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In-Degree and PageRank:
Why Do They Follow Similar
Power Laws?
N. Litvak, W. R. W. Scheinhardt, and Y. Volkovich

Abstract. PageRank is a popularity measure designed by Google to rank Web pages.
Experiments confirm that PageRank values obey a power law with the same exponent
as In-Degree values. This paper presents a novel mathematical model that explains
this phenomenon. The relation between PageRank and In-Degree is modeled through
a stochastic equation, which is inspired by the original definition of PageRank, and is
analogous to the well-known distributional identity for the busy period in the M/G/1
queue. Further, we employ the theory of regular variation and Tauberian theorems to
prove analytically that the tail distributions of PageRank and In-Degree differ only by
a multiplicative constant, for which we derive a closed-form expression. Our analytical
results are in good agreement with experimental data.

1. Introduction

In this paper we study the relation between the probability distributions of the
PageRank and the In-Degree of a randomly selected Web page. The notion of
PageRank was introduced by Google in order to characterize the popularity of
Web pages numerically. The original description of PageRank presented in [Brin
and Page 98] is as follows:

PR(i) = c
∑
j→i

1
dj

PR(j) + (1 − c), (1.1)
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where PR(i) is the PageRank of page i, dj is the number of outgoing links of page
j, the sum is taken over all pages j that link to page i, and c is the “damping
factor,” which is some constant between 0 and 1. The In-Degree of a Web page
denotes the number of incoming hyperlinks to that page. From Equation (1.1) it
is clear that the PageRank of a page depends on its In-Degree and the importance
(i.e., PageRanks) of the pages that link to it.

We focus in particular on the tail asymptotics for PageRank and its con-
nection to In-Degree. By tail of the PageRank distribution we mean the frac-
tion of pages P(PR > x) having PageRank greater than x, where x is large.
Thus, we are concerned only with pages of high ranking. A common way
to analyze tail behavior is to find an asymptotic expression p(x) such that
P(PR > x)/p(x) → 1 as x → ∞. In this case, p(x) and P(PR > x) are asymp-
totically similar, and thus we can approximate P(PR > x) by p(x) for x large
enough.

Pandurangan et al. [Pandurangan et al. 02] observed that the tails of PageRank
and In-Degree distributions for Web data seem to follow power laws with the
same exponent. Loosely speaking, a power law with exponent α means that
the probability that the random variable takes values greater than some large
number x is approximately proportional to x−α. Formally, this can be mod-
eled as asymptotic similarity of PageRank and In-Degree tail distributions to
some power law functions. It turns out that, for both PageRank and In-Degree
distributions, the power law exponent α is about 1.1.

Recent extensive experiments [Donato et al. 04] and [Fortunato et al. 08] con-
firmed the similarity in tail behavior observed in [Pandurangan et al. 02]. Bec-
chetti and Castillo extensively investigated the influence of the damping factor c

on the power law behavior of PageRank [Becchetti and Castillo 06]. They have
shown that the PageRank of the top 10% of the nodes always follows a power law
with the same exponent independent of the value of the damping factor. Our
own experiments based on Web data from [Kamvar 06] are also in agreement
with [Pandurangan et al. 02] (see Figure 1 in Section 5.2 and the discussion
there).

Obviously, Equation (1.1) suggests that PageRank and In-Degree are inti-
mately related, but this formula by itself does not explain the observed simila-
rity in tail behavior. Furthermore, the linear algebra methods that have been
commonly used in the PageRank literature [Berkhin 05, Langville and Meyer 03]
and proved to be very successful for designing efficient computational methods,
seem to be insufficient for modeling and analyzing the asymptotic properties of
the PageRank distribution.

The goal of our paper is to provide mathematical evidence for the power-
law behavior of PageRank and its relation to the In-Degree distribution. We
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propose a stochastic model to explain this relation. Our approach is in-
spired by techniques from applied probability and stochastic operations re-
search. The relation between PageRank and In-Degree is modeled through a
distributional identity analogous to the equation for the busy period in the
M/G/1 queue (see, e.g., [Robert 03]). Further, we analyze our model using
the approach employed in [De Meyer and Teugels 80] for studying the tail be-
havior of the busy period in the case where the service times are regularly
varying random variables. This fits in our research because regular variation
is, in fact, a generalization of the power law, and it has been widely used
in queueing theory to model self-similarity, long-range dependence and heavy
tails [Zwart 01]. Thus, we use the notion of regular variation to model the
power law distribution of the In-Degree. For the sake of completeness, in Sec-
tion 2 we introduce regularly varying random variables and describe their basic
properties.

To obtain the tail behavior of PageRank in our model, we use Laplace-Stieltjes
transforms and apply Tauberian theorems presented in [Bingham and Doney 74];
see also Theorem 8.1.6 in [Bingham et al. 89]. Even though our model contains
some rather rigid simplifying assumptions—the most notable being independence
between pages that link to the same page and a constant Out-Degree for all
pages—these techniques allow us to prove the similarity in tail behavior for
PageRank and In-Degree, thus suggesting that our assumptions do not touch
upon the underlying reasons for this similarity. Moreover, our analysis allows
us to derive explicitly the multiplicative constant that quantifies the difference
between PageRank and In-Degree tail behavior.

We believe that our approach is extremely promising for analyzing the
PageRank distribution and solving other problems related to the structural prop-
erties of the Web. At the end of this paper, we will briefly mention other pos-
sibilities for probabilistic analysis of the PageRank distribution. In particular,
we will provide experimental results for Growing Networks [Barabási and Al-
bert 99], and we will draw a parallel between the recent studies [Avrachenkov
and Lebedev 06, Fortunato and Flammini 06] on PageRank behavior in this class
of graph models and our present work.

2. Preliminaries

This section describes important properties of regularly varying random vari-
ables. We follow definitions and notations from [Bingham and Doney 74], [De
Meyer and Teugels 80], and [Zwart 01]. More comprehensive details can be found
in [Bingham et al. 89].
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Definition 2.1. A function V (x) is regularly varying of index α ∈ R if for every t > 0,

V (tx)
V (x)

→ tα as x → ∞.

If α = 0, then V is called slowly varying.

Definition 2.2. A function L is slowly varying if for every t > 0,

L(tx)
L(x)

→ 1 as x → ∞.

A function V (x) is regularly varying if and only if it can be written in the
form

V (x) = xαL(x),

for some slowly varying L(x).
The following lemma provides a useful bound for slowly varying functions.

Lemma 2.3. (Potter Bounds.) Let L be a slowly varying function. Then, for any fixed
A > 1, δ > 0 there exists a finite constant K > 1 such that for all x1, x2 > K,

L(x1)
L(x2)

≤ Amax

{(
x1

x2

)δ

,

(
x1

x2

)−δ
}

.

Definition 2.4. In probability theory, a random variable X is said to be regularly
varying with index α if its distribution F is such that

1 − F (x) ∼ x−αL(x) as x → ∞,

for some positive slowly varying function L(x). Here, as in the remainder of this
paper, the notation a(x) ∼ b(x) means that a(x)/b(x) → 1.

Denote by f(s) = Ee−sX , s > 0, the Laplace-Stieltjes transform of X , and let
ξn =

∫∞
0

xndF (x) be the nth moment of X . The successive moments of F can
be obtained by expanding f(s) in a series at s = 0. More precisely, we have the
following.

Lemma 2.5. The nth moment of X is finite if and only if there exist numbers ξ0 = 1
and ξ1, ..., ξn, such that

f(s) −
n∑

i=0

ξi

i!
(−s)i = o(sn) as s → 0.

In that case, ξi is the ith moment of X.
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If ξn < ∞ then we introduce the notation (n ∈ N)

fn(s) = (−1)n+1

(
f(s) −

n∑
i=0

ξi

i!
(−si)

)
. (2.1)

Remark 2.6. It follows from Lemma 2.5 that the nth moment of X is finite if and
only if there exist numbers ξ0 = 1 and ξ1, ..., ξn such that fn(s) = o(sn) as s → 0.

The following theorem establishes the relation between asymptotic behavior of
a regularly varying distribution and its Laplace-Stieltjes transform. This result
plays an essential role in our analysis.

Theorem 2.7. (Tauberian Theorem.) If n ∈ N, ξn < ∞, α ∈ (n, n + 1), then the following
are equivalent:

(i) fn(s) ∼ (−1)nΓ(1 − α)sαL(1
s ) as s → 0,

(ii) 1 − F (x) ∼ x−αL(x) as x → ∞.

Here and in the remainder of the paper we use the letter α to denote the
index of the complementary distribution function 1 − F (x) rather than that of
the density.

3. Model

In this section we introduce a model that describes the relation between
PageRank and In-Degree in the form of a stochastic equation. This model nat-
urally follows from the definition of PageRank in Equation (1.1), and is analyti-
cally tractable, thus enabling us to obtain the asymptotic behavior of PageRank.
As will become clear, we make several rather severe simplifying assumptions. Ne-
vertheless, the theoretical results of this model show a good match with observed
Web graph behavior.

3.1. Relation between In-Degree and PageRank

Our goal now is to describe the relation between PageRank and In-Degree. To
this end, we keep Equation (1.1) almost unchanged but we make several as-
sumptions. First, let R be the PageRank of a randomly chosen page. We treat
R simply as a random variable whose distribution we want to determine. Second,
we assume that the number of outgoing links d ≥ 1 is the same for each page.
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Although this assumption is not realistic, it helps us to focus on the influence of
In-Degree without considering other factors. We note, however, that the present
model allows for various generalizations. For instance, we can take into account
pages without outgoing links (dangling nodes) as will be discussed below.

Under the assumptions above, the random variable R satisfies a distributional
identity

R
d= c

N∑
j=1

1
d
Rj + (1 − c), (3.1)

where N is the In-Degree of the considered random page.
We now make the assumption that N and the Rj ’s are independent, and that

the Rj ’s have the same distribution as R itself. We note that the independence
assumption is obviously not true in general. It is also not the case, however, that
the PageRank values of the pages linking to the same page i are directly related,
so we may assume independence in this study.

The novelty of our approach is that we treat the PageRank as a random
variable that solves a certain stochastic equation. We believe that this approach
is quite natural if our goal is to explain the power law behavior of PageRank,
because the power law is merely a description of a certain class of probability
distributions.

One of the nice features of the stochastic equation (3.1) is that it has the same
form as the original formula (1.1). Thus, we may hope that our model correctly
describes the relation between In-Degree and PageRank. This is easy to verify
in the extreme (unrealistic) case when all pages have the same In-Degree d. In
this situation, the PageRanks of all pages are equal, and it is easy to see that
R ≡ 1 constitutes the unique solution of (3.1).

Note that in the present model, we can easily account for pages without out-
going links. There are different ways to deal with such nodes when defining the
ranking. We consider a classic scenario, where a dangling node is equivalent to a
node that has an outgoing link to every page in the Web. Then Equation (1.1)
becomes

PR(i) = c
∑
j→i

1
dj

PR(j) +
c

n

∑
j∈D

PR(j) + (1 − c), (3.2)

where D is the set of dangling nodes, and n is the number of pages in the Web.
Assume further that the PageRank of a random page does not depend on whether
the page is dangling. Indeed, it can be shown that the PageRank of a page cannot
be altered significantly by modifying its outgoing links [Avrachenkov and Litvak
06]. Moreover, experiments (e.g., in [Eiron et al. 04]) show that dangling nodes
are often just regular pages whose links have not been crawled. Besides, even
authentically dangling pages such as .pdf or .ps files often contain important
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information and gain high ranking independently of the fact that they do not
have outgoing links. Such independence implies, in particular, that the average
PageRank of dangling nodes is 1, and thus the fraction of the total PageRank
mass concentrated in dangling nodes, approximately equals the fraction of dan-
gling nodes p0:

p0 =
|D|
n

≈ 1
n

∑
j∈D

PR(j).

Note that in the presence of dangling nodes, the average Out-Degree of non-
dangling nodes is d(1 − p0)−1.

Now, exactly as our main stochastic equation (3.1) is analogous to (1.1), we
can also provide a stochastic equation analogous to (3.2) as follows:

R
d= c

N∑
j=1

1 − p0

d
Rj + [1 − c(1 − p0)].

Observe that this is the same stochastic equation as (3.1), only with c(1 − p0)
instead of c. Thus, the results of our current work can be applied directly after
the corresponding straightforward adjustments. To simplify notation, we will
just use c throughout the paper.

3.2. In-Degree Distribution

It is well known that the In-Degree of Web pages follows a power law. For our
analysis, however, we need a more formal description of this random variable;
thus, we suggest employing the theory of regular variation. We model the In-
Degree of a randomly chosen page as a non-negative, integer, regularly varying
random variable, distributed as N(X), where X is regularly varying with index
α and N(x) is the number of Poisson arrivals on the time interval [0, x]. Without
loss of generality, we assume that the rate of the Poisson process is equal to 1.

The advantage of this construction is that we do not need to impose any
restrictions on X and can at the same time ensure that the In-Degree is an
integer. We claim that the random variable N(X) is regularly varying with the
same index as X , or, more informally, N(X) follows a power law with the same
exponent. Thus, we can think of N(X) as the In-Degree of a random Web page.
For the sake of completeness we present the formal statement and its proof in
the remainder of this section.

Let FX and FN(X), f and φ be the distribution functions and the Laplace-
Stieltjes transforms of X and N(X), respectively. Since the random variable X

is regularly varying, we have by definition

1 − FX(x) ∼ x−αL(x) as x → ∞, (3.3)
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where L(x) is some slowly varying function. Then we claim that for N(X) the
following also holds:

1 − FN(X)(x) ∼ x−αL(x) as x → ∞. (3.4)

For completeness, we prove this statement using the Tauberian theorem (The-
orem 2.7). To this end, we first have to show that the corresponding moments
of X and N(X) always exist together. Assuming that EX = d we immediately
get EN(X) = d. Next, we consider the generating function of N(X),

GN(X)(s) = EsN(X) =
∫ ∞

0

EsN(t)dFX(t) =
∫ ∞

0

e−t(1−s)dFX(t) = f(1 − s),

(3.5)
from which we derive the Laplace-Stieltjes transform of N(X) in terms of the
Laplace-Stieltjes transform of X :

φ(s) = Ee−sN(X) = f(1 − e−s).

Now, denote by ξ1 = d, ξ2, . . . , ξn and ν1 = d, ν2, . . . , νn the first n moments
of X and N(X), respectively, and put ξ0 = ν0 = 1. Then, provided that ξn and
νn are finite, we define, correspondingly,

fn(s) = (−1)n+1

(
f(s) −

n∑
i=0

ξi

i!
(−s)i

)
and

φn(s) = (−1)n+1

(
φ(s) −

n∑
i=0

νi

i!
(−s)i

)

as in (2.1).
We will establish an auxiliary result formulated in the next lemma (see Sec-

tion 7 for the proof).

Lemma 3.1. For n ≥ 1, the following are equivalent:

(i) ξn < ∞,

(ii) νn < ∞.

Remark 3.2. We can also reformulate Lemma 3.1 as follows:

fn(s) = o(sn) if and only if φn(s) = o(sn).
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Remark 3.3. It follows from the proof of Lemma 3.1 that if ξn < ∞, then

fn

(
1 − e−s

)
= φn(s) + O(sn+1).

Now, we can use Theorem 2.7 to prove that (3.3) implies (3.4). In fact the
reverse also holds, as stated in the following theorem.

Theorem 3.4. The following are equivalent:

(i) 1 − FX(x) ∼ x−αL(x) as x → ∞,

(ii) 1 − FN(X)(x) ∼ x−αL(x) as x → ∞.

Proof. (i) → (ii). From Theorem 2.7 for X , we know that

1 − FX(x) ∼ x−αL(x) as x → ∞
implies

fn(s) ∼ (−1)nΓ(1 − α)sαL

(
1
s

)
as s → 0, (3.6)

where α > 1 is not integer and n is the greatest integer less than α.
Since 1− e−s ∼ s as s → 0, it follows from (3.6) and Lemma 2.3 that fn(s) ∼

fn(1 − e−s) as s → 0. Then we use (3.6) and Remark 3.3 to obtain

φn(s) ∼ (−1)nΓ(1 − α)sαL

(
1
s

)
as s → 0.

Now we again apply Theorem 2.7 to conclude that

1 − FN(X) ∼ x−αL(x) as x → ∞.

(ii) → (i). Similar to the first part of the proof.

Thus, our model for the number of incoming links properly describes an In-
Degree distribution that follows a power law with finite expectation and a non-
integer exponent.

3.3. Main Stochastic Equation

Combining the ideas from Sections 3.1 and 3.2, we arrive at the following equa-
tion:

R
d= c

N(X)∑
j=1

1
d
Rj + (1 − c), (3.7)
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where c ∈ (0, 1) is the damping factor, d ∈ {1, 2, . . .} is the fixed Out-Degree
of each page, and N(X) describes the In-Degree of a randomly chosen page
as the number of Poisson arrivals on a regularly varying time interval X . As
we discussed above, stochastic equation (3.7) adequately captures several im-
portant aspects of the PageRank distribution and its relation to the In-Degree
distribution. Moreover, our model is completely formalized, so we can apply
analytical methods in order to derive the tail behavior of the random variable R

representing the PageRank.
Linear stochastic equations like (3.7) have a long history. In particular, (3.7)

is similar to the famous equation that arises in the theory of branching processes
and describes many real-life phenomena, such as the distribution of the busy
period in the M/G/1 queue:

B
d=

N(S1)∑
i=1

Bi + S1,

where B is the distribution of the busy period (the time interval during which
the queue is non-empty), S1 is the service time of the customer that initiated the
busy period, N(S1) is the number of Poisson arrivals during this service time
and the Bi’s are independent and distributed as B. We refer to [Robert 03]
and other books on queueing theory for more details. Also, see [Zwart 01] for
an excellent detailed treatment of queues with regular variation, and specifically
the busy period problem. We note also that our Equation (3.7) is a special case
in a rich class of stochastic recursive equations that were discussed in detail in
the recent survey [Aldous and Bandyopadhyay 05].

This concludes the model description. The next step will be to use our model
for providing a rigorous explanation of the indicated connection between the
distributions of In-Degree and PageRank.

4. Analysis

The idea of our analysis is to write the equation for the Laplace-Stieltjes trans-
forms of X and R and then make use of the Tauberian theorems to prove that
R is regularly varying with the same index as X . According to Theorem 3.4,
this will give us the desired similarity in tail behavior of the PageRank R and
the In-Degree N(X).

As a result of the assumptions from Section 3, we can express the Laplace-
Stieltjes transform r(s) of the PageRank distribution R in terms of the proba-
bility generating function of N(X) using (3.7):
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r(s) = Ee−sR = e−s(1−c)
E exp

⎛
⎝−s

c

d

N(X)∑
i=1

Ri

⎞
⎠

= e−s(1−c)
∞∑

k=0

E exp

(
−s

c

d

k∑
i=1

Ri

)
P(N(X) = k)

= e−s(1−c)
∞∑

k=0

(
r
(
s
c

d

))k

P(N(X) = k)

= e−s(1−c)
GN(X)

(
r
(
s
c

d

))
.

Since, by (3.5), GN(X)(s) = f(1 − s), we arrive at

r(s) = f
(
1 − r

( c

d
s
))

e−s(1−c). (4.1)

It can be shown that, for the typical values d > 1 and 0 < c < 1, Equation (4.1)
has a unique solution r(s) which is completely monotone and has r(0) = 1.

As in Section 3.2, we will start the analysis by providing the correspondence
between existence of the nth moments of X and R. Recall that ξ1, . . . , ξn denote
the first n moments of X . Further, denote the first n moments of R by ρ1, . . . , ρn,
and, if ρn < ∞, we define

rn(s) = (−1)n+1

(
r(s) −

n∑
k=0

ρk

k!
(−s)k

)
,

as in (2.1). Note that taking expectations on both sides of (3.7) we easily obtain
ER = ρ1 = 1. This follows from the independence of N(X) and the Rj ’s and
the fact that EN(X) = EX = ξ1 = d.

The next lemma holds (the proof is provided in Section 7).

Lemma 4.1. For n ≥ 1, the following are equivalent:

(i) ξn < ∞,

(ii) ρn < ∞.

Remark 4.2. Similar to Remark 2.6, we can reformulate Lemma 4.1 as

fn(s) = o (sn) if and only if rn(s) = o (sn) .

Remark 4.3. Note that the stochastic inequality R
d
> (1 − c)

(
c
dN(X) + 1

)
implies

that the tail of the PageRank is at least as heavy as the tail of the In-Degree.
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To establish the main result we only need to make one technical observation,
which is proved in Section 7.

Corollary 4.4. If ξn < ∞, then the following holds:

rn(s) − drn

( c

d
s
)

= fn(t) + O
(
tn+1

)
,

where
t = 1 − r

( c

d
s
)

.

Now we are ready to explain the similarity between In-Degree and PageRank
distributions. The next theorem formalizes this main statement.

Theorem 4.5. The following are equivalent:

(i) 1 − FN(X)(x) ∼ x−αL(x) as x → ∞,

(ii) 1 − FR(x) ∼ cα

dα − cαd
x−αL(x) as x → ∞.

Proof. (i) → (ii). From (i) and Theorem 3.4 it follows that

1 − FX(x) ∼ x−αL(x) as x → ∞. (4.2)

Theorem 2.7 also implies that (4.2) is equivalent to fn(t) ∼ (−1)nΓ(1 −
α)tαL

(
1
t

)
, where n is the greatest integer less than α, and t(s) ∼ (c/d)s as

s → 0, since r(s) = 1 − s + o(s). Then, by Corollary 4.4 and Lemma 2.3, we
obtain

rn(s) − drn

( c

d
s
)
∼ (−1)nΓ(1 − α)

( c

d

)α

sαL

(
1
s

)
as s → 0.

Then for every k ≥ 0, as s → 0, we have

rn

(( c

d

)k

s

)
− drn

(( c

d

)k+1

s

)
∼ (−1)nΓ(1 − α)

( c

d

)α ( c

d

)αk

sαL

(
1(

c
d

)k
s

)

∼ (−1)nΓ(1 − α)
( c

d

)α ( c

d

)αk

sαL

(
1
s

)
.

Using the infinite-sum representation for rn(s) (see Equation (7.5) in the proof
of Lemma 4.1 in Section 7),

rn(s) =
∞∑

k=0

dk

(
rn

(( c

d

)k

s

)
− drn

(( c

d

)k+1

s

))
,
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we directly obtain

rn(s) ∼ (−1)nΓ(1 − α)
dα

dα − cαd

( c

d

)α

sαL

(
1
s

)
as s → 0.

We again apply Theorem 2.7, which leads to (ii).
(ii) → (i). The proof follows easily from (ii) and Corollary 4.4.

Thus, we have shown that the asymptotic behaviors of PageRank and In-
Degree differ only by the multiplicative constant cα

dα−cαd , while the power law
exponent remains the same. In the next section we will experimentally verify
this result.

5. Numerical Results

5.1. Power Law Identification

The identification and measuring of power law behavior is not always simple. In
this section we provide a brief overview of techniques that we used to plot and
identify numerically power law distributions.

The standard strategy is to plot a histogram of a quantity on logarithmic
scales to obtain a straight line, which is a typical feature of the power law. This
technique is often not efficient, however. In [Newman 05], the author clearly
illustrated that, even for generated random numbers with a known distribution,
the noise in the tail region has a strong influence on the estimation of the power
law parameters. Newman suggested plotting the fraction of measurements that
are not less than a given value, i.e., the complementary cumulative distribution
function 1 − F (x) = P(X > x), rather than the histogram. The advantage is
obtaining a less noisy plot. In addition, this idea is consistent with the analysis in
Section 4, which was based on complementary cumulative distribution functions.
We note that if the distribution of X follows a power law with exponent α so that
1 − F (x) ∼ Cx−α, x → ∞, where C is some constant, then the corresponding
histogram has an exponent α + 1. Thus, the plot of 1 − F (x) on logarithmic
scales has a lesser slope than the plot of the histogram.

Computing the correct slope from the observed data is also not trivial. Gold-
stein et al., and later Newman, have proposed using a maximum likelihood esti-
mator, which provides a more robust estimation of the power law exponent than
the standard least-squares fit method [Goldstein et al. 04, Newman 05]. Thus,
we compute the exponent α using the next formula from [Newman 05]:

α = 1 + N

(
N∑

i=1

ln
xi

xmin

)−1

. (5.1)
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Here the quantities xi, i = 1, . . . , N , are the measured values of X , and xmin

usually corresponds to the least value of X for which the power law behavior is
assumed to hold.

In the next sections we will present our experiments on real Web Data and on
a graph that represents a well-known mathematical model of the Web (Growing
Networks). In both cases, for each value x, we plot in log-log scale the fraction
of measurements that are not less than x.

5.2. Web Data

To confirm our results on asymptotic similarity between PageRank and In-Degree
distributions, we performed experiments on the public data of the Stanford Web
from [Kamvar 06]. We calculated all PageRank values for a Web graph with
281, 903 nodes (pages) and ∼ 2.3 million edges (links) using the standard power
method (see, e.g., [Langville and Meyer 03]). For this data set, the average Out-
Degree, and hence average In-Degree, is 8.2. Since the number of dangling nodes
is negligibly small in this data set, we do not take them into account.

In Figure 1, we show the log-log plots for In-Degree and PageRank of the
Stanford Web Data for different values of the damping factor (c = 0.1, 0.5 and
0.9). Clearly, these empirical values of In-Degree and PageRank lead to parallel
lines for all values of the damping factor, provided that the PageRank values are
reasonably large. It was observed in [Becchetti and Castillo 06] that, in general,
PageRank depends on the damping factor but the PageRank of the top 10% of
pages obeys a power law with the same exponent as the In-Degree, independent
of the damping factor. This is in perfect agreement with our experimental re-
sults and the mathematical model, which is focused on the tail behavior of the
PageRank distribution.

The calculations based on the maximum likelihood method (5.1) yield a slope
−1.1, which verifies that In-Degree and PageRank have power laws with the
same exponent α = 1.1 (this corresponds to the well-known value 2.1 for the
histogram). More precisely, in Figure 1 we fitted the lines y = −1.1x+0.08, y =
−1.1x− 0.87, y = −1.1x− 1.27, and y = −1.1x− 2.07 to the plots of In-Degree
and PageRank (with c = 0.9, c = 0.5, and c = 0.1, respectively).

We also investigated whether Theorem 4.5 correctly predicts the multiplicative
constant

y(c) =
cα

dα − cαd
.

In Figure 2, we plot log10(y(c)) and compare it to the observed differences bet-
ween the logarithms of the complementary cumulative distribution functions of
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PageRank and In-Degree, for different values of the damping factor. Again,
d = 8.2 because that is the average In/Out-Degree in the data set. As can be
seen, the theoretical and observed values are quite close. For typical values of
c between 0.8 and 0.9, for example, the difference is 0.41, resulting in a factor
y(c) that is only a factor of 2.57 greater than in the observed data. Thus, our
model not only allows us to prove the similarity in the power law behavior but
also gives a good approximation for the difference between the two distributions.

The discrepancy between the predicted and observed values of the multiplica-
tive factor suggests that our model does not capture PageRank behavior to the
full extent. For instance, the assumption of the independence of PageRank values
of pages that have a common neighbor may be too strong. We believe, however,
that the achieved precision, especially for lesser values of c, is quite good for our
relatively simple stochastic model.

5.3. Growing Networks

Growing Networks, introduced in [Barabási and Albert 99], now represent a large
class of models that are commonly accepted as a possible scenario of Web growth.
In particular, these models provide a mathematical explanation for the power
law behavior of In-Degree [Bollobas et al. 01]. The recent studies [Avrachenkov
and Lebedev 06] and [Fortunato and Flammini 06] have addressed for the first
time the PageRank distribution in Growing Networks.

Growing Network models are characterized by preferential attachment. This
entails that a newly created node connects to the existing nodes with probabil-
ities that are proportional to the current In-Degrees of the existing nodes. We
simulated a slightly modified version of this model, where a new link points to
a randomly chosen page with probability q, and with probability (1 − q) the
preferential attachment selection rule is used. This allows us to fine-tune the
exponent of the resulting power law [Newman 05].

We simulate our Growing Network using MATLAB. We start with d nodes
and at each step add a new node that links to d existing nodes. To ensure the
same number of outgoing links for all pages, at the end of the simulation we link
the first d nodes to randomly chosen pages. In the example presented below we
set q = 0.2 and obtain a network of 50, 000 nodes with Out-Degree d = 8.

In Figure 3 we present the numerical data for In-Degree and PageRank in
the Growing Network. Clearly, the Web data from Section 5.2 shows a much
better agreement with our model than the data generated by the preferential
attachment algorithm. In the next section we briefly compare recent results on
PageRank in Growing Networks to our present study, and we indicate possible
directions for further research.
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Figure 3. Plots for the Growing Network model: fraction of pages with In-
Degree/PageRank not less than x versus x in log-log scale.

6. Discussion

Our model and analysis resulted in the conclusion that PageRank and In-Degree
should follow power laws with the same exponent. Growing Network models may
provide an alternative explanation [Avrachenkov and Lebedev 06, Fortunato and
Flammini 06]. For instance, in the recent paper [Avrachenkov and Lebedev 06],
it was shown that the expected PageRank in Growing Networks follows a power
law with an exponent that does depend on the damping factor but equals ≈ 1.08
for c = 0.85. Thus, the model in [Avrachenkov and Lebedev 06] can also be used
to explain the tail behavior of PageRank, but it leads to a slightly different result
than our model, because in our case, the power law exponent of PageRank does
not depend on the damping factor. The reason for this could be that we focus
only on asymptotics, whereas [Avrachenkov and Lebedev 06] employs a mean-
field approximation. Indeed, experiments show that the shape of the PageRank
distribution depends on the damping factor and thus may affect the average
values, whereas the tail behavior remains the same for all values of c.
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We emphasize that, compared to [Avrachenkov and Lebedev 06, Fortunato
and Flammini 06], our model provides a completely different approach for mo-
deling the relation between In-Degree and PageRank. Specifically, we do not
make any assumption on the underlying Web graph, whereas [Avrachenkov and
Lebedev 06, Fortunato and Flammini 06] choose the preferential attachment
structure, thus exploiting the fact that the graph model correctly captures the
In-Degree distribution. We believe that both approaches are useful for research
on the PageRank distribution.

One of the important innovations in the present work is the analogy between
the PageRank equation and the equation for the busy period that enables us
to apply the techniques from [De Meyer and Teugels 80]. In fact, queueing sys-
tems with heavy tails and, in particular, the busy period problem allow for a
more sophisticated probabilistic analysis (see, e.g., [Zwart 01]). It is interest-
ing to apply these advanced methods to the problems related to the Web and
PageRank.

Our model definitely lacks the dependencies between the PageRank values
of pages sharing a common neighbor. Such dependencies must be present
in the Web due to the high clustering of the Web graph [Newman 05]
(roughly speaking, clustering means that, with high probability, two neigh-
bors of the same page are connected to each other). Thus, in our further
research we will try to include some sort of dependencies along with ran-
dom Out-Degrees, as well as considering personalization or topic sensitiv-
ity [Haveliwala 03]. The impact of these factors on the PageRank distribu-
tion could be determined by extending and generalizing the proposed analytical
model.

7. Appendix

Proof of Lemma 3.1. (i) → (ii). By Lemma 2.5, we know that ξn < ∞ if and only if
fn(y) = o (yn) . Let us consider

y(s) = 1 − e−s =
n+1∑
k=1

(−1)k+1 sk

k!
+ o(sn+1).

Then we can actually find yi(s):

yi(s) =
n+i∑
j=i

µi,js
j + o

(
sn+i

)
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for i ≥ 1 and appropriate constants µi,j , j = i, . . . , n + i. Thus, we easily obtain

fn(y(s)) = (−1)n+1

(
f(y(s)) −

n∑
i=0

ξi

i!
(−y(s))i

)

= (−1)n+1

⎛
⎝φ(s) − 1 −

n∑
i=1

ξi

i!
(−1)i

⎛
⎝n+i∑

j=i

µi,js
j + o

(
sn+i

)⎞⎠
⎞
⎠

= (−1)n+1

(
φ(s) −

n∑
i=0

ν̂i

i!
(−s)i + O

(
sn+1

))

for some finite constants ν̂0 = 1 and ν̂1, . . . ν̂n, which can be expressed in terms
of ξ1, . . . , ξn. Thus, we find

φ(s) =
n∑

i=0

ν̂i

i!
(−s)i + (−1)n+1fn(y(s)) + O(sn+1) =

n∑
i=0

ν̂i

i!
(−s)i + o(sn),

since y(s) = s + o(s). By uniqueness of the power series expansion we have
νi = ν̂i, i = 0 . . . n − 1, and by Lemma 2.5, we have νn = ν̂n < ∞.

(ii) → (i). Similar to the first part of the proof, using s(y) = − ln(1 − y).

Proof of Lemma 4.1. (i) → (ii). We use induction, starting from n = 1, for which
both (i) and (ii) are valid. Assume that for k = 1, 2, . . . , n−1, it has been shown
that (i)→(ii). Denote

g(s) = e−s(1−c),

and

t(s) = 1 − r
( c

d
s
)

.

Then we can write (4.1) as
r(s) = f(t)g(s). (7.1)

We know from (i) that

f(t) = 1 − dt +
n∑

k=2

ξk(−t)k

k!
+ o(tn)

= 1 − d
(
1 − r

( c

d
s
))

+
n∑

k=2

ξk(−t)k

k!
+ o(tn).
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Thus, from (7.1) we obtain

r(s) − dg(s)r
( c

d
s
)

=

(
1 − d +

n∑
k=2

ξk(−t)k

k!
+ o(tn)

)
g(s). (7.2)

It follows from the induction hypothesis for n − 1, however, that

r(s) = 1 − s +
n−1∑
k=2

ρk

k!
(−s)k + o(sn−1),

so we can present t(s) as a sum

t(s) = −
n−1∑
k=1

ρk

k!

( c

d

)k

(−s)k + o(sn−1).

Using this, we can actually find tk(s):

tk(s) =
n+k−2∑

i=k

βk,is
i + o(sn+k−2), (7.3)

for k ≥ 1 and appropriate constants βk,i, i = k, . . . , n+k−2. We obtain by (7.2)
and (7.3)

r(s) − dg(s)r
( c

d
s
)

=

(
n∑

i=0

γis
i + o(sn)

)
g(s)

for appropriate constants γ0, . . . , γn. Using the expansion of g(s), it is not diffi-
cult to show that, for appropriate constants η0, . . . , ηn, we also have

r(s) − dr
( c

d
s
)

=
n∑

i=0

ηis
i + o(sn).

Because of the uniqueness of the series expansion, we can rewrite the last equa-
tion as

rn−1(s) − drn−1

( c

d
s
)
− ηnsn = o(sn). (7.4)

We will now show that this implies (ii), to which end we consider the partial
sums

rm
n−1(s) =

m∑
k=0

dk

(
rn−1

(( c

d

)k

s

)
− drn−1

(( c

d

)k+1

s

))

= rn−1(s) − dm+1rn−1

(( c

d

)m+1

s

)
.
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Taking the limit as m → ∞, we have for the last term that

lim
m→∞ dm+1rn−1

(( c

d

)m+1

s

)

= lim
m→∞

rn−1

((
c
d

)m+1
s
)

((
c
d

)m+1
s
)n−1 lim

m→∞

( c

d

)(m+1)(n−2)

sn−1cm+1 = 0,

where we used the induction hypothesis rn−1(s) = o(sn−1) together with
n ≥ 2, 0 < c < 1 and d > 1. It follows that we can express rn−1(s) as an
infinite sum,

rn−1(s) =
∞∑

k=0

dk

(
rn−1

(( c

d

)k

s

)
− drn−1

(( c

d

)k+1

s

))
, (7.5)

where we can apply (7.4) to each of the terms. Further, by definition of o(sn), for
all ε > 0 there exists a δ = δ(ε) such that

∣∣rn−1(s) − drn−1

(
c
ds
)− ηnsn

∣∣ < εsn

whenever 0 < s ≤ δ. Moreover, for this ε and δ, and 0 < s ≤ δ, we also have∣∣∣∣rn−1(s) − dn−1

dn−1 − cn
ηnsn

∣∣∣∣
=

∣∣∣∣∣
∞∑

k=0

dk

(
rn−1

(( c

d

)k

s

)
− drn−1

(( c

d

)k+1

s

)
−
( c

d

)kn

ηnsn

)∣∣∣∣∣
≤

∞∑
k=0

∣∣∣∣dk

(
rn−1

(( c

d

)k

s

)
− drn−1

(( c

d

)k+1

s

)
−
( c

d

)kn

ηnsn

)∣∣∣∣
<

∞∑
k=0

εdk
( c

d

)kn

sn =
dn−1

dn−1 − cn
εsn. (7.6)

Here the second inequality holds because 0 <
(

c
d

)k
s ≤ δ for every k ≥ 0. Since,

for every ε0 > 0 there exists δ0 such that∣∣∣rn−1(s) − drn−1

( c

d
s
)
− ηnsn

∣∣∣ <
dn−1 − cn

dn−1
ε0s

n

for 0 < s ≤ δ0, then, according to (7.6), we have
∣∣∣rn−1(s) − dn−1

dn−1−cn ηnsn
∣∣∣ < ε0s

n

whenever 0 < s ≤ δ0, by which we have shown that

rn−1(s) − dn−1

dn−1 − cn
ηnsn = o(sn).

Taking ρn = − dn−1

dn−1−cn ηnn!, from Lemma 2.5 and the last equation, we conclude
that ρn is the nth moment of R and is finite.
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(ii) → (i). Assume that there exists a nonnegative random variable R satis-
fying (3.7). Then, obviously, R ≥ 1 − c. Moreover, (3.7) also implies that R is
stochastically greater than (1− c)

(
c
dN(X) + 1

)
. Hence, the existence of the nth

moment of R ensures the existence of the nth moment of N(X), which in turn,
by Lemma 3.1, ensures the existence of the nth moment of X .

Proof of Corollary 4.4. The proof follows from the first part of the proof of Lemma 4.1.
By definitions of rn(s), fn(t), t(s) and Lemma 4.1, it follows from (7.1) that, for
fixed n,

(−1)n+1rn(s) +
n∑

k=0

ρk

k!
(−s)k

=

(
(−1)n+1fn(t) + 1 − dt +

n∑
k=2

ξk(−t)k

k!

)
g(s)

=

(
(−1)n+1fn(t) + 1 − d + d

(
(−1)n+1rn

( c

d
s
)

+
n∑

k=0

ρk

k!

( c

d

)k

(−s)k

)

+
n∑

k=2

ξk(−t)k

k!

)(
n+1∑
k=0

(1 − c)k

k!
(−s)k + o

(
sn+1

))
. (7.7)

Because rn(s) = o(sn), we can extend (7.3) for k ≥ 1 and appropriate con-
stants βk,i, i = k, ..., k + n − 1,

tk(s) =
n+k−1∑

i=k

βk,is
i + o(sn+k−1),

and rewrite (7.7) as

(−1)n+1rn(s) +
n∑

k=0

ρk

k!
(−s)k

= (−1)n+1fn(t) + d(−1)n+1rn

( c

d
s
)

+
n+1∑
k=0

τksk + o(sn+1),

where τ0, . . . , τn+1 are corresponding constants. Now, due to the uniqueness of
the series expansion, we can reduce the above formula to

rn(s) = fn(t) + drn

( c

d
s
)

+ (−1)n+1τn+1s
n+1 + o(sn+1).

Then, since t(s) ∼ (c/d)s as s → 0, we get

rn(s) − drn

( c

d
s
)

= fn(t) + O(tn+1).
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