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A General Setting for the
Parametric Google Matrix
Roger A. Horn and Stefano Serra-Capizzano

Abstract. The spectral and Jordan structures of the web hyperlink matrix G(c) =
cG + (1 − c)evT have been analyzed when G is the basic (stochastic) Google matrix,
c is a real parameter such that 0 < c < 1, v is a nonnegative probability vector, and
e is the all-ones vector. Typical studies have relied heavily on special properties of
nonnegative, positive, and stochastic matrices. There is a unique nonnegative vector
y(c) such that y(c)T G(c) = y(c)T and y(c)T e = 1. This PageRank vector y(c) can be
computed effectively by the power method.

We consider a square complex matrix A and nonzero complex vectors x and v such
that Ax = λx and v∗x = 1. We use standard matrix analytic tools to determine
the eigenvalues, the Jordan blocks, and a distinguished left λ-eigenvector of A(c) =
cA + (1− c)λxv∗ as a function of a complex variable c. If λ is a semisimple eigenvalue
of A, there is a uniquely determined projection P such that limc→1 y(c) = Pv for every
v such that v∗x = 1; this limit may fail to exist for some v if λ is not semisimple.
As a special case of our results, we obtain a complex analog of PageRank for the
web hyperlink matrix G(c) with a complex parameter c. We study regularity, limits,
expansions, and conditioning of y(c), and we propose a complex extrapolation algorithm
that may provide an efficient way to compute PageRank.

1. Introduction

The web can be regarded as a huge directed graph whose n nodes are webpages
and whose edges are the links between pages [Langville and Meyer 04]. Let
deg(i) denote the number of pages different from i that can be reached by a
direct link from page i. The basic Google matrix G = [Gij ] is defined as follows:
If deg(i) > 0, then Gij = 1/deg(i) for each page j �= i that can be reached by
a direct link from page i; all other entries of G in row i are zero. If deg(i) = 0
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(a dangling node), then Gij = 1/n for all j = 1, . . . , n. This definition cor-
responds to the following web user behavior: a user visiting page i moves, if
deg(i) > 0, with probability 1/deg(i) to one of the deg(i) pages linked to page i
and, if deg(i) = 0, with probability 1/n to any page in the web.

Since all of the row sums of G are 1, the n-vector e of all ones is a right
eigenvector of G associated with the eigenvalue 1, that is, Ge = e. Since all
the entries of G are nonnegative, the Perron-Frobenius Theorem ensures that
no eigenvalue of G has modulus greater than 1 and that there is a nonnega-
tive n-vector y such that yT G = yT and yT e = 1; yT denotes the transpose
of y.

PageRank is a nonnegative n-vector whose individual entries are interpreted
as a measure of importance of the webpages corresponding to them. One way to
define the importance of a given page is to let it be the limit probability that a
generic user reaches that page after infinitely many clicks. In this surfing model
of the web, PageRank is a nonnegative left eigenvector y of G associated with
the eigenvalue 1, that is, yT G = yT (normalized so that yT e = 1).

Ideally, to compute PageRank one would like to compute a normalized nonneg-
ative solution of the system of linear equations yT G = yT . The good news is that
a solution always exists; the bad news is that there might be multiple indepen-
dent solutions. And even if there is a unique solution, computing it by standard
methods such as the power method may fail because G has one or more eigen-
values different from 1 that have modulus 1 [Golub and Van Loan 83, Langville
and Meyer 05]. The standard resolution of these difficulties is to modify G: for
a given c ∈ [0, 1] and a given nonnegative n-vector v such that vT e = 1, define
the parametric Google matrix

G(c) = cG + (1− c)evT , (1.1)

which corresponds to the following user behavior: with probability c, a user
visiting page i moves according to the rule described by the basic Google matrix
G; with probability 1− c the user moves according to the rule described by the
nonnegative probability vector v = [vj ] (that is, moves to page j with probability
vj). The value c = 0.85 is often considered in the literature. (See [Langville and
Meyer 04] and the references therein.) If 0 ≤ c < 1, it turns out that 1 is the
only eigenvalue of G(c) that has modulus 1 and it is associated with a unique
nonnegative normalized left eigenvector y(c), which can be computed reliably
by the power method; see [Langville and Meyer 04] and the references therein.
Indeed, the error in the computed value of y(c) at step k is at most a fixed
constant times ck. Of course, the computation could be quite slow if c is very
close to 1.

We have three expository goals. The first is to describe the eigenvalues and
Jordan blocks of G(c) as a function of a complex parameter c; we begin by ana-
lyzing a class of complex matrices that contains G(c) as a special case. Second,
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we want to explain how one can analyze the behavior (regularity, limits, ex-
pansions, conditioning, etc.) of the normalized left eigenvector y(c) of G(c) as a
function of the complex variable c. Finally, we describe an algorithm to compute
PageRank that exploits the complex analytical properties of y(c).

The paper is organized as follows. In Section 2, we set notation and ter-
minology for the basic matrix-theoretic concepts that we employ to analyze a
generalization of G(c): for a square complex matrix A, nonzero complex vectors
x and v such that Ax = λx and v∗x = 1, and a complex variable c, we study
A(c) = cA + (1 − c)λxv∗. In Section 3 we explain how Alfred Brauer used the
classical principle of biorthogonality in 1952 to prove a theorem that reveals the
eigenvalues of A(c). In Section 4 we introduce the complete principle of biorthog-
onality and use it to obtain the Jordan blocks of A(c) under the assumption that
there is a nonzero vector y such that y∗A = λy∗ and y∗x = 1. In particular, such
a vector y exists if λ is a simple or semisimple eigenvalue of A. In Section 5 we
derive a representation for a distinguished left λ-eigenvector y(c) of A(c); this
representation is an explicit rational vector-valued function of the complex vari-
able c. In Sections 6 and 7 we study limc→1 y(c) and the associated projection,
respectively, and in Section 8 we focus on the special case in which A is the basic
Google matrix G, x = e, and v is a nonnegative probability vector. In Section 9,
we propose an algorithm to compute PageRank that exploits properties of G(c)
as a function of a complex variable c. Our final section mentions some prior
work.

2. Terminology and Notation
All the matrices and vectors that we consider have real or complex entries. We
denote the conjugate transpose of an m × n matrix X = [xij ] by X∗ = [x̄ji].
If A is a square matrix, its characteristic polynomial is pA(t) := det(tI − A);
the (complex) zeroes of pA(t) are the eigenvalues of A. A complex number λ
is an eigenvalue of A if and only if there are nonzero vectors x and y such that
Ax = λx and y∗A = λy∗; x is said to be an eigenvector (more specifically, a
right eigenvector) of A associated with λ and y is said to be a left eigenvector
of A associated with λ. If λ is an eigenvalue of A, its algebraic multiplicity is
its multiplicity as a zero of pA(t); its geometric multiplicity is the maximum
number of linearly independent eigenvectors associated with it. The geometric
multiplicity of an eigenvalue is never greater than its algebraic multiplicity. An
eigenvalue whose algebraic multiplicity is one is said to be simple. An eigenvalue
whose algebraic and geometric multiplicities are equal is said to be semisimple;
an eigenvalue λ of A is semisimple if and only if rank(A− λI) = rank(A− λI)2.

We let e1 indicate the first column of the identity matrix I: e1 = [1 0 . . . 0]T .
We let e = [1 1 . . . 1]T denote the all-ones vector. Whenever it is useful to
indicate that an identity or zero matrix has a specific size, e.g., r × r, we write
Ir or 0r.
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Two vectors x and y of the same size are orthogonal if x∗y = 0. The orthogonal
complement of a given set of vectors is the set (actually, a vector space) of all
vectors that are orthogonal to every vector in the given set.

An n× r matrix X has orthonormal columns if X∗X = Ir. A square matrix
U is unitary if it has orthonormal columns, that is, if U∗ is the inverse of U .

A square matrix A is a projection if A2 = A. A square matrix A is row
stochastic if it has real nonnegative entries and Ae = e, which means that the
sum of the entries in each row is 1; A is column stochastic if AT is row stochastic.
We say that A is stochastic if it is either row stochastic or column stochastic.

The direct sum of k given square matrices X1, . . . , Xk is the block diagonal
matrix ⎡

⎢⎣
X1 · · · 0
...

. . .
...

0 · · · Xk

⎤
⎥⎦ = X1 ⊕ · · · ⊕Xk.

The k × k Jordan block with eigenvalue λ is

Jk(λ) =

⎡
⎢⎢⎢⎢⎣

λ 1 0
. . . . . .

. . . 1
0 λ

⎤
⎥⎥⎥⎥⎦ , J1(λ) = [λ].

Each square complex matrix A is similar to a direct sum of Jordan blocks,
which is unique up to permutation of the blocks; this direct sum is the Jordan
canonical form of A. The algebraic multiplicity of λ as an eigenvalue of Jk(λ)
is k; its geometric multiplicity is 1. If λ is a semisimple eigenvalue of A with
multiplicity m, then the Jordan canonical form of A is λIm ⊕ J , in which J is
a direct sum of Jordan blocks with eigenvalues different from λ; if λ is a simple
eigenvalue, then m = 1 and the Jordan canonical form of A is [λ]⊕ J .

The spectral radius of A is ρ(A) = max{|λ| : λ is an eigenvalue of A}. For any
complex n-vector x = [xi], its �1 norm is ‖x‖1 = |x1|+ · · ·+ |xn|.

Suppose that a square matrix A is similar to the direct sum of a zero matrix
and a nonsingular matrix, that is,

A = S

[
0m 0
0 B

]
S−1, B is nonsingular. (2.1)

The matrix

AD = S

[
0m 0
0 B−1

]
S−1

is called the Drazin inverse of A; it does not depend on the choice of S or
B in the representation (2.1) [Campbell and Meyer 79, Chapter 7]. Moreover,
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both AAD = ADA and I −AAD are projections. If X and Y have m columns,
S = [X S2], and (S−1)∗ = [Y Z2], then AD = S2B

−1Z∗
2 and I −AAD = XY ∗.

In a block matrix, the symbol � denotes a block whose entries are not required
to take particular values.

For a systematic discussion of the terms defined in this section as well as a
broad range of matrix analysis issues, see [Horn and Johnson 85].

3. Basic Biorthogonality and Eigenvalues

The following observation about left and right eigenvectors associated with dif-
ferent eigenvalues is the basic principle of biorthogonality [Horn and Johnson 85,
Theorem 1.4.7].

Lemma 3.1. Let A be a square complex matrix, and let x and y be nonzero complex
vectors such that Ax = λx and y∗A = μy∗. If λ �= μ, then y∗x = 0 (that is, x
and y are orthogonal).

Proof. Compute y∗Ax in two ways: (i) as y∗(Ax) = y∗(λx) = λ(y∗x), and (ii) as
(y∗A)x = (μy∗)x = μ(y∗x). Since λ(y∗x) = μ(y∗x) and λ �= μ, it follows that
y∗x = 0.

For a given vector v and a matrix A with eigenvalue λ and associated eigen-
vector x, how are the eigenvalues of A+xv∗ related to those of A? This question
was asked and answered by Alfred Brauer in 1952 [Brauer 52, Theorem 26]:

Theorem 3.2. (Brauer.) Let A be an n × n complex matrix, and let x be a nonzero
complex vector such that Ax = λx. Let

λ, λ2, . . . , λn

be the eigenvalues of A. Then, for any complex n-vector v, the eigenvalues of
A + xv∗ are

λ + v∗x, λ2, . . . , λn.

Brauer’s proof involved three steps:

1. Compute

(A + xv∗)x = Ax + xv∗x = λx + (v∗x)x = (λ + v∗x)x,

which shows that λ + v∗x is an eigenvalue of A + xv∗.
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2. If μ is an eigenvalue of A that is different from λ, and if y is a left eigenvector
of A associated with μ, then Lemma 3.1 ensures that

y∗(A + xv∗) = y∗A + y∗xv∗ = μy + (y∗x)v = μy + 0 · v = μy.

Thus, the distinct eigenvalues of A that are different from λ are all eigen-
values of A + xv∗, but perhaps not with the same multiplicities.

3. Use a continuity argument to show that the multiplicities of the common
eigenvalues of A and A + xv∗ (setting aside the respective eigenvalues λ
and λ + v∗x) are the same.

Brauer’s theorem tells us something interesting about the eigenvalues of A(c).

Corollary 3.3. Let A be an n × n complex matrix. Let λ be an eigenvalue of A, let
x and v be nonzero complex vectors such that Ax = λx and v∗x = 1, and let
A(c) = cA + (1 − c)λxv∗. Let λ, λ2, . . . , λn be the eigenvalues of A. Then, for
any complex number c, the eigenvalues of A(c) are λ, cλ2, . . . , cλn.

Proof. In the statement of Brauer’s Theorem, replace A and v by cA and (1− c̄)λ̄v,
respectively. The eigenvalues of cA are cλ, cλ2, . . . , cλn, x is an eigenvector of cA
associated with the eigenvalue cλ, and Brauer’s Theorem tells us that the eigen-
values of cA+x((1− c̄)λ̄v)∗ = cA+(1−c)λxv∗ are cλ+(1−c)λv∗x, cλ2, . . . , cλn,
which are λ, cλ2, . . . , cλn since v∗x = 1.

Robert Reams revisited Brauer’s theorem in 1996 [Reams 96, p. 368]. He ob-
served that the Schur triangularization theorem [Horn and Johnson 85, Theorem
2.3.1] can be used to prove Brauer’s Theorem without a continuity argument:
Let S = [x S1] be any nonsingular matrix that upper triangularizes A as

S−1AS =

⎡
⎢⎢⎢⎢⎣

λ � · · · �

λ2
. . .

...
. . . �

0 λn

⎤
⎥⎥⎥⎥⎦

and whose first column is an eigenvector x associated with the eigenvalue λ.
Since I = S−1S = [S−1x �], we see that S−1x = e1. Compute

S−1 (xv∗) S =
(
S−1x

)
(v∗S) =

⎡
⎢⎢⎢⎣

1
0
...
0

⎤
⎥⎥⎥⎦
[

v∗x � · · · �
]

=

⎡
⎢⎢⎢⎣

v∗x � · · · �
0 0 · · · 0
...

...
. . . 0

0 0 · · · 0

⎤
⎥⎥⎥⎦ .
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Therefore, the similarity

S−1 (A + xv∗)S =

⎡
⎢⎢⎢⎢⎣

λ + v∗x � · · · �

0 λ2
. . .

...
...

. . . . . . �
0 · · · 0 λn

⎤
⎥⎥⎥⎥⎦

reveals both the eigenvalues of A + xv∗ and their multiplicities.

4. Complete Biorthogonality and Jordan Blocks

Brauer used the basic principle of biorthogonality to analyze the eigenvalues of
A + xv∗. We now want to analyze the Jordan blocks of A + xv∗.

The basic principle of biorthogonality is silent about what happens when λ =
μ. In that event, there are three possibilities:

1. y∗x = 0 (we can normalize so that x∗x = y∗y = 1);

2. y∗x �= 0 (we can normalize so that y∗x = 1); or

3. x = αy (we can normalize so that x = y and x∗x = 1).

The following complete principle of biorthogonality addresses all the possibilities
and describes reduced forms for A that can be achieved in each case.

Theorem 4.1. Let A be an n×n complex matrix, and let x and y be nonzero complex
vectors such that Ax = λx and y∗A = μy∗.

(a) Suppose that λ �= μ and x∗x = y∗y = 1. Then, y∗x = 0. Let U =
[x y U1], in which the columns of U1 are any given orthonormal basis for
the orthogonal complement of x and y. Then, U is unitary and

U∗AU =

⎡
⎣ λ � �

0 μ 0
0 � B

⎤
⎦ , B = U∗

1 AU1 is (n− 2)× (n− 2).

(b) Suppose that λ = μ, y∗x = 0, and x∗x = y∗y = 1. Let U = [x y U1], in
which the columns of U1 are any given orthonormal basis for the orthogonal
complement of x and y. Then, U is unitary, the algebraic multiplicity of λ
is at least two, and

U∗AU =

⎡
⎣ λ � �

0 λ 0
0 � B

⎤
⎦ , B = U∗

1 AU1 is (n− 2)× (n− 2).
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(c) Suppose that λ = μ and y∗x = 1. Let S = [x S1], in which the columns
of S1 are any given basis for the orthogonal complement of y. Then, S
is nonsingular, (S−1)∗ = [y Z1], the columns of Z1 are a basis for the
orthogonal complement of x, and

S−1AS =
[

λ 0
0 B

]
, B = Z∗

1AS1 is (n− 1)× (n− 1). (4.1)

(d) Suppose that λ = μ, x = y, and x∗x = 1. Let U = [x U1], in which the
columns of U1 are any given orthonormal basis for the orthogonal comple-
ment of x. Then, U is unitary and

U∗AU =
[

λ 0
0 B

]
, B = U∗

1 AU1 is (n− 1)× (n− 1). (4.2)

Proof.

(a) Lemma 3.1 ensures that x and y are orthogonal. Let U = [x y U1], in
which the columns of U1 are a given orthonormal basis for the orthogonal
complement of x and y. The n columns of U are an orthonormal set, so U
is unitary. Compute the unitary similarity

U∗AU =

⎡
⎣ x∗

y∗

U∗
1

⎤
⎦A[x y U1] =

⎡
⎣ x∗Ax x∗Ay x∗AU1

y∗Ax y∗Ay y∗AU1

U∗
1 Ax U∗

1 Ay U∗
1 AU1

⎤
⎦

=

⎡
⎣ λx∗x x∗Ay x∗AU1

λy∗x μy∗y μy∗U1

λU∗
1 x U∗

1 Ay U∗
1 AU1

⎤
⎦ =

⎡
⎣ λ � �

0 μ 0
0 � U∗

1 AU1

⎤
⎦ .

(b) As in (a), construct a unitary matrix U = [x y U1], in which the columns
of U1 are a given orthonormal basis for the orthogonal complement of x
and y. The reduced form of A under unitary similarity via U is the same
as in (a), but with λ = μ. The characteristic polynomial of A is

pA(t) = det(tI −A) = det

⎡
⎣ t− λ � �

0 t− λ 0
0 � tI −B

⎤
⎦ .

A Laplace expansion by minors down the first column gives

pA(t) = (t− λ) det
[

t− λ 0
� tI −B

]
.

Finally, a Laplace expansion by minors across the first row gives

pA(t) = (t− λ)2 det (tI −B) = (t− λ)2 pB(t),

so λ is a zero of pA(t) with multiplicity at least two.
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(c) Let the columns of S1 be a given basis for the orthogonal complement of
y, and let S = [x S1]. The columns of S1 are linearly independent, so S
is singular only if x is a linear combination of the columns of S1, that is,
only if x = S1ξ for some vector ξ. But then, 1 = y∗x = y∗S1ξ = 0ξ = 0.
This contradiction shows that S is nonsingular. Partition (S−1)∗ = [η Z1]
and compute

I = S−1S =
[

η∗

Z∗
1

] [
x S1

]
=
[

η∗x η∗S1

Z∗
1x Z∗

1S1

]
=
[

1 0
0 In−1

]
.

(4.3)

Thus, the n − 1 columns of Z1, necessarily linearly independent, are or-
thogonal to x, so they are a basis for the orthogonal complement of x.
Also, η∗S1 = 0 means that η is orthogonal to the orthogonal complement
of y, so η = αy. But, 1 = η∗x = (αy)∗x = ᾱy∗x = ᾱ, so α = 1 and η = y.
Finally, compute the similarity

S−1AS =
[

y∗

Z∗
1

]
A
[

x S1

]
=
[

y∗Ax y∗AS1

Z∗
1Ax Z∗

1AS1

]

=
[

λy∗x λy∗S1

λZ∗
1x Z∗

1AS1

]
=
[

λ 0
0 Z∗

1AS1

]
.

(d) Let the columns of U1 be a given orthonormal basis for the orthogonal
complement of x. Then, the n columns of U = [x U1] are an orthonormal
set, so U is unitary. Compute the unitary similarity

U∗AU =
[

x∗

U∗
1

]
A
[

x U1

]
=
[

x∗Ax x∗AU1

U∗
1 Ax U∗

1 AU1

]

=
[

λx∗x λx∗U1

λU∗
1 x U∗

1 AU1

]
=
[

λ 0
0 U∗

1 AU1

]
.

We now use the complete principle of biorthogonality to establish an analog
of Theorem 3.2 for Jordan blocks.

Theorem 4.2. Let A be an n×n complex matrix. Let λ, λ2, . . . , λn be the eigenvalues
of A, and let x and y be nonzero complex vectors such that Ax = λx and y∗A =
λy∗. Assume that y∗x = 1. Then, the Jordan canonical form of A is

[λ]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk)

for some positive integers k, n1, . . . , nk and some set of eigenvalues {ν1, . . . , νk} ⊂
{λ2, . . . , λn}. For any complex vector v such that λ + v∗x �= λj for each j =
2, . . . , n, the Jordan canonical form of A + xv∗ is

[λ + v∗x]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk). (4.4)
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Proof. The hypotheses and Theorem 4.1(c) ensure that

S−1AS =
[

λ 0
0 B

]
(4.5)

for some nonsingular S of the form S = [x S1], so that S−1x = e1. The eigen-
values of B are λ2, . . . , λn; let

Jn1(ν1)⊕ · · · ⊕ Jnk
(νk)

be the Jordan canonical form of B. Just as in Reams’s proof of Brauer’s Theorem,
we have

S−1 (xv∗)S =
(
S−1x

)
(v∗S) = e1

[
v∗x v∗S1

]
=
[

v∗x w∗

0 0

]
, (4.6)

in which we set w∗ := v∗S1. Combining the similarities (4.5) and (4.6), we see
that

S−1(A + xv∗)S =
[

λ + v∗x w∗

0 B

]
.

Now let ξ be any given (n− 1)-vector, verify that

[
1 ξ∗

0 I

]−1

=
[

1 −ξ∗

0 I

]
,

and compute the similarity

[
1 −ξ∗

0 I

] [
λ + v∗x w∗

0 B

] [
1 ξ∗

0 I

]
=[

λ + v∗x w∗ + ξ∗((λ + v∗x)I −B)
0 B

]
.

We have assumed that λ + v∗x is not an eigenvalue of B, so we may take

ξ∗ := −w∗((λ + v∗x)I −B)−1,

in which case w∗ + ξ∗((λ + v∗x)I −B) = 0 and A + xv∗ is revealed to be similar
to [

λ + v∗x 0
0 B

]
.

Thus, the Jordan canonical form of A + xv∗ is (4.4): the direct sum of [λ + v∗x]
and the Jordan canonical form of B.
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The following result strengthens the conclusion of Corollary 3.3 to describe
not only the eigenvalues of A(c) but also its Jordan blocks.

Corollary 4.3. Let A be an n×n complex matrix. Let λ, λ2, . . . , λn be the eigenvalues
of A; let x, y, and v be nonzero complex vectors such that Ax = λx, y∗A = λy∗,
and v∗x = 1; and let A(c) = cA + (1 − c)λxv∗. Assume that y∗x = 1. Let the
Jordan canonical form of A be

[λ]⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk).

Then, for any nonzero complex number c such that

cλj �= λ for each j = 2, . . . , n, (4.7)

the Jordan canonical form of A(c) is

[λ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk).

Proof. We proceed as in the proof of Corollary 3.3. In the statement of Theorem
4.2, replace A and v by cA and (1 − c̄)λ̄v, respectively. For any c, cA is similar
to

[cλ]⊕ cJn1(ν1)⊕ · · · ⊕ cJnk
(νk),

but if c �= 0, we can say more: this direct sum is similar to

[cλ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk).

Moreover, x is an eigenvector of cA associated with the eigenvalue cλ, the re-
maining eigenvalues of cA are cλ2, . . . , cλn, and

cλ + ((1− c̄)λ̄v)∗x = cλ + (1− c)λv∗x = cλ + (1− c)λ = λ.

Thus, our assumption (4.7) and Theorem 4.2 ensure that the Jordan canonical
form of

cA + x((1 − c̄)λ̄v)∗ = cA + (1− c)λxv∗ = A(c)

is
[λ]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk

(cνk).

5. The Normalized Left λ-Eigenvector of A(c)

If λ �= 0, Corollary 3.3 ensures that it is a simple eigenvalue of A(c) for all but
finitely many values of c. We would like to have an explicit expression for its
associated left eigenvector y(c), normalized so that y(c)∗x = 1.
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Theorem 5.1. Let A be an n×n complex matrix. Let λ, λ2, . . . , λn be the eigenvalues
of A; let μ1, . . . , μd be the nonzero eigenvalues of A that are different from λ;
let x and v be nonzero complex vectors such that Ax = λx and v∗x = 1; and let
A(c) = cA + (1− c)λxv∗. Assume that λ �= 0.

(a) Suppose that there is a complex vector y such that y∗A = λy∗ and y∗x = 1.
Assume that cλj �= λ for each j = 2, . . . , n. Let S1, Z1, and B be defined
as in Theorem 4.1(c). Then, λ is not an eigenvalue of cB. Define the
vector y(c) by

y(c)∗ = y∗ + (1− c)λv∗S1(λIn−1 − cB)−1Z∗
1 . (5.1)

Then, y(c) satisfies the conditions

y(c)∗A(c) = λy(c)∗ and y(c)∗x = 1. (5.2)

If, in addition, c �= 1, then y(c) is the only vector that satisfies the condi-
tions (5.2). If λ is a simple eigenvalue of A, then it is not an eigenvalue
of B.

(b) Suppose that λ is a semisimple eigenvalue of A with multiplicity m ≥ 2,
and suppose that

cμj �= λ for each j = 1, . . . , d. (5.3)

Let S = [X S2] be any nonsingular matrix such that X has m columns and

S−1AS =
[

λIm 0
0 E

]
, E is (n−m)× (n−m). (5.4)

Then, λ is not an eigenvalue of cE or E. Partition (S−1)∗ = [Y Z2], in
which Y has m columns. Then AX = λX, Y ∗A = λY ∗, and Y ∗X =
Im. Moreover, the columns of X may be chosen to be any m linearly
independent right λ-eigenvectors of A, and

XY ∗ = I − (λI −A)(λI −A)D (5.5)

is a projection that is determined uniquely by A and λ, regardless of the
choice of columns of X. Define the vector y(c) by

y(c)∗ = v∗XY ∗ + (1− c)λv∗S2(λIn−m − cE)−1Z∗
2 . (5.6)

Then, y(c) satisfies the conditions (5.2); if, in addition, c �= 1, then y(c)
is the only vector that satisfies these conditions. If both A and λ are real,
then XY ∗ is a real projection.
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(c) Suppose that λ is a semisimple eigenvalue of A with multiplicity m. Let
K be a given compact complex set that does not contain any of the points
μ−1

1 , . . . , μ−1
d . Let c̃ and c be distinct points in K. If m ≥ 2, let y(·) be

defined by (5.6). Then,

y(c̃)∗ − y(c)∗

c̃− c
= λv∗S2(c̃E − λI)−1(E − λI)(cE − λI)−1Z∗

2 ; (5.7)

the derivative of y(c)∗ is

y′∗ = λv∗S2(cE − λI)−2(E − λI)Z∗
2 ; (5.8)

the derivative of y(c)∗ at c = 0 is

y′∗ = λ−1v∗S2(E − λI)Z∗
2 = λ−1v∗(A− λI); (5.9)

and the derivative of y(c)∗ at c = 1 is

y′∗ = λv∗S2(E − λI)−1Z∗
2 = λv∗(A− λI)D. (5.10)

If m = 1 and y(·) is defined by (5.1), then the four preceding identities are
correct if we replace E with B, S2 with S1, and Z2 with Z1. For each given
vector norm ‖ ·‖ there is a positive constant M (depending on A, λ, v, and
K) such that

‖y(c̃)− y(c)‖ ≤M |c̃− c| for all c̃, c ∈ K. (5.11)

Proof.

(a) The similarity (4.1) shows that the eigenvalues of B are λ2, . . . , λn, so our
assumption that λ �= cλj for all j = 1, . . . , n ensures that λ is not an
eigenvalue of cB. If λ is an eigenvalue of B, it must have multiplicity at
least two as an eigenvalue of A, so if it is a simple eigenvalue of A, it
is not an eigenvalue of B. The vector y(c) defined by (5.1) satisfies the
condition y(c)∗x = 1 because y∗x = 1 and Z∗

1x = 0. To show that it is a
left λ-eigenvector of A(c), we begin by combining (4.5) and (4.6):

S−1(cA + (1− c)λxv∗)S =
[

λ (1− c)λv∗S1

0 cB

]
. (5.12)

A calculation verifies that the vector η(c) defined by

η(c)∗ = [1 (1− c)λv∗S1(λIn−1 − cB)−1]



�

�

“imvol3” — 2008/3/31 — 18:20 — page 398 — #14
�

�

�

�

�

�

398 Internet Mathematics

is a left λ-eigenvector of the matrix in (5.12) and that η(c)∗e1 = 1; if c �= 1,
it is the only such vector. Therefore, the vector y(c) defined by

y(c)∗ = η(c)∗S−1 = [1 (1 − c)λv∗S1(λIn−1 − cB)−1]
[

y∗

Z∗
1

]
= y∗ + (1 − c)λv∗S1(λIn−1 − cB)−1Z∗

1

is a normalized left λ-eigenvector of A(c), and if c �= 1 it is the only vector
that satisfies the conditions (5.2).

(b) Let D denote the block diagonal matrix in (5.4), and let S be any nonsin-
gular matrix such that S−1AS = D. Partition S = [X S2] and (S−1)∗ =
[Y Z2], in which X and Y have m columns. Then,

[AX AS2] = AS = SD = [λX S2D],

and [
Y ∗A
Z∗

2A

]
= S−1A = DS−1 =

[
λY ∗

EZ∗
2

]
,

which tells us that the columns of X are a linearly independent set of right
λ-eigenvectors of A and the columns of Y are a linearly independent set of
left λ-eigenvectors of A. The identity S−1S = I tells us that Y ∗X = Im

and hence that X∗Y = (Y ∗X)∗ = I∗m = Im.

Now let R be any given nonsingular m×m matrix, and let Ŝ = [XR S2] :=
[X̂ S2]. Partition (Ŝ−1)∗ = [Ŷ Ẑ2], compute (Ŝ−1)∗ = [Y (R−1)∗ Z2],
and notice that Ŷ X̂∗ = Y X∗. We draw two conclusions from these obser-
vations:

(1) We are free to let the columns of X be any linearly independent set
of right λ-eigenvectors of A.

(2) Regardless of the choice of columns of X , the product Y X∗ remains
the same. Moreover, (Y X∗)2 = Y (X∗Y )X∗ = Y ImX∗ = Y X∗, so
Y X∗ (and hence also XY ∗) is a projection.

This second conclusion also follows from a useful representation for XY ∗.
We have

λI −A = S

[
0 0
0 λI − E

]
S−1

and

(λI −A)D = S

[
0 0
0 (λI − E)−1

]
S−1,
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hence

I − (λI −A)(λI −A)D = I − S

[
0 0
0 In−m

]
S−1

= [X S2]
[

Im 0
0 0

] [
Y ∗

Z∗
2

]
= XY ∗.

Let the first column of X be the given λ-eigenvector x that satisfies v∗x = 1,
and write X = [x X̃]. Then, x is the first column of S, so S−1x = e1 and

v∗S = [v∗X v∗S2] = [v∗x v∗X̃ v∗S2] = [1 v∗X̃ v∗S2].

Thus,

S−1(xv∗)S = (S−1x)(v∗S) =

⎡
⎣ 1

0
0

⎤
⎦ [ 1 v∗X̃ v∗S2

]

=

⎡
⎣ 1 v∗X̃ v∗S2

0 0 0
0 0 0

⎤
⎦ ,

(5.13)

and so

S−1 (cA + (1 − c)λxv∗)S =

⎡
⎣ λ (1− c)λv∗X̃ (1− c)λv∗S2

0 cλIm−1 0
0 0 cE

⎤
⎦ . (5.14)

The assumption (5.3) (which is satisfied for c = 1) ensures that λ is not an
eigenvalue of cE, and a calculation verifies that η(c) defined by

η(c)∗ = [1 v∗X̃ (1− c)λv∗S2(λI − cE)−1]
= [v∗X (1− c)λv∗S2(λI − cE)−1]

is a left λ-eigenvector of the matrix in (5.14) and that η(c)∗e1 = 1; if c �= 1
it is the unique such vector. Therefore, y(c) defined by

y(c)∗ = η(c)∗S−1 =
[

v∗X (1 − c)λv∗S2 (λI − cE)−1
] [ Y ∗

Z∗
2

]
= v∗XY ∗ + (1− c)λv∗S2(λI − cE)−1Z∗

2

satisfies the conditions (5.2); if c �= 1 it is the only vector that satisfies
these conditions.
If A and λ are real, the matrix S = [X S2] that gives the reduced form
(5.4) may be taken to be real (one may reduce to the real Jordan form
[Horn and Johnson 85, Theorem 3.4.5]). Then, (S−1)∗ = [Y Z2] is real, so
the uniquely determined product XY ∗ must always be real, regardless of
the choice of X .
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(c) Using the identity αR−1 − βT−1 = R−1(αT − βR)T−1, we compute

y(c̃)∗ − y(c)∗ = λv∗S2((1 − c̃)(λI − c̃E)−1 − (1− c)(λI − cE)−1)Z∗
2

= (c̃− c)λv∗S2(c̃E − λI)−1(E − λI)(cE − λI)−1Z∗
2 .

(5.15)

This identify verifies (5.7). One obtains (5.8) by letting c̃ → c; (5.9) and
(5.10) follow by setting c = 1 and c = 0, respectively. The bound (5.11)
follows from taking the norm of both sides of (5.7) and observing that the
right-hand side is a continuous function on a compact set, so it is bounded.

The vector function y(c) defined by (5.6) is a complex analytic function at
all but finitely many points in the complex plane, provided that λ is a nonzero
semisimple eigenvalue of A. The points c = 0 and c = 1 are of special interest.

• The condition (5.3) is satisfied for all c such that |c| < min{|λμ−1
j | : j =

1, . . . , d}. Thus, y(c) is analytic in an open neighborhood of c = 0 and
can be represented there by a Maclaurin series obtained from (5.6) by
expanding (λIn−m − cE)−1 as a power series in c:

y(c)∗ = v∗
(

I + λ−1 (S2(E − λI)Z∗
2 ) c

+
∞∑

k=2

λ−k
(
S2(E − λI)Ek−1Z∗

2

)
ck

)

= v∗
(

I + λ−1 (A− λI) c +
∞∑

k=2

λ−k
(
(A− λI)Ak−1

)
ck

)
.

(5.16)

This representation reveals all of the derivatives of y(c) at c = 0.

• The condition (5.3) is also satisfied for all c such that |c−1| < min{|λμ−1
j −

1| : j = 1, . . . , d}. Thus, y(c) is analytic in an open neighborhood of c = 1.
If we let γ = c− 1, use (5.6), and expand

(λI − cE)−1 = (λI − E)−1(I − γE(λI − E)−1)−1

as a power series in γ, we obtain

y(γ + 1)∗ = v∗(XY ∗ − λS2(λI − E)−1Z∗
2γ

−λ

∞∑
k=2

(
S2(λI − E)−kEk−1Z∗

2

)
γk). (5.17)
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This series reveals all the derivatives of y(c) at c = 1. We can use the
Drazin inverse to write this series as

y(γ + 1)∗ = v∗(XY ∗ − λ(λI −A)Dγ

−λ

∞∑
k=2

(
((λI −A)D)kAk−1

)
γk). (5.18)

In particular, the first derivative at c = 1 is

y′∗ = λv∗S2(E − λI)−1Z∗
2 = λv∗(A− λI)D. (5.19)

6. The Behavior of y(c) as c → 1

We are interested in the behavior of the left eigenvector y(c) defined by (5.1)
as c → 1 in the complex plane, and to understand it better, we consider two
examples.

• Example 1. Consider

A =

⎡
⎣ 1 0 0

0 1 0
0 0 2

⎤
⎦ , λ = 1, x = y = e1, v∗ =

[
1 α β

]
.

The hypotheses of Theorem 5.1 are satisfied for all complex c /∈ {1, 1/2},
and the vector y(c) defined by

y(c)∗ =
[

1 α (c−1)β
2c−1

]
is the normalized left eigenvector of

cA + (1− c)λxv∗ =

⎡
⎣ 1 (1− c)α (1− c)β

0 c 0
0 0 2c

⎤
⎦

associated with the eigenvalue λ = 1. Moreover,

lim
c→1

y(c)∗ =
[

1 α 0
]
.

Although λ = 1 is not a simple eigenvalue of A, it is semisimple.

• Example 2. Consider

A =

⎡
⎣ 1 0 0

0 1 1
0 0 1

⎤
⎦ , λ = 1, x = y = e1, v∗ =

[
1 α β

]
.
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The hypotheses of Theorem 5.1 are satisfied for all complex c �= 1, and the
vector y(c) defined by

y(c)∗ =
[

1 α β + cα
1−c

]
is the normalized left eigenvector of

cA + (1− c)λxv∗ =

⎡
⎣ 1 (1− c)α (1− c)β

0 c c
0 0 c

⎤
⎦

associated with the eigenvalue λ = 1. However, limc→1 y(c)∗ does not exist
unless α = 0. In this case, λ = 1 is not semisimple.

These two examples are not exceptional: when λ �= 0, semisimplicity of λ is
the essential hypothesis required to ensure that limc→1 y(c) exists for all choices
of v. The following theorem verifies this assertion and gives an explicit formula
for the limit.

Theorem 6.1. Let A be an n × n complex matrix with eigenvalues λ, λ2, . . . , λn.
Suppose that λ is a nonzero semisimple eigenvalue of A with multiplicity m ≥ 1;
let x and v be given nonzero complex vectors such that Ax = λx and v∗x = 1;
and let A(c) = cA + (1 − c)λxv∗. If m = 1, let y be the unique vector such that
y∗A = λy and y∗x = 1. If m > 1, let XY ∗ = I − (λI − A)(λI − A)D be the
projection defined in Theorem 5.1(b). Then,

(a) For some ε > 0 and all complex c such that 0 < |c− 1| < ε, as well as for
all complex c such that λ �= cλj for all j = 2, . . . , n, the vector y(c) defined
by (5.1) when λ is simple, or by (5.6) when it is not, is the unique vector
that satisfies y(c)∗A(c) = λy(c)∗ and y(c)∗x = 1.

(b) If λ is a simple eigenvalue of A, then lim
c→1

y(c) = yx∗v = y.

(c) If m > 1, then
lim
c→1

y(c) = Y X∗v = (XY ∗)∗v. (6.1)

Proof.

(a) If λ and 0 are the only eigenvalues of A, then any positive value of ε will
do. If the nonzero eigenvalues of A that are different from λ are μ1, . . . , μd,
let

ε = min{|1− λμ−1
1 |, . . . , |1− λμ−1

d |}.
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Then the hypothesis (4.7) is satisfied and the assertion follows from Theo-
rem 5.1. Since y(c) is defined in a punctured open complex neighborhood
of the point c = 1, it is reasonable to ask about the limit of y(c) (as a
function of the complex variable c) as c→ 1.

(b) The assertion follows from (5.1) since λ is not an eigenvalue of B:

lim
c→1

y∗(c) = y∗ + lim
c→1

(
(1− c)λv∗S1(λI − cB)−1Z∗

1

)
= y∗ + lim

c→1
(1 − c) · λv∗S1 · lim

c→1
(λI − cB)−1Z∗

1

= y∗ +
(
0 · λv∗S1(λI −B)−1Z∗

1

)
= y∗ = v∗xy∗.

(c) This assertion follows in the same way from (5.6):

lim
c→1

y(c)∗ = v∗XY ∗ + lim
c→1

(
(1 − c)λv∗S2(λIn−m − cE)−1Z∗

2

)
= v∗XY ∗ + lim

c→1
(1− c) · λv∗S2 · lim

c→1
(λIn−m − cE)−1Z∗

2

= v∗XY ∗ + 0 · λv∗S2 · (λIn−m − E)−1Z∗
2 = v∗XY ∗.

7. The Projection XY ∗ Is an Important Special Case

In (5.5) we have two different representations for the projection XY ∗. A third
representation is available under special conditions that are satisfied by the
Google matrix.

Theorem 7.1. Let A be an n×n complex matrix. Suppose that the spectral radius of
A is positive and that every eigenvalue ν of A such that |ν| = ρ(A) is semisimple.
Let λ be an eigenvalue of A with multiplicity m and assume that |λ| = ρ(A). If
m = 1, let x and y be right and left, respectively, λ-eigenvectors of A, normalized
so that y∗x = 1; let XY ∗ := xy∗. If m > 1, let XY ∗ be the projection defined in
Theorem 5.1(b). Then,

XY ∗ = lim
N→∞

1
N

N−1∑
k=0

(λ−1A)k. (7.1)

Proof. Write λ = eiθ0ρ(A) and suppose that λ has multiplicity m. Let ν1, . . . , νp

be the distinct eigenvalues of A that are different from λ and have modulus ρ(A);
write νj = ei(θj+θ0)ρ(A), j = 1, . . . , p, and suppose that each νj has multiplicity
mj . Write the Jordan canonical form of A as

A = S(λIm ⊕ ν1Im1 ⊕ · · · ⊕ νpImp ⊕ J)S−1,
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in which J is a direct sum of Jordan blocks whose eigenvalues have modulus
strictly less than ρ(A), S = [X S2], (S−1)∗ = [Y Z2], and each of X and Y has
m columns. Notice that (λ−1J)N → 0 as N →∞ [Horn and Johnson 85, Section
3.2.5]. The identity

N−1∑
k=0

Bk = (I −BN )(I −B)−1

is valid whenever I−B is nonsingular. If we employ this identity with B = λ−1J
or B = λ−1νjImj = eiθj Imj , we find in either case that

∑N−1
k=0 Bk is bounded as

N →∞, which ensures that N−1
∑N−1

k=0 Bk → 0 as N →∞. Thus,

lim
N→∞

1
N

N−1∑
k=0

(λ−1A)k = S(Im ⊕ 0m1 ⊕ · · · ⊕ 0mp ⊕ 0)S−1 = XY ∗.

When the theorem’s hypotheses about A’s eigenvalues of maximum modulus
are satisfied, the representation (7.1) reveals two important facts about the pro-
jection XY ∗: (a) if λ and A are real, then XY ∗ is real (we have a more general
result in Theorem 5.1(b)); and (b) if λ > 0 and the entries of A are nonnegative,
then the entries of XY ∗ are nonnegative.

8. A Special Case: The General Parametric Google Matrix

We begin with a summary of the properties of a row-stochastic matrix that are
relevant to our analysis of the general parametric Google matrix.

Lemma 8.1. Let A be a row-stochastic matrix. Then,

(a) λ = 1 is an eigenvalue of A associated with the right eigenvector x = e;

(b) every entry of A is in the real interval [0, 1];

(c) for each k = 1, 2, . . ., Ak is row stochastic, so its entries remain bounded
as k →∞;

(d) every eigenvalue of A has modulus at most 1;

(e) every eigenvalue of A that has modulus 1 is semisimple;

(f) if the eigenvalue 1 has multiplicity m, then the Jordan canonical form of
A is

Im ⊕ Jn1(ν1)⊕ · · · ⊕ Jnk
(νk),

in which each νj �= 1, each |νj | ≤ 1, and nj = 1 if |νj | = 1;
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(g) if 1 is a simple eigenvalue of A, then there is a unique vector y with non-
negative entries such that yT A = yT and yT e = 1.

Proof.

(a) Every row sum of A is one: Ae = e.

(b) The sum of the (nonnegative) entries in each row of A is 1, so no entry can
be greater than 1.

(c) Compute A2e = A(Ae) = Ae = e and proceed by induction to show that
Ak is row stochastic for all k = 1, 2, . . .. Then (a) ensures that the entries
of each Ak are in [0, 1].

(d)–(f) Suppose that
J = Jn1(λ1)⊕ · · · ⊕ Jnr (λr)

is the Jordan canonical form of A and that A = SJS−1. It follows from
(c) that the entries of Jk = S−1AkS remain bounded as k → ∞. Each
main diagonal entry of Jni(λi)k is λk

i , which remains bounded as k → ∞
only if |λi| ≤ 1. If ni > 1, one checks that each of the ni−1 super-diagonal
entries of Jni(λi)k is kλk−1

i , which is unbounded as k → ∞ if |λi| = 1.
Thus, every Jordan block associated with any eigenvalue with modulus 1
must be 1× 1, that is, every eigenvalue with modulus 1 is semisimple. For
a different proof, see [Meyer 00, p. 696]

(g) The Perron-Frobenius Theorem [Horn and Johnson 85, Theorem 8.3.1]
ensures that there is a unique nonnegative (and by definition nonzero) left
eigenvector y associated with the eigenvalue 1 that is normalized so that
yT e = 1.

Since the basic Google matrix G has all the properties stated in the preceding
lemma, and since these properties are special cases of the key hypotheses in our
analyses in the preceding sections, specialization of our general results permits
us to identify several pleasant and useful properties of the general parametric
Google matrix G(c) = cG + (1− c)xv∗ with complex c and v.

Theorem 8.2. Let G be an n× n row-stochastic matrix, and let its eigenvalue λ = 1
(necessarily semisimple) have multiplicity m ≥ 1. If m = 1, let y be the unique
vector with nonnegative entries such that yT G = yT and yT e = 1. If m > 1, let
the m columns of X be any linearly independent set of right eigenvectors of G
associated with the eigenvalue λ = 1, and let Y be the matrix defined in Theorem
5.1(b); its m columns are an independent set of left eigenvectors of G associated
with the eigenvalue λ = 1. Let v be a given complex vector such that v∗e = 1,
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let c be a complex number, and let G(c) = cG + (1 − c)ev∗. Let 1, λ2, . . . , λn

be the eigenvalues of G, let μ1, . . . , μd be the nonzero eigenvalues of G that are
different from 1, let

ε = min{|1− μ−1
1 |, . . . , |1− μ−1

d |},

and let
Im ⊕ Jn1(ν1)⊕ · · · ⊕ Jnk

(νk), each νj �= 1, (8.1)

be the Jordan canonical form of G. Then, each of the following statements is
true:

(a) The eigenvalues of G(c) are 1, cλ2, . . . , cλn and |cλj | ≤ |c| for each j =
2, . . . , n.

(b) In the Jordan canonical form (8.1), nj = 1 for each j such that |νj | = 1.

(c) If 0 < |c| < 1 (or, more generally, if c �= 0 and 1 �= cνj for each j =
1, . . . , d), then the Jordan canonical form of G(c) is

[1]⊕ cIm−1 ⊕ Jn1(cν1)⊕ · · · ⊕ Jnk
(cνk)

if m > 1; it is
[1]⊕ Jn1(cν1)⊕ · · · ⊕ Jnk

(cνk)

if m = 1.

(d) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. Then, 1 is a simple
eigenvalue of G(c).

(e) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. If m > 1, the unique
left 1-eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = v∗XY ∗ + (1− c)v∗S2(In−m − cE)−1Z∗
2 , (8.2)

and
lim
c→1

y(c) = Y X∗v. (8.3)

The matrices S2, E, and Z2 are defined in Theorem 5.1(b); 1 is not an
eigenvalue of E. The matrix

XY ∗ = I − (I −G)(I −G)D = lim
N→∞

1
N

N−1∑
k=0

Gk (8.4)

is a real projection with nonnegative entries.
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(f) Suppose either that |c| < 1 or that 0 < |1 − c| < ε. If m = 1, the unique
left 1-eigenvector y(c) of G(c) such that y(c)∗e = 1 is defined by

y(c)∗ = y∗ + (1− c)v∗S1(In−1 − cB)−1Z∗
1 , (8.5)

and
lim
c→1

y(c) = y. (8.6)

The matrices S1, Z1, and B are defined in Theorem 5.1(a); 1 is not an
eigenvalue of B.

(g) The vector function y(c) defined by (8.2) if m > 1 and by (8.5) if m = 1
is analytic in the unit disk {c : |c| < 1} and is represented there by the
Maclaurin series

y(c)∗ = v∗
(

I + (G− I) c +
∞∑

k=2

(
(G− I)Gk−1

)
ck

)
. (8.7)

(h) Let γ = c− 1. The vector function y(c) defined by (8.2) if m > 1, and by
(8.5) if m = 1, is analytic in the disk {c : |1 − c| < ε} and is represented
there by the power series

y(c)∗ = y(γ+1)∗ = v∗
(

XY ∗ − (I −G)Dγ −
∞∑

k=2

(
((I −G)D)kGk−1

)
γk

)
.

(8.8)
In particular, the first derivative at c = 1 is

y′∗ = v∗(G− I)D. (8.9)

(i) Let K be a given compact complex set that does not contain any of the
points μ−1

1 , . . . , μ−1
d . Define y(c) on K by (8.2) if m > 1 and by (8.5) if

m = 1. Then, ‖y(c)‖1 ≥ 1 for all c ∈ K, and there is a positive constant
M such that

‖y(c̃)− y(c)‖1
‖y(c)‖1 ≤ ‖y(c̃)− y(c)‖1 ≤M |c̃− c| for all c̃, c ∈ K.

The representations for XY ∗ in (8.4) are special cases of (5.5) and (7.1). The
assertions in (g) and (h) follow from (5.16), (5.18), and (5.19). The assertion (i)
follows from Theorem 5.1(c) and the observation that 1 = |y(c)∗e| ≤ ‖y(c)∗‖1.

We emphasize that the representations (8.2) and (8.5) for the unique normal-
ized left 1-eigenvector of G(c) are valid not only for all real c ∈ (0, 1) but also
for all complex c in the open unit disk, as well as for all c in a punctured open
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neighborhood of the point 1 in the complex plane and for all c such that |c| ≥ 1
and c �= μ−1

j for all j = 1, . . . , d. The limits (8.3) and (8.6) are to be understood
as limits of functions of a complex variable; the existence of these limits ensures
that they may be computed via any sequence of real or complex values of c that
tend to 1.

The projection matrix Y X∗ = [η1 . . . ηn] is real and nonnegative. Its columns
are a uniquely determined set of nonnegative left 1-eigenvectors of G such that,
for any given probability vector v = [vi], limc→1 y(c) = v1η1 + · · · + vnηn is a
convex combination of them.

Estimates given in [Kirkland 06] suggest that y(c) might be poorly conditioned
near c = 1; indeed, some of those estimates contain a factor (1 − c)−1. But our
analysis shows that y(c) has a natural definition at c = 1 that makes it analytic
in an open neighborhood of c = 1.

It has been said that the “PageRank problem is closely related to Markov
chains” [Brezinski and Zaglia 06, p. 553]. However, framing the PageRank
problem in the general setting of standard matrix-analytic properties of complex
matrices can liberate one’s imagination and stimulate novel approaches that
might not be considered in the context of Markov chains.

9. Computational Suggestions

We propose the following algorithm for experimentation and further research.
Choose a positive integer p (let us say, p = 10), and use the power method

to compute the left 1-eigenvectors yj := y(re2πij/p), j = 0, . . . , p − 1, at p
equally-spaced points on the complex circle of (small) radius r (let us say,
r = 0.5 or 0.25). These computations are extremely fast since the standard
power method at the kth iteration converges with a relative reduction error of
at least rk [Golub and Van Loan 83, p. 330]. Moreover, one could employ a
vector-valued Fast Fourier Transform procedure, whose numerical stability is
excellent.

Now use the p computed vectors y0, . . . , yp−1 as a starting point for an extrap-
olation algorithm to compute (an approximation to) y(c) at c = 0.85 (or even
c = 0.99) [Brezinski and Zaglia 06, Brezinski et al. 05]. The idea is to choose
linear combinations of y0, . . . , yp−1 that zero out certain terms in an expansion
of the remainder y(c)− Y X∗v [Brezinski and Zaglia 91, Chapter 4].

Now extract the real part of y(c), set to zero any entries that are negative, and
normalize so that the sum of the entries (the l1 norm) is 1. Finally do iterative
refinement to increase precision [Del Corso et al. 05, Ipsen and S. Kirkland 06,
Langville and Meyer 05].

Computing the PageRank with c very close to 1 is difficult by straightforward
techniques, due to slow convergence (see [Del Corso et al. 05]—and references
therein—and [Langville and Meyer 04, Section 6.1] for a discussion of the case
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c = 0.99). It will be interesting to see whether an algorithm that exploits complex
parameters will work well in practice. The results of numerical experiments for
n of moderate size have been promising. (See also [Brezinski and Zaglia 08].)

We summarize the proposed algorithm as follows:

• Step 1: Compute y(cj), cj = 0.25∗exp(i2jπ/p), j = 0, . . . , p− 1 via vector
FFT.

• Step 2: Do vector extrapolation at the desired (difficult) c ≈ 1 (e.g., c =
0.85, c = 0.99, c = 1) to obtain a computed approximation ỹ(c) to y(c).

• Step 3: Project ỹ(c) into the real nonnegative cone and do l1 normalization.

• Step 4: Apply iterative refinement by classical procedures. Since c ≈ 1,
it is advisable to use preconditioning and Krylov techniques [Del Corso
et al. 05].

10. Some Comments about Prior Work

The eigenvalues of the standard real parametric Google matrix G(c) were an-
alyzed by Haveliwala and Kamvar (2003; only the second eigenvalue), Eldén
[Eldén 06, Proposition 6.3], and Langville and Meyer [Langville and Meyer 04]
(their proof is the same as that of Reams). A different approach via the char-
acteristic polynomial is suggested by Meyer [Meyer 00, Problem 7.1.17, p. 502].
These authors were apparently unaware of the prior work of Brauer [Brauer 52]
and Reams [Reams 96].

Relying on sophisticated results about Markov chains, Serra-Capizzano gives
an analysis of the Jordan canonical form of the standard real G(c); he also gives
a rational representation for y(c) and computes its limit as c → 1, again in the
standard real case only [Serra-Capizzano 05]. The Maclaurin series for y(c) was
studied by Boldi, Santini, and Vigna (2005), who identified the partial sums of
(8.7) for nonnegative real v and 0 < c < 1 as the iterates obtained in solving
yT G(c) = yT with the power method starting at v.

Boldi et al. obtained the special case (8.3) of our general result (6.1) [Boldi
et al. 06]. The matrix Y X∗ in (8.3) has been called the ergodic projection
[Lasserre 94].
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