuss
variants of our algorithm, including a multistage extension for calculating a generalized
version of the PageRank model where different personalization vectors are used for
webpages of different classes. The ability to form class associations may be useful for
building more refined models of web traffic.

1. Introduction

The commercial success of the PageRank approach [Page et al. 98] for ranking
webpages has spawned much interest in the research community. The approach
is based on a Markov chain model for web traffic and is intuitive and highly
versatile. However, the calculation of the rankings, known as the PageRank
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vector, poses a daunting computational challenge [Moler 02]: As the number
of webpages to be ranked is in the billions, the computation is time-consuming
and can take several days. Computation is repeated frequently to maintain the
currentness and relevance of the results as well as to model the preferences of
different web surfers [Jeh and Widom 03]. The need for accelerated algorithms
is clear.

The PageRank vector is the limiting distribution of a homogeneous discrete-
time Markov chain. An accelerated algorithm is presented in this paper for its
computation. The algorithm exploits the “lumpability”[Kemeny and Snell 60]
of the underlying Markov chain and proceeds in two stages. In the first stage,
the dangling nodes [Page et al. 98] are combined into a single “block node”
and the limiting distribution of the resulting Markov chain is computed; in the
second stage, the nondangling nodes are combined into a node and the limiting
distribution is computed. (Throughout the paper the words node, state, and
page are used interchangeably.) The two limiting distributions are then pasted
together to give the PageRank vector. Note that this is not an approximation
algorithm: the vector obtained is identical to the ordinary PageRank vector.
Our approach can dramatically reduce the computing time and is conceptually
elegant.

Several papers discuss acceleration methods based on numerical linear algebra
techniques. A Gauss-Seidel style algorithm has been proposed [Arasu et al. 02].
Another acceleration method proceeds by periodically subtracting an approxi-
mation of the subdominant eigenvectors, a procedure known as quadratic extrap-
olation [Kamvar et al. 03c]. The Arnoldi method tries to separate the first few
eigenvectors and has been found to be particularly suitable for the parallel pro-
cessor environment [Golub and Greif 06]. Kamvar et al. found that when sorted
by url, the Markov chain matrix has a block structure which can be exploited to
speed up the calculation [Kamvar et al. 03b]. For other proposals, see [Kamvar
et al. 03a, Corso et al. 05, Langville and Meyer 06b, Ipsen and Kirkland 06, Boldi
et al. 05, Langville and Meyer 04, Zhu et al. 05, Yates et al. 05, Corso et al. 04].
A particularly valuable aspect of our algorithm is that it can be used in combi-
nation with many of these methods.

Our paper contributes to the PageRank literature in several ways. By focusing
on the probabilistic interpretations of the underlying Markov chain, we gain
insights into new methods of acceleration. In each of the two stages, a different
state space reduction technique is used: in the first stage, states are combined by
the technique of lumping; in the second stage, state aggregation is used. These
techniques come from the applied probability literature (see, for example, [Cao
and Stewart 85, Meyer 89, Simon and Ando 61]). In addition, we show that the
conventional approach of including dangling nodes only towards the end of the
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computation [Page et al. 98] can fail. Our algorithm is a more general way of
handling dangling nodes.

We also discuss generalizations of our algorithm with two examples. In the
first example, the PageRank vector is computed with a multistage algorithm.
In the second example, we discuss dividing webpages into different classes. The
division can be based on host, subject, content, language, and so on. Each
class of webpages is modeled by a different personalization vector. A multistage
variant of our algorithm can then be used to compute the PageRank vector. The
ability to incorporate class-dependent information is versatile and can potentially
provide a more refined model for web traffic.

Here is the standard notation that we use throughout the paper. A boldface
letter indicates a matrix if it’s in uppercase or a vector if it’s in lowercase; scalars
are in italics. We let v(i) denote the ith element of v. Similarly, M(i, j) denotes
the element in the ith row of the jth column of M; M(i : j, k : l) denotes the
elements in rows i through j and in columns k through l; M(i, :) denotes the ith
row. All untransposed vectors are column vectors. The 1-norm of a vector is the
sum of the absolute values of its elements: ||v||1 =

∑
i |v(i)|. The notation 1n

means an n-dimensional vector of 1s; when the dimensionality can be deduced
from the context, the subscript is dropped. The cardinality of the set A is written
as card(A).

2. Review of the PageRank Model

Extensive surveys of PageRank and its related methods have been conducted by
Langville and Meyer and by Berkhin [Langville and Meyer 06a, Langville and
Meyer 05a, Langville and Meyer 05b, Berkhin 05].

The main idea behind the PageRank model is to regard web surfing as a
Markov chain. Consider a collection of webpages S = {1, 2, ..., N} and a person-
alization vector u ∈ R

N×1 representing a generic surfer’s preferences for these
webpages. (Specifically, the personalization vector is assumed to have positive
components that sum to one.) Let this surfer be currently at i ∈ S. We assume
that, in the next time step, the surfer will move to j ∈ S with the following
probability:

Q(i, j) =

{
G(i,j)∑

N
l=1 G(i,l)

if G(i, m) = 1 for some m ∈ S,

u(j) otherwise,

where

G(i, j) =
{

1 if there is an outlink from i to j,
0 otherwise.
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The interpretation is as follows: if the ith page has outlinks, then the surfer
will click on one of the outlinks with a uniform probability; otherwise, the surfer
will move to a random page based on the distribution provided by the person-
alization vector. A page that has no outlinks is called a dangling page. It is
assumed that the same dynamics continue perpetually, giving rise to a homo-
geneous discrete-time Markov chain; Q is the transition probability matrix of
this Markov chain. Let π0 ∈ RN×1 denote the probability distribution for the
surfer’s initial location; the location at time k is given by πT

k = πT
0 (Q)k.

The PageRank model assumes that the relative importance of a webpage is
conferred by its limiting probability as k → ∞, i.e., the relative frequency that
the surfer will revisit the page in the long term. However, the specifications
provided so far do not guarantee the existence of a unique limiting distribution.
As such, for computational purposes, we use a “slightly shifted” Markov chain:

P = cQ + (1 − c)1NuT ,

where 1NuT is a rank-one matrix with rows uT and c is some constant in (0, 1).
The chain P closely approximates Q for c close to one. A typical value for c is
between 0.85 and 0.95. It has been shown [Haveliwala and Kamvar 03] that c is
related to the convergence rate of the algorithm for calculating the PageRank vec-
tor to be described in greater detail below. That u is positive ensures that P is an
irreducible and aperiodic Markov chain (see [Berman and Plemmons 94, Kemeny
and Snell 60]). By the Perron-Frobenius Theorem [Berman and Plemmons 94],
a unique limiting distribution is guaranteed to exist, i.e., πT = limk→∞ πT

0 Pk,
regardless of the initial distribution. The PageRank vector is defined to be this
limiting distribution π; P is sometimes referred to as the Google matrix. Let SD

and SND denote the dangling and nondangling subsets of S, respectively; then,

P(i, :) =

{
c G(i,:)∑

N
l=1 G(i,l)

+ (1 − c)uT if i ∈ SND,
uT if i ∈ SD.

(2.1)

Each dangling row of P looks the same: uT . The nondangling rows are the sum
of two components: the first component is given rise by the link structure (G),
while the second component comes from surfer preferences (uT ).

In Algorithm 1, we state the “standard” PageRank algorithm [Page et al. 98]
for computing the PageRank vector. The algorithm takes an arbitrary initial
probability vector and then multiplies it by P repeatedly until convergence. It is
a modified version of the power method [Golub and Loan 96] that takes advantage
of the sparseness of G, which is extremely sparse because most webpages have
only a handful of outlinks.
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Algorithm 1. (Standard PageRank.)

Form P̃, where P̃(i, j) =

{
G(i,j)∑
N
l=1 G(i,l)

if i ∈ SND,

0 if i ∈ SD.

Select y ∈ RN×1,y ≥ 0, ||y||1 = 1;
δ = ||y − x||1;
while δ ≥ ε do

x = y;
yT = cxT P̃;
d = 1 − ||y||1;
y = y + du;
δ = ||y − x||1;

end

Notice that P, which is completely dense, is never explicitly formed or used.
Instead we use P̃, which is extremely sparse. The multiplication step xT P̃ is very
efficient, and a multiple of u is subsequently added. Under this approach, each
iteration of the loop requires O(N) operations; in contrast, each iteration would
have required O(N2) operations if P was used—which would have been com-
putationally prohibitive. The strategy of implementing a dense vector-matrix
multiplication as a sparse vector-matrix multiplication plus a vector-vector ad-
dition will appear again in our algorithm.

3. Exploiting Lumpability

We review the lumpability of Markov chains (see [Kemeny and Snell 60, Dayar
and Stewart 97]) and relate this property to P.

The idea is that some Markov chains can have their state spaces partitioned
(“lumped”) into highly homogeneous blocks. Here, homogeneity refers to the
property that all states within a block have identical transition probabilities to
other blocks. With this type of Markov chains, one can easily derive a transition
probability matrix describing dynamics at the block level. We show below how
this property can be exploited to handle large Makov chains in a “divide-and-
conquor” fashion roughly as follows: We first calculate the block-level transition
probability matrix and compute its limiting distribution. Then, using this limit-
ing distribution to describe dynamics between blocks, we figure out the dynamics
within each block by computing the limiting distribution at the state level one
block at a time. Working with only a portion of the state space at a time, the
overall computing time is reduced.
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The verification of lumpability is normally nontrivial. We’ll show that the
Markov chain associated with P is trivially lumpable. It should be emphasized
that a lumpable chain is not necessarily nearly completely decomposable (NCD)
and vice versa. An NCD chain is one that can be partitioned into blocks with
little or no block-level traffic. For such a chain a different divide-and-conquor
approach based on traditional aggregation/disaggregation techniques (see [Cao
and Stewart 85, Meyer 89, Simon and Ando 61]) exists. Although sharing many
similarities with our two-stage approach, aggregation/disaggregation techniques
are iterative approximation algorithms where one switches between block-level
and state-level calculations continually rather than sequentially. As it happens,
P is both lumpable and NCD. We return to this point in Section 7.

Definition 3.1. Suppose that M ∈ Rn×n is the transition probability matrix of
a homogeneous discrete-time Markov chain with n states. Let S1, S2, ..., Sr be
disjoint blocks of states such that

⋃r
l=1 Sl = {1, 2, ..., n}. The Markov chain is

said to be lumpable with respect to S1, S2, ...Sr if for every l ∈ {1, 2, ..., r} and
m ∈ {1, 2, ..., r}, every i ∈ Sl satisfies∑

j∈Sm

M(i, j) = f(l, m). (3.1)

That the right-hand side of (3.1) does not depend on i is what is meant by
homogeneity.

Proposition 3.2. Consider the Markov chain with states 1, 2, ..., r obtained by tracking
the block-level transitions of M above. The resulting Markov chain (the “lumped
chain”) has an r-by-r transition probability matrix given by

ML(l, m) = f(l, m).

Furthermore, if M is irreducible and aperiodic, so is ML.

Results on lumpable Markov chains can be found in older [Kemeny and Snell 60]
and more recent [Dayar and Stewart 97] works. In particular, Dayar and Stewart
provided the following small example:

M =

⎛
⎜⎜⎝

1 2 3 4
1 0.2 0.3 0.4 0.1
2 0.3 0.1 0.4 0.2
3 0.5 0.1 0.1 0.3
4 0.5 0.3 0.2 0.0

⎞
⎟⎟⎠
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[Dayar and Stewart 97]. If we take S1 = {1, 3} and S2 = {2, 4}, we see that 1 and
3 have the the same transition probability to S2 (0.3+0.1 = 0.1+0.3 = 0.4) while
2 and 4 have the same transition probability to S1 (0.3 + 0.4 = 0.5 + 0.2 = 0.7).
Proposition 3.2 says that the block-level transition probability matrix, i.e., the
“lumped chain,” is given by

ML =
( S1 S2

S1 0.6 0.4
S2 0.7 0.3

)
.

We claim that the Markov chain associated with P is lumpable with respect
to the partition where all the dangling nodes are lumped into one block and each
nondangling node is its own block.

Proposition 3.3. Define Sk = {k}, ∀k ∈ SND. The homogeneous discrete-time Markov
chain associated with P is lumpable with respect to SD and Sk, ∀k ∈ SND.

Proof. If Sl is a block consisted of a single nondangling node (Sl = Sk for some
k ∈ SND), then (3.1) is clearly true regardless of m.

Now let Sl be the block consisting of dangling nodes (Sl = SD). For all i ∈ Sl,
(2.1) yields

∑
j∈Sm

P(i, j) =

⎧⎨
⎩

P(i, m) = u(m) if Sm = Sk, k ∈ SND,

∑
j∈SD

P(i, j) =
∑

j∈SD
u(j) if Sm = SD.

By lumping the dangling nodes into one block, we obtain a Markov chain with
card(SND) + 1 states compared to card(SND) + card(SD) states in the original
chain. The value card(SD) is typically several times larger than card(SND).
According to a previous block structure study [Kamvar et al. 03b], a 2001 crawl
by Stanford’s WebBase project [Hirai et al. 00] containing 290 million pages in
total has only 70 million nondangling pages. The lumped chain is irreducible
and aperiodic because its transition probability matrix is necessarily positive.
The Perron-Frobenius Theorem guarantees the existence of a unique limiting
distribution. The latter is a vector with card(SND)+1 elements: The card(SND)
elements associated with the singleton blocks equal the limiting probabilities of
the dangling nodes that one would have gotten under the standard PageRank
algorithm. (This follows from Propositions 3.2 and 3.3: since the lumped chain
describes exactly the block-level dynamics of the original chain, the limiting
probabilities associated with the singleton blocks in the lumped chain must equal
the limiting probabilities associated with the nondangling nodes in the original
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chain that make up the singleton blocks.) This corresponds to the first stage of
our algorithm.

At this point we need only the limiting probabilities associated with the dan-
gling nodes to complete the PageRank vector. In the second stage of our al-
gorithm, we use state aggregation to combine the nondangling nodes into one
block while having each dangling node as its own block. The limiting distribu-
tion of the aggregated chain is then calculated. It is a card(SD) + 1 vector, with
card(SD) of the elements identical to what one would have gotten for the dan-
gling nodes under the standard PageRank algorithm. The complete PageRank
vector is thus obtained. A critical step here is that in aggregating the nondan-
gling nodes, the nondangling nodes need to be weighted using the (block-level)
limiting distribution from the first stage. We now prove this.

Proposition 3.4. Suppose that M ∈ Rn×n is the transition probability matrix for an
irreducible and aperiodic Markov chain and that we know p < n elements of its
limiting distribution ς. Without loss of generality, assume that these are the first
p elements of ς and let M and ς be partitioned accordingly:

M =
( p n − p

p M11 M12

n − p M21 M22

)
and ς =

[
ςp

ςn−p

]
.

If

MA =

( 1 n − p

1 ςT
p

ςT
p 1M111

ςT
p

ςT
p 1M12

n − p M211 M22

)
,

then the last (n − p) elements of the limiting distribution of MA give ςn−p.

Proof. From the stationarity equation for M, i.e., ςT = ςTM, we get

ςT
p = ςT

p M11 + ςT
n−pM21,

ςT
n−p = ςT

p M12 + ςT
n−pM22.

Because M is irreducible and aperiodic, ς is positive and MA is irreducible
and aperiodic. Take �T =

(
ςp

T 1 ςT
n−p

)
. Observe that

�TMA =
(
(ςT

p M11 + ςT
n−pM21)1 ςT

p M12 + ςT
n−pM22

)
=

(
ςT

p 1 ςT
n−p

)
= �T .

That is, � satisfies the stationarity equation for MA and is thus the unique
limiting distribution for MA.
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We combine Propositions 3.2 and 3.4 into the following theorem.

Theorem 3.5. Suppose that M ∈ R
n×n is the transition probability matrix for an

irreducible and aperiodic Markov chain that has a lumpable subset of n−p states,
i.e., the chain is lumpable with respect to the partition that these n−p states are
lumped into one block and the remaining p states are each its own block. Without
loss of generality, we assume that states are reordered as follows:

M =
( p n − p

p M11 M12

n − p M21 M22

)
.

Suppose that the limiting distribution for M is ς =
[

ςp

ςn−p

]
. Then,

(a) The first p elements of the limiting distribution of the lumped chain ML

give ςp;

(b) supposing we form an aggregated chain MA using ςp from above, then the
last n − p elements of the limiting distribution of MA give ςn−p.

In other words, solving for the limiting distributions of ML and MA yields the
limiting distribution ς =

[
ςp

ςn−p

]
for M.

Proof. Because ML describes the dynamics of M at the block level (Proposition
3.2), the first p elements of the limiting distribution for ML must describe the
limiting probabilities of visiting the first p blocks. Since these blocks are just
the first p states of M, their limiting probabilities are ςp. This proves the first
statement. The second statement follows from Proposition 3.4.

Note that Proposition 3.3 says that P satisfies the hypothesis of Theorem 3.5.
Therefore, the “sequential lumping and aggregation” described in the theorem
can be used to calculate the limiting distribution of P. This is the basis for using
the two-stage algorithm to compute the PageRank vector.

Remarks. (1) Previously, lumping and state aggregation were thought of as unre-
lated techniques for state space reduction. Theorem 3.5 shows that by using
these two methods sequentially, one can calculate the limiting probabilities for
complementary regions of the state space; this is generally applicable so long as
the Markov chain is irreducible and aperiodic and has a lumpable subset. To
our knowledge, this is the first paper to make that observation. (2) The concept
is clearly generalizable. If the Markov chain has multiple lumpable subsets of
states, one can lump and aggregate different subsets sequentially so as to calcu-
late the limiting probabilities one subset at a time; Propositions 3.2 and 3.4 are
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sufficiently general for this purpose. Our multistage extensions in Section 8 are
examples that make repeated applications of Propositions 3.2 and 3.4.

4. Two-Stage Algorithm

Having motivated the algorithm and established its probabilistic interpretation,
we now give a step-by-step description of the algorithm. To recap, the algorithm
is a two-stage process:

• STAGE1

(a) Lump the dangling nodes into one block, and construct the transition
probability matrix of the lumped chain.

(b) Compute the limiting distribution of the lumped chain. This gives us
π(k), k ∈ SND. As before, π is the PageRank vector.

• STAGE2

(c) Compute the aggregation weights, i.e., π(k)/
∑

m∈SNDπ(m), k ∈ SND.

(d) Aggregate the nondangling nodes into one block by using the weights
from (c).

(e) Compute the limiting distribution of the aggregated chain. This yields
π(k), k ∈ SD.

In this section we describe an efficient numerical implementation of the two-
stage algorithm. We emphasize three points: (1) The standard PageRank algo-
rithm is an iterative algorithm based on the power method. We derive a similar
algorithm for STAGE1. Because the latter can converge in as many or fewer iter-
ations than the standard PageRank algorithm and because the lumped chain is
smaller and has fewer nonzero elements than the original chain, our algorithm is
significantly faster. (2) The aggregated chain in STAGE2 has a special structure
allowing its limiting distribution to be quickly “extracted,” which we describe in
greater detail later. This makes the amount of work for STAGE2 quite negligible
in the overall scheme of things. (3) Our implementation exploits sparsity when-
ever possible, and no dense matrices are ever formed or used. Here we focus on
describing the steps involved; the proofs are deferred until the next section. For
simplicity, we assume, without loss of generality, that SND = {1, 2, ..., K} and
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SD = {K + 1, K + 2, ..., N}; P and u can be partitioned accordingly as

P =
( K N − K

K P11 P12

N − K P21 P22

)
=
(

P11 P12

1N−KuT
K uT

K

)
(4.1)

and

u =
[

uK

uN−K

]
.

4.1. STAGE1

The (K + 1)-by-(K + 1) transition probability matrix for the lumped chain is
given by

P(1) =
( K 1

K P11 P121
1 uT

K uT
N−K1

)
.

Let x ∈ R(K+1)×1 be an arbitrary probability distribution. We implement
xT P(1) (which would have been a dense vector-matrix multiplication) as a sparse
vector-matrix multiplication plus a vector-vector addition:

xT P(1) = cx(1 : K)T P̃(1) + (1 − c + cx(K + 1)) ũT , (4.2)

where

P̃(1)(i, :) =

(
G(i, 1 : K)∑N

l=1 G(i, l)
1 −

∑K
l=1 G(i, l)∑N
l=1 G(i, l)

)
for 1 ≤ i ≤ K, (4.3)

ũ =
(

uK

1 − α

)
, (4.4)

and α = uT
K1. Note that P̃(1) is K-by-(K + 1) and has different dimensions

from P(1). Equation (4.2) requires only O(K) operations. STAGE1 is a version
of the power method modified to incorporate (4.2), as seen in Algorithm 2.

STAGE1 converges to the limiting distribution of P(1) and yields K compo-
nents of the PageRank vector. Between the two stages, STAGE1 takes up most
of the computing time. Note that P(1) is just the upper left part of P plus a
column and a row. Working with P(1), therefore, requires much less work than
with P. The speed-up factor is related to the ratio K

N as well as the distribution
of nonzero elements within P.
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Algorithm 2. (STAGE1.)

Form P̃(1) and ũ via (4.3) and (4.4).
Select y ∈ R(K+1),y ≥ 0, ||y||1 = 1;
δ = ||y − x||1;
while δ ≥ ε do

x = y ;
yT = cx(1 : K)T P̃(1) + (1 − c + cx(K + 1)) ũT ;
δ = ||y − x||1;

end

4.2. STAGE2

The transition probability matrix for the aggregated chain is

P(2) =
( 1 N − K

1 ηT P111 ηT P12

N − K α1N−K 1N−KuT
K

)
,

where

η(k) =
π(k)∑K

m=1 π(m)
, k = 1, 2, . . . , K. (4.5)

Note that P(2) is a rank-two matrix—all rows starting from the second row are
identical. For an arbitrary probability distribution x ∈ R(N−K+1)×1, we have

xTP(2) = cx(1)
(
β wT

)
+ (1 − cx(1))

(
α uT

N−K

)
,

where

wT =
K∑

i=1

η(i)
G(i, K + 1 : N)∑N

l=1 G(i, l)
, (4.6)

β = 1 − wT1. (4.7)

Here, the vector-matrix multiplication is replaced by the summation of two vec-
tors.

Whereas many iterations are needed for STAGE1 to converge, STAGE2 is
guaranteed to terminate quickly. This is because P(2) is a rank-two matrix
and the simplicity of its eigenvalue system allows the limiting distribution to be
quickly extracted if it is not yet available after three power steps. The extraction
is by means of the Aitken extrapolation [Kamvar et al. 03c]. In Algorithm 3, we
state the algorithm while a formal proof is deferred to Section 5.
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Algorithm 3. (STAGE2.)
Compute η via (4.5).
Form w and β via (4.6) and (4.7).
Select x(0) ∈ R(N−K+1),x(0) ≥ 0, ||x(0)||1 = 1;
for i = 1 : 3 do(

x(i)
)T

= cx(i−1)(1)
(
β wT

)
+
(
1 − cx(i−1)(1)

) (
α uT

N−K

)
;

end
if ||x(3) − x(2)||1 < ε then

z = x(3);
else

/* Aitken extrapolation */
for i = 1 : (N − K + 1) do

v(i) = (x(2)(i)−x(1)(i))2

x(3)(i)−2x(2)(i)+x(1)(i)
;

end
z = x(1) − v;

end

Typically, STAGE1 can take about 100 iterations to converge. The precise
number of iterations needed depends on c (see [Haveliwala and Kamvar 03]).
Because STAGE2 converges in 3 iterations and each iteration is just the summa-
tion of two vectors, it requires much less work. Also, because P(2) is rank-two,
only two vectors need to be stored.

5. Convergence Analysis

We address two issues. First, we prove that STAGE1 converges in as many or
fewer iterations than the standard PageRank algorithm. Then, we show that
P(2), being rank-two, allows us to extract the limiting distribution with Aitken
extrapolation.

5.1. Convergence of STAGE1

Our strategy is to show that regardless of what initial distribution is used with
the standard PageRank algorithm, we can always construct a related initial
distribution for STAGE1 so that STAGE1 converges in as many or fewer iter-
ations. We begin with a lemma. The lemma says that if we initialize stan-
dard PageRank and STAGE1 with state-level and block-level versions of the
same underlying limiting distribution, after each iteration the distributions pro-
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duced by the two algorithms will be state-level and block-level versions of each
other.

Lemma 5.1. Let x(0) ∈ RN×1 be given. Define

(y(0))T = (x(0))T

(
I 0
0 1N−K

)
,

where I is the K-by-K identity matrix and 0 is an (N−K)-by-K matrix of zeros.
Consider two sequences of iterates:

(x(l+1))T = (x(l))T P,

(y(l+1))T = (y(l))T P(1),

for l = 0, 1, 2, .... Then,

(y(l))T = (x(l))T

(
I 0
0 eN−K

)

for l = 0, 1, 2, ....

Proof. The claim is true for l = 0 by assumption. Now, suppose that the claim is
true for l = l0, then

(y(l0))T P(1) = (x(l0))T

(
I 0
0 1N−K

)
P(1)

= (x(l0))T

(
I 0
0 1N−K

)(
P11 P12

uT
K uT

K

)(
I 0
0 1N−K

)

= (x(l0))TP
(

I 0
0 1N−K

)

= (x(l0+1))T

(
I 0
0 1N−K

)
.

Because (y(l0))T P(1) = (y(l0+1))T , the claim must also hold for l = l0 + 1.
Induction completes the proof.

This result is not surprising given Proposition 3.2: P(1) captures exactly the
block-level dynamics of P. The following proposition says successive block-level
distributions cannot differ by more than the difference between successive state-
level distributions.
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Figure 1. Error between successive iterates after ten iterations (web graph =
US2004).

Proposition 5.2. Let x(l) and y(l) be defined as above. Then,

||y(l+1) − y(l)||1 ≤ ||x(l+1) − x(l)||1

for l = 0, 1, 2, ....

Proof. Following Lemma 5.1,

||y(l+1) − y(l)||1 − ||x(l+1) − x(l)||1

= |y(l+1)(K + 1) − y(l)(K + 1)| −
N∑

i=K+1

|x(l+1)(i) − x(l)(i)|

= |
N∑

i=K+1

x(l+1)(i) − x(l)(i)| −
N∑

i=K+1

|x(l+1)(i) − x(l)(i)|

≤ 0.

Figure 1 gives a graphical example. The difference between successive iterates
from STAGE1 is dominated by that of successive iterates from the standard
PageRank algorithm. As a result, when the two algorithms use the same ε as
the termination criterion, STAGE1 will always converge in the same or fewer
iterations.
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5.2. Convergence of STAGE2

To show that STAGE2 computes the unique limiting distribution of P(2), i.e.,
the left eigenvector associated with the eigenvalue of one, we begin with a lemma
that describes the eigenvalue system of P(2).

Lemma 5.3. For brevity, we denote M = (N − K + 1). Thus, P(2) is M -by-M .

(a) One is the dominant eigenvalue of P(2); its algebraic and geometric mul-
tiplicities are both one. Zero is also an eigenvalue and has a geometric
multiplicity of (M − 2).

(b) If P(2) does not have a third distinct eigenvalue, then

xT P(2)P(2) = xT P(2)P(2)P(2)

for any x ∈ RM×1 (i.e., in three iterations the sequence converges to either
zero or the left dominant eigenvector).

Proof. The matrix P(2) is positive and rank-two, and its rows sum to one. The
Perron-Frobenius Theorem (see [Berman and Plemmons 94, pp. 27–32] or [Horn
and Johnson 85, pp. 508–511]) establishes the first claim.

Next, suppose that P(2) does not have a third distinct eigenvalue. The al-
gebraic multiplicity of the eigenvalue zero is necessarily (M − 1). The Jordan
canonical form of P(2) establishes the second claim. (See [Golub and Loan 96,
p. 317] or [Horn and Johnson 85, pp. 121–131].)

The next proposition can be summarized as follows: Consider an arbitrary
vector repeatedly multiplied by P(2). If convergence does not occur after three
iterations, P(2) must have a third eigenvalue between one and zero in modulus,
and all subsequent iterates are contained in the span of the first and second
eigenvectors.

Proposition 5.4. Let x ∈ RM×1 be arbitrary. If

xT P(2)P(2) �= xT P(2)P(2)P(2),

then

(a) there exists another eigenvalue λ of P(2) such that 0 < |λ| < 1;
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(b) for l = 1, 2, ...,

xT
(
P(2)

)l

= c1vT
1 + c2λ

lvT
2 ,

where
vT

1 P(2) = vT
1 ,

vT
2 P(2) = λvT

2 ,

and c1 and c2 are constants.

Proof. The first statement follows directly from Lemma 5.3. An examination of
the geometric multiplicities of P(2) reveals the existence of a full set of eigenvec-
tors that span RM×1. Writing x as a linear combination of these eigenvectors
establishes the second statement.

When the assumption of Proposition 5.4 holds, part (b) of the proposition says
that we can obtain the dominant eigenvector by subtracting away the second
eigenvector. This is exactly what Aitken extrapolation does [Kamvar et al. 03c].

6. Numerical Experiments

We conducted numerical experiments on Stanford’s “Hedge” cluster consist-
ing of Sun Fire X4100 systems each with two 2.8 GHz AMD Opteron pro-
cessors and 8 GB of RAM running 64-bit Linux. The algorithms were im-
plemented in C and compiled as MATLAB-callable mex functions. This ap-
proach gave us the speed, efficiency, and low-level control of C within the graph-
ical and interactive environment of MATLAB. Some of our code was modi-
fied from the implementation of David Gleich (Institute for Computational and
Mathematical Engineering, Stanford University), which is publicly available at
http://www.stanford.edu/~dgleich/. Summary statistics of the web graphs used
are given in Table 1. The data US2004 came from a July 2004 crawl of the
websites of 14 American universities, and AU2006 came from an April 2006
crawl of all 38 Australian universities; both web graphs are available from the
Statistical Cybermetrics Research Group at the University of Wolverhampton
(http://cybermetrics.wlv.ac.uk/). Both graphs contained four million or more
webpages and 24 million links and were representative of the typical crawl in
terms of the ratio of dangling to nondangling nodes (three to five is typical)
and the distribution of links. The data WIKI2005 came from a November
2005 crawl of Wikipedia with all non-article pages removed by Gleich. This
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N K nnz(P̃) nnz(P̃(1)) nnz(u) nnz(ũ)
US2004 6,411,252 1,585,057 23,883,438 14,932,701 6,411,252 1,585,058
AU2006 3,907,649 1,225,553 23,782,896 18,272,067 3,907,649 1,225,554

WIKI2005 1,634,989 1,562,432 19,753,078 19,998,918 1,634,989 1,562,433

Table 1. Web graphs used in the experiments: nnz indicates the number of
nonzero elements.

latter web graph had an unusually low fraction of dangling nodes, thus al-
lowing us to examine the algorithm’s performance under extreme cases. (See
Table 1.)

We conducted three numerical experiments, the results of which are provided
below. The first experiment verified some of the convergence properties we
proved earlier. The second experiment tested the speed of the two-stage al-
gorithm relative to the standard PageRank algorithm. Lastly, we experimented
with the embedding of other acceleration methods within the two-stage algo-
rithm.

6.1. Convergence Behavior

We tested the convergence of our algorithm against the standard PageRank
algorithm. Both algorithms were set to a convergence tolerance (ε) of 10−8.

First, we tested if our algorithm converged at all. On all three webgraphs
the algorithm converged readily to the desired tolerance. We found the L1 error
between successive iterates of standard PageRank to dominate that of STAGE1
(Figure 1), exactly as Proposition 5.2 predicted; STAGE1 always converged in
as many and occasionally fewer iterations than did standard PageRank. The
constant c affected the convergence of both algorithms in the same way—both
algorithms converged slower when c was closer to one. This is because the second
eigenvalue of P is a function of c [Haveliwala and Kamvar 03].

In addition, we tested whether our algorithm converged to the right vector.
Theorem 3.5 assumed the use of the exact solution from STAGE1 in constructing
the STAGE2 matrix. In practice, STAGE1 is terminated finitely, and this could
impact the accuracy of the solution from STAGE2.

In theory, we could reduce the inaccuracy in STAGE1’s solution to an arbitrar-
ily low level by setting the tolerance parameter ε to machine precision. Then, the
STAGE2 matrix would be as “exact” as floating point storage would permit—
that is, there would not be any difference between using this finitely-terminated
solution from STAGE1 or the “exact” solution, because in either case the round-
ing error occurring from the storage of the STAGE2 matrix would mask whatever
additional accuracy the “exact” solution would provide. Fortunately, we found
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First K Last (N − K)
0.99 1.6828 × 10−10 5.4302 × 10−9

0.95 3.3834 × 10−11 4.6170 × 10−9

US2004 c = 0.85 1.0224 × 10−11 3.4593 × 10−9

0.99 7.2604 × 10−11 3.1710 × 10−9

0.95 1.5937 × 10−11 3.2452 × 10−9

AU2006 c = 0.85 5.2734 × 10−12 2.3439 × 10−9

0.99 4.7914 × 10−11 3.7866 × 10−11

0.95 2.6340 × 10−11 3.4605 × 10−11

WIKI2005 c = 0.85 1.9982 × 10−11 2.6271 × 10−11

Table 2. The L1 error between the first K and last (N − K) components of
solutions computed by the two-stage algorithm and the standard PageRank al-
gorithm.

that we did not need to do this. Using an ε of 10−8 (for both STAGE1 and
standard PageRank), we measured the L1 error between solutions from the two
algorithms. The results are provided in Table 2. For all three webgraphs and
all values of c, the two solutions were less than ε = 10−8 apart. It’s interesting
to note that, in general, the error arising from STAGE1 tended to be smaller
than the error arising from STAGE2, which in turn tended to be less than ε.
The first part can be related to Lemma 5.1: when STAGE1 and the standard
PageRank algorithm converged after the same number of iterations, the final so-
lutions from the two algorithms are, in fact, block-level and state-level versions
of the same distribution. As such, the two solutions tended to be very close to
each other (save for rounding errors). The second part was due to this proximity
carrying over to STAGE2, yielding an aggregated matrix very close to the exact
aggregated matrix. Consequently, the error arising from STAGE2 also remained
small.

In short, the two-stage algorithm properly converged to the same solution as
in standard PageRank.

6.2. Computing Time

On all three web graphs our algorithm converged faster than PageRank. Gen-
erally, the speed-up can be related to two factors. The ratio of nondangling to
dangling nodes, i.e., K

N , determines the relative dimensionality of the vector op-
erations: when K

N is small, the vectors involved in the addition, multiplication,
and norm-taking steps are all much smaller in STAGE1 than in the standard
algorithm. On the other hand, the distribution of nonzero elements in P̃ affects
the number of nonzero elements that will ultimately be in P̃(1) and thus the
matrix operations. The overall speed-up is thus related to K

N and nnz(P̃(1))

nnz(P̃)
.
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Figure 2. Computing time for two typical web graphs. The base section of each
2STAGE bar represents the total time spent on Steps (a), (c), (d), and (e) (see
Section 4); the remaining length indicates the computing time for the limiting
distribution of P(1) (Step (b)).

US2004 had K
N = 0.25 and nnz(P̃(1))

nnz(P̃)
= 0.63; AU2006 had K

N = 0.31 and
nnz(P̃(1))

nnz(P̃)
= 0.75. As shown in Figure 2, the speed-up for these two matrices

were in the two- to threefold range, which was consistent with our expectations.
The speed-up also depended on c: when c was far from one, the fixed overhead
associated with the algorithm (Steps (a), (c), (d), and (e) in Section 4) became
relatively significant and limited the overall speed-up.

In short, the amount of speed-up depended on the web graph used as well as
c. With some web graphs, we saw a speed-up of as much as five to seven times.
In the rare case when the graph had very few dangling nodes, the algorithm
produced little advantage. Our experimentation with WIKI2006 (K

N = 0.96 and
nnz(P̃(1))

nnz(P̃)
= 0.98) showed a speed-up that was either negligible or very moderate

(10%), depending on the value of c.
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PR QE GS BiCGSTAB
0.99 2.5 3.0 1.7 2.3
0.95 2.7 3.0 1.3 3.8

US2004 c = 0.85 2.4 2.2 1.1 3.6
0.99 2.2 1.8 1.1 1.9
0.95 1.7 1.2 (0.8) 2.3

AU2006 c = 0.85 1.5 1.1 (0.9) 2.6
0.99 1.1 1.3 1.4 1.1
0.95 1.1 1.1 1.0 (0.9)

WIKI2005 c = 0.85 1.0 1.0 1.0 1.0

Table 3. Additional factor of speed-up when the two-stage speed-up was applied.
Very occasionally the speed-up did not offset the overhead of the algorithm (Steps
(a), (c), (d), and (e)), leading to an overall slowdown.

6.3. Embedding Other Acceleration Methods

One may apply to STAGE1 any acceleration method devised for the standard
PageRank algorithm. We call the procedure of accelerating STAGE1 embed-
ding. We considered the embedding of three acceleration methods: quadratic
extrapolation [Kamvar et al. 03c], Gauss-Seidel [Arasu et al. 02], and the bicon-
jugate gradient stable algorithm [Gleich and Zhukov 05, Gleich et al. 04]. Results
are summarized in Tables 3 and 4. We abbreviate these acceleration methods
QE, GS, and BiCGSTAB, respectively; standard PageRank and the two-stage
algorithm were labeled PR and 2S, respectively.

Table 3 shows the additional speed-up the embedding of an acceleration method
yielded compared to a direct application of that acceleration method alone.
Roughly speaking, GS and BiCGSTAB benefited from embedding the most,
although the gain depended on the web graph used and c. Very occasionally, the
additional speed-up did not offset the overhead of embedding (Steps (a), (c), (d),

Algorithm Speed-up Iterations PR Iterations
0.99 2S+GS 13.5 210 1,103
0.95 2S+GS 7.1 60 230

US2004 c = 0.85 2S+GS 4.0 28 75
0.99 2S+GS 5.5 302 1,100
0.95 2S+GS 4.3 85 234

AU2006 c = 0.85 2S+GS 2.9 34 78
0.99 2S+BiCGSTAB 2.0 145 847
0.95 2S+QE 1.2 150 167

WIKI2005 c = 0.85 2S+QE 1.1 49 55

Table 4. The fastest among the eight possible algorithms: PR, QE, GS,
BiCGSTAB, 2S, 2S+QE, 2S+GS, and 2S+BiCGSTAB. The speed-up factor is
with respect to standard PageRank.
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and (e) in Section 4), leading to a slight overall slowdown. Table 4 shows the
fastest possible algorithm to solve each PageRank problem, i.e., the algorithm
with the greatest cumulative speed-up. Overall, some type of embedding was
always best, although the optimal embedding scheme could vary. A safe choice
seemed to be the embedding of GS, which yielded a cumulative speed-up as high
as 7.1 to 13.5 times. Please note that our implementations for QE, GS, and
BiCGSTAB were not parallelized, which could change things.

We also verified (results not shown) that all embedding schemes computed a
solution that was within ε of the solution computed by standard PageRank.

7. Dangling Nodes

A webpage is dangling if it has no outlinks. Dangling nodes are important for
several reasons:

• Most webpages are dangling. Eiron et al. reported that dangling nodes can
outnumber the nondanglings nodes by almost four to one [Eiron et al. 04].

• Dangling nodes contain much information about the structure of the web,
i.e., all the information represented in P12 arises from dangling nodes. In
our datasets, P12 often contained half of all the links.

• Dangling nodes tend to occur in the “frontier” of the web where things are
changing most rapidly [Eiron et al. 04].

• Dangling nodes can have a high ranking. Eiron et al. reported many of
the highest ranked webpages are dangling [Eiron et al. 04].

• Certain types of URLs are naturally dangling. These include downloadable
files such as PDFs, images, MP3s, movies, and so on.

• Outgoing traffic from dangling nodes is modeled by a personalization vec-
tor: the PageRank model says that when there are no outlinks, the user
will move to a random page based on her preferences, i.e., by directly en-
tering a URL in the browser. This is quite intuitive and recognizes the
fact that internet traffic is a function of both structure (links) and user
behavior (preferences).

Our algorithm provides an efficient way for handling dangling nodes. Previ-
ously, it was suggested [Page et al. 98] that dangling nodes could be handled as
follows: begin by applying the standard PageRank algorithm to P11 alone; upon
convergence, take the limiting distribution, pad it with additional elements, and
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use that as the initial distribution for P. The belief was that P would now con-
verge in relatively few iterations. While this trick works well in many practical
situations, it can fail in more extreme cases when aggressive personalization is
used. (A small example is provided in the appendix.) Indeed, this is not the
probabilistically correct way of handling dangling nodes. To see why, we appeal
to the theory of stochastic complementation [Meyer 89]. Using the same partition
as in (4.1), the theory says the first K components of P’s limiting distribution,
when normalized, equal the limiting distribution of

S11 = P11 + P12(I − P22)−1P21.

Sometimes S11 is also known as the stochastic complement of P11. The trick de-
scribed above amounts to assuming that S11 and P11 have the same (or similar)
limiting distributions, which is generally incorrect.

So what would be a sufficient condition for the trick to work? Note that if P
was a nearly completely decomposable (NCD) matrix with respect to this parti-
tion (which it isn’t), P21 and P12 would be close to zero, and S11 and P11 would
be nearly identical; in that case, the trick would work very well. In any event, we
believe our algorithm has rendered the trick unnecessary: Our algorithm handles
dangling nodes in a probabilistically correct manner (see Propositions 3.2, 3.3,
3.4, and 5.4) while achieving the desired speed-up.

Note that the property of a matrix being NCD, like lumpability, refers to a
specific partition. While P is not NCD with respect to the partition in question,
i.e., dangling versus nondangling nodes, it is NCD with respect to the partition
that the rows and columns of P are symmetrically permuted by the order of the
webpage’s host [Kamvar et al. 03b].

8. Multistage Generalizations

Our algorithm takes on a Markov chain (i.e., probabilistic) point of view. Nev-
ertheless, there is an alternative, nonprobabilistic approach that emphasizes the
algebraic structure. For example, the reduction through lumping can be equiv-
alently derived by means of the Neumann expansion. (We’re indebted to Amy
Langville for pointing this out; see also [Langville and Meyer 06b].)

Nevertheless, the Markov chain interpretation is intuitive and easily general-
ized. The two-stage algorithm can be viewed as sequentially alternating between
complementary parts of the state space. This “divide-and-conquer” approach can
also make use of a multistage algorithm. Here we mention two such variants of
our algorithm based on repeated applications of Propositions 3.2 and 3.4. We
leave it to future works to explore the numerical aspects.
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8.1. Computing PageRank in Three Stages

We give a three-stage example for computing the PageRank vector.
As before, we have K nondangling nodes and N−K dangling nodes, for a total

of N nodes. Assume that among the nondangling nodes, K2 nodes point only to
the dangling nodes. We will refer to these nodes as being weakly dangling. Thus,
we have N − K dangling nodes, K2 weakly dangling nodes, and K1 = K − K2
nodes that are neither. We denote these subsets by SD, S2, and S1, respectively.
(Note that S1 ∪ S2 = SND.) Matrix P11 in (4.1) can be symmetrically permuted
so that S1 occupies the leading part of P11 and S2 occupies the bottom:

P11 =
( K1 K2

K1 P11,11 P11,12

K2 (1 − c)1K2uT
K1 (1 − c)1K2uT

K2

)
.

A three-stage algorithm that successively collapses pairs of subsets can be used
to compute the PageRank vector.

First, by lumping we can combine SD and S2 each into a block. (Check that
once SD is lumped, S2 becomes lumpable.) This gives rise to a transition prob-
ability matrix that is (K1 + 2)-by-(K1 + 2). The limiting distribution can be
computed, as before, by the power method. Upon convergence, π(i) for i ∈ S1,∑

i∈S2
π(i), and

∑
i∈SD

π(i) are obtained (Proposition 3.2). This is Stage 1.
In Stage 2, we consider a second Markov chain where we first lump SD into

one block (which we know from Proposition 3.3 is lumpable) before aggregating
this block with S1 to yield a single block. In doing so, we use π(i), i ∈ S1, and∑

i∈SD
π(i) that we obtained in Stage 1 to calculate the aggregation weights.

The resulting matrix is (K2 + 1)-by-(K2 + 1) and rank-two. We know how to
calculate its limiting distribution already. We now have π(i) for i ∈ SND = S1∪S2

(Proposition 3.4).
In Stage 3, our problem looks identical to the beginning of the second stage

in the original two-stage algorithm. Once this stage is completed, we have the
PageRank vector.

8.2. Differentiating Webpages by Class

The personalization vector has traditionally been used to model the preferences
of the surfer. We may use multiple such vectors in a multistage extension of
our algorithm to enable customization with respect to classes of webpages. The
idea is as follows. In the PageRank model, each row of P amounts to transition
probabilities out of the corresponding page. Each row, therefore, is really a
conditional probability distribution parameterized by a page index. In the same
vein, we can replace the personalization vector with a collection of vectors, each
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one representing the transition probabilities out of a corresponding webpage class.
(Here, parameterization is with respect to a class index m ∈ M .) Instead of
inserting the same personalization vector everywhere, we insert different vectors
for different classes; ordinary PageRank is the special case when M = 1. We
will call these vectors personalized class vectors. (“Personalized” because we
can still use a different set of vectors for different individuals.) PageRank as a
model for web traffic now has three components: a structural component (the
link structure), a component for content (webpage class), and a component for
surfer behavior (surfer preferences).

There are natural ways to form class associations between webpages. Possible
associations are by domain, host, topic, language, or file type. A good example
is association by language. Webpages belonging to the same language class are
likely to have more traffic among themselves. In that case, one may model
within-language traffic with high probabilities and between-language traffic with
low probabilities.

We now describe a multistage algorithm for computing the PageRank vector
under this model. Suppose that webpages are divided into M classes, which we
denote as C1, C2, . . . , CM . In the permuted form of (4.1), what used to be
the rank-one portion in the bottom of the matrix is now rank-M . We denote
dangling nodes belonging to class m by (Cm ∩ SD).

In Stage 1, we lump each (Cm ∩ SD) into a single block. The lumpability here
is trivially verifiable and completely analogous to Proposition 3.3. The resulting
matrix is (K + M)-by-(K + M), and we can compute its limiting distribution
by the power method. Upon convergence, we obtain π(i) for i ∈ SND and∑

i∈(Cm∩SD) π(i) for m = 1, 2, . . . , M . This is assured by Proposition 3.2.
For Stage n + 1, we work with a Markov chain where (Cm ∩ SD), m �= n, are

each lumped into one block. The resulting M − 1 blocks are then aggregated
with SND to form a single block. The weights here are calculated from π(i) for
i ∈ SND and

∑
i∈(Cm∩SD) π(i) for m �= n, which we have from Stage 1. We thus

obtain a (card(Cn ∩SD)+1)-by-(card(Cn∩SD)+1) matrix that is rank-two. Its
limiting distribution can be very efficiently computed by a procedure similar to
Algorithm 3. This yields π(i), i ∈ (Cn ∩ SD), as assured by Proposition 3.4.

The entire PageRank vector is available after (M + 1) stages.

9. Concluding Remarks

We presented a two-stage algorithm for computing the PageRank vector. In the
first stage, we focus on a Markov chain where dangling nodes are lumped into
one block; in the second stage, we aggregate the nondangling nodes. Limiting
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distributions of these two chains give the PageRank vector. The bulk of the
work is in computing the lumped chain. Numerical experimentation showed that
the algorithm can finish in a fraction of the time than what’s normally required.
Furthermore, only a part of the transition probability matrix is explicitly formed
at any given time. On machines where memory is limited, the performance gap
will likely widen. We also examined the practice of excluding dangling nodes
until the last stages of computation and found that it could fail in extreme cases.
Our algorithm achieves the same desired speed-up while being probabilistically
correct.

The algorithm has a divide-and-conquer theme that can be generalized. We
gave two examples. In the first example, we showed that the PageRank vector
could be computed using a three-stage algorithm. In the second example, we
applied a multistage algorithm to a generalized version of the PageRank model
where the personalization vector was replaced with a collection of personalized
class vectors. In practice, the class vectors can be used to model the contribution
of a webpage’s transition probabilities associated with some underlying class of
webpages. The resulting model allows greater versatility in the modeling of web
traffic.

10. Appendix

As this example demonstrates, including the dangling nodes only during the last
stages of computation can fail in extreme cases. Take as the link matrix

G =

⎛
⎜⎜⎝

0 1 1 1
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Here, K = 2 and N = 4. Take c = 0.85 and uT = ((1 − 3a) a a a), where
a = 43

138 . Thus,

P =

⎛
⎜⎜⎝

0.0098 0.3301 0.3301 0.3301
0.8598 0.0467 0.0467 0.0467
0.0652 0.3116 0.3116 0.3116
0.0652 0.3116 0.3116 0.3116

⎞
⎟⎟⎠ .

It can be shown that the limiting distribution for the leading 2-by-2 submatrix
of P is (0.61 0.39) while for the entire matrix it is (0.25 0.25 0.25 0.25) (i.e.,
the leading 2-by-2 submatrix yields a worse starting iterate than the uniform
distribution).
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