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An Identification Problem for
Multiterminal Networks:
Solving for the Traffic
Matrix from Input-Output
Measurements
F. Alberto Grünbaum and Laura Felicia Matusevich

Abstract. We consider the problem of determining the unknown characteristics of a
random routing strategy from end-to-end measurements. More specifically, we construct
a Markov chain that models the traffic of messages in a multiterminal network consisting
of input, intermediate, and output terminals. The topology of the network is assumed
to be known, but the Markovian routing strategy is not known. We solve the problem
of determining the unknown one-step transition probability matrix of our random walk
from input-output measurements of “travel time.” We give explicit inversion formulas
(up to a natural gauge) in a nontrivial example. The result holds for a large (but
not arbitrary) class of multiterminal networks, many of which are indicated here. The
networks that we display here are constructed in a canonical fashion from certain
graphs. Some of these graphs as well as the way to go from graphs to networks are also
displayed. One example of a graph for which our method works is the edge graph of a
hypercube in any dimension.

1. Introduction

Consider the following exceedingly simple network, consisting of an input termi-
nal I, a intermediate terminal H, and an output terminal O, as seen in Figure 1.
Messages can be sent from I to O in two ways: either directly or by means of
the intermediate terminal H. The probability of a direct transmission is denoted
by PIO. The probability of a message going from I to H is denoted by PIH .
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Figure 1. The simplest network.

Once a message gets to H, the probability that it makes its way to O is given
by PHO. Notice that we allow for messages to be lost during transmission. We
assume that any message that is not lost takes one unit of time to travel between
two terminals and that messages do not interfere with each other.

Suppose that we can only make the following input-output measurements: we
can detect the probability that a message sent from I arrives to O, and we
can look at the random variable given by the travel time between I and O and
determine its expected value. Question: what can one learn about the network
from these measurements?

The answer here is quite simple: the probability of going from I to O is
given by

PIO + PIHPHO,

while the expected time of travel is given by

PIO + 2PIHPHO.

It is then clear that both the value of PIO as well as the value of the product
PIHPHO can be read off from the data. The individual values of PIH and PHO

can only be known up to a common scalar parameter F : we can multiply PIH by
F−1 and PHO by F , and nobody will be able to notice. Notice that the knowledge
of higher-order moments of the distribution of the travel time between I and O
will not give any extra information.

The purpose of this paper is to show that, for a large class of fairly complicated
networks, one can obtain results as nice and explicit as those described above.
The only difference will be that scalars are replaced by matrices to reflect the
fact that instead of one terminal of each type, we will have several terminals.
The free parameter F will become a matrix too, and in general the formulas
for the unknowns for which we can solve will become more complex than in the
simplest case depicted in Figure 1.
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Figure 2. A very simple network.

Before describing a large class of networks with the property alluded to above,
we give an example showing that there are also simple networks for which the
results are entirely different. For this purpose consider the modification of the
example in Figure 1 given by Figure 2, where the only change is that now the
number of intermediate terminals does not match the number of input and output
terminals.

We consider the network from Figure 2. For simplicity in the notation, let us
label the unknown transition probabilities attached to the arrows a through f as
in the figure. It is easy to write down the distribution of the travel time random
variable. In fact, all we need to do is count paths from source to sink: if k is an
integer, the probability of going from source to sink in 2k steps is

δ2k = a(ef)k−1b+ c(fe)k−1d,

and the probability of doing this using 2k + 1 steps is

δ2k+1 = a(ef)k−1ed+ c(fe)k−1fb.

Note that from δ2, δ3, and δ4 we can compute all the other δk, since δ4/δ2 = ef .
This means that even if we know the whole distribution of travel time, we cannot
solve for more than three of the six unknowns. This contrasts with the previous
example, where the number of free parameters coincided with the number of
intermediate terminals. In the examples discussed in the rest of this paper, we
will solve for all the unknowns except for a certain number of free parameters,
which will always coincide with the number of intermediate terminals.

We stress that in the model considered in Section 3, messages are allowed to
revisit any intermediate terminal an arbitrary number of times: a message starts
at an input terminal, meanders its way through a possibly complicated chain of
intermediate terminals, and, if not lost along the way, arrives at an output termi-
nal. We record the (random variable) travel time, and from this and other such
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measurements for all pairs of input-output terminals, we try to infer information
about the routing policy.

2. The Connection with Optical or Diffuse Tomography

The most common applications of mathematical methods to medical imaging
involve CAT scanners and MRI imaging. Both of these inverse problems amount
to trying to reconstruct the local or hidden characteristics of human tissue from
boundary measurements, i.e., from certain measurements corresponding to pairs
of sources and detectors, one tries to infer the characteristics of the tissue that
cannot be observed directly. Both of these techniques are part of the standard
tools of many modern hospitals, and they have both revolutionized diagnostic
medicine. In 1979 and in 2003, the Nobel Prize in medicine was awarded in
connection with these developments.

These ideas have spilled into the analysis of networks, as in the pioneering
paper [Vardi 96].

More recently, there has been an effort to use lower energy sources, such as an
infrared laser, to obtain images of diagnostic value. See for instance [Singer et
al. 90], [Arridge 99] and its references, [Dorn 98], and the papers [Grünbaum 90,
Grünbaum 92, Grünbaum 01a, Grünbaum and Patch 92a, Grünbaum and Patch
92b, Patch 95, Patch 99, Patch 94]. In the last collection of papers, one finds a
discretized version of the problem where one tries to model the inner character-
istics of tissue from a discretized model of the transport of photons among pixels
or voxels in the body. The main difference between the physics of this case and
the simpler one of x-rays and magnetic resonance is that scattering can no longer
be ignored. One has to deal with nonlinear equations from the beginning.

In the series of papers [Grünbaum and Matusevich 02a, Grünbaum and Ma-
tusevich 02b, Grünbaum and Matusevich 04], we have begun using some of the
tools developed earlier for the medical problem in the context of networks. The
main difference with the considerations in [Vardi 96] is that we allow for cycles in
our networks. Cycles are the counterpart of accounting for multiple scatterings
in the medical setup. We are interested mainly in the inverse problem of deter-
mining the (random) routing strategy from source-destination measurements.

The connection alluded to in this section will be a guide in the selection of
the kind of graphs and networks that we consider; more explicitly: the nodes of
a certain undirected graph will be thought of as pixels. To each pixel we asso-
ciate certain incoming states (infrared sources), certain intermediate or hidden
states (transitions to neighboring parts of the body), and certain outgoing states
(infrared detectors).
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The results in this paper extend quite nontrivially the application of the meth-
ods discussed above to problems in network identification.

3. The General Approach

All the networks that we consider are instances of directed graphs.
In the construction of these networks, we will have use for an intermediate step

involving another graph. The procedure that takes us from an arbitrary graph
to a directed graph will be explained in Section 4. In this section we start from
an arbitrary directed graph and introduce the inverse problem whose solution is
the purpose of this paper.

Let G = (V,E) be a directed graph with node set V and directed-edge set E.
Let I be the set of sources of V , O its set of sinks, and H = V \(I ∪O), the set
of intermediate or “hidden” nodes. We think of each node of G as a state in a
Markov chain and call the elements of I input terminals, the elements of O output
terminals, and the elements of H intermediate terminals. To each directed edge
(a, b) of G, we associate an indeterminate p(a,b). This indeterminate represents
the one-step transition probability of going from terminal a to terminal b. We
refer to these graphs as multiterminal networks.

We consider four matrices: PIO, PIH , PHH , and PHO. The rows of PIO are
indexed by the input terminals, its columns are indexed by the output terminals,
and the a, b entry of PIO is p(a,b) if (a, b) is a directed edge in G. All other
entries are zero. The other matrices are defined analogously, and either rows or
columns (or both) are indexed by the intermediate terminals. These matrices
are the blocks in the one-step transition probability matrix of our Markov chain.
We allow for all input and intermediate terminals to be absorbing states; that is,
we do not insist that the sum

∑
b p(a,b) be unity when a is either an input or an

intermediate terminal.
We consider the problem of recovering the matrices PIO, PIH , PHH , and PHO

from the distribution of a random variable called travel time for any pair made up
of an input and an output terminal. If we had access to the complete distribution
of this collection of random variables, we would have access to the matrices

δ1 = PIO, δ2 = PIHPHO, δ3 = PIHPHHPHO, . . . , δj = PIHP
j−2
HH PHO, . . . .

These matrices give the probability of making a transition in one, two, three, etc.
units of time from an arbitrary input terminal to an arbitrary output terminal.
Notice that, under appropriate conditions, this information is mathematically
equivalent to the knowledge of the moments of travel time, which are given by
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the matrices

Q
(j)
IO = PIO +

∞∑
m=0

(m+ 2)jPIHP
m
HHPHO.

From a practical standpoint, a few of the moments Q(j)
IO can be measured, but

measuring the matrices δj may not be practical.
In view of this, we will take the position that the only available information

are the zeroth- and first-order moments of travel time. We now compute these
two moments in terms of our unknowns,

PIO, PIH , PHH , PHO.

From the definition of the zeroth moment of travel time, we obtain (after
an appropriate summation of the corresponding geometric series) the following
expression for QIO ≡ Q

(0)
IO:

QIO = PIO + PIH(I − PHH)−1PHO, (3.1)

where I is the identity matrix.
If we denote

R = PIH(I − PHH)−2PHO, (3.2)

then one can see that the first moment of the travel time can be expressed as

QIO +R.

Proof. Recall that the jth moment of the travel time is given by

Q
(j)
IO = PIO +

∞∑
k=0

PIHP
k
HHPHO(k + 2)j .

For j = 1, we get

Q
(1)
IO = PIO + 2PIH(I − PHH)−1PHO + PIHPHH(I − PHH)−2PHO

= Q
(0)
IO + PIH(I − PHH)−2[I − PHH + PHH ]PHO

= Q
(0)
IO +R. �

Since QIO is taken as data, we can consider R as the extra information pro-
vided by the expected value of travel time.
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4. From Graphs to Multiterminal Networks

We now describe a procedure to obtain multiterminal networks from graphs,
including a labeling convention for the states. This convention will be extremely
important at the time of solving the actual equations. The networks obtained
from this procedure are amenable to treatment using our methods. We exemplify
this construction using the edge graph of the four-dimensional hypercube. It is
important to notice that we have two kinds of graphs: our networks are directed
graphs, and they are built (as we will see in this section) from undirected graphs.

Consider a graph G, for instance, the edge graph of the four-dimensional hy-
percube from Figure 3. The vertices in this figure represent pixels in our to-
mographic inspiration. Notice that each vertex in this example has four edges
incident to it; we will provide, for any vertex, four states of each of the three
kinds.

We start by drawing the intermediate states, which are obtained from the edge
graph of the four-dimensional cube (Figure 3) by splitting each edge into two
arrows pointing in opposite directions, as in Figure 4. The vertices in this figure
represent the pixels, and the arrows are states anchored at each pixel.

We still need to anchor four incoming and four outgoing states at each vertex.
If we make the convention that incoming and outgoing states have the same
labels, we need only draw the outgoing states. We do this by anchoring dotted
arrows at each vertex. These arrows point in directions that are opposite to the
solid arrows already anchored there (see Figure 5). One should imagine that at
each vertex there is also an incoming state represented by an arrow that ends at

Figure 3. The edge graph of a four-
dimensional cube.

Figure 4. The intermediate states
are solid arrows anchored at the ver-
tices.
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this vertex. These extra arrows are not drawn in our figures to avoid cluttering
the picture, except in the very simple case of Figure 9.

We summarize what we have so far: messages enter the pixels that are now
represented by vertices using one of the incoming states which are now input
terminals. They travel from vertex to vertex by using intermediate terminals, and
they end their journey by leaving one of the vertices using an output terminal.

Finally, we explain our labeling convention. Outgoing (and also incoming)
states anchored at a given vertex are numbered consecutively. We finish our
labeling by numbering the intermediate states so that the intermediate states
entering a given vertex receive the same labels as the outgoing states emerging
from that vertex. The best way of doing this is by assigning to a solid arrow
the same number as the dotted arrow pointing in the same direction. This is
illustrated in Figure 6.

Notice that we have some freedom in doing our labeling because we are not
determining the order in which the outgoing states anchored at a given vertex
are numbered. We just specify that these numbers are consecutive.

Since incoming and outgoing states are labeled consistently, the matrix PIO

is block diagonal, with 16 blocks, each of size 4 × 4. The matrix PHO has this

Figure 5. The outgoing states are dotted arrows anchored at the vertices.
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same block structure since the intermediate states entering a given vertex have
the same labels as the outgoing states emerging from it.

Our labeling also implies that the matrices PHH and PIH have a common block
structure, although they are not block diagonal. We show the block structure
for one possible labeling in Figure 7. The squares are 4 × 4 blocks of a 64 × 64
matrix, and each thin black region is a 4× 1 block. Labeling the outgoing states
anchored at a vertex in a different order, we obtain other block structures, but
in all cases the 4×4 blocks in the diagonal are empty, and once again in all cases
between rows 4i + 1 and 4(i + 1), the matrices PHH and PIH have four 4 × 1
blocks.

We emphasize that the “support” of the matrices PIH and PHH is disjoint
from the “support” of the matrices PIO and PHO.

In this case, arising from the hypercube, the corresponding inverse problem
has been handled in [Grünbaum and Matusevich 04]. In the next section we
consider a simpler situation where the initial (undirected) graph in Figure 3 is
replaced by the one on the left in Figure 9. This drastic simplification allows us
to display the steps of our general inversion method in complete detail.

12

1
2 3

4

4
3 12

5

6
7 8

7 68

5

9

10
11

12

9

1011

Figure 6. Labeling the states.
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Figure 7. The block structure for PHH and PIH corresponding to the network
constructed from the four-dimensional hypercube. The corresponding structure
for PIO and PHO is block diagonal and is not worth displaying here.

5. How to Obtain Inversion Formulas

The goal of this section is to outline a method for recovering the matrices PIO,
PHH , PIH , and PHO in terms of the entries of the data matrices QIO and R and
of some free parameters.

The next section illustrates the general method in a small but highly nontrivial
example.

Recall that the equations to solve are equations (3.1) and (3.2). It is clear that
these are nonlinear systems in the unknowns (the entries of the matrices PIO,
PIH , PHH , PHO). To remedy this problem, we introduce the following change
of variables:

A = P−1
HO, X = PIOA, W = APHH , Y = XA−1W − PIH .

It is easy to see that under the assumption that P−1
HO exists, this is an invertible

mapping from the old variables PIO, PIH , PHH , and PHO to the new variables
A, X, Y , and Z.

We now apply our change of variables to equations (3.1) and (3.2) to obtain
the following lemma.
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Lemma 5.1. QIO(A−W ) = X − Y and QIOA−X = R(A−W ).

The following observation is crucial.

Remark 5.2. The equations in Lemma 5.1 are linear systems whose unknowns are
the entries of the matrices A, X, Y , and W . These equations are equivalent to
the nonlinear systems (3.1) and (3.2).

At this point, if we have numerical values for the entries of the matrices QIO

and R, we need only solve the linear systems from Lemma 5.1 and invert the
change of variables to recover numerical values for the entries of the matrices
PIO, PIH , PHH , and PHO, with the caveat that we might not have enough
constraints and that some of the desired entries might be left as free parameters.

As a matter of fact, it is impossible to avoid having free parameters: if F is
an invertible diagonal matrix, then the replacement

PIO → PIO

PIH → PIHF
−1

PHH → FPHHF
−1

PHO → FPHO

(5.1)

does not alter QIO, R, or any of the moments of the travel time random variable.
In consequence, we will always have at least as many free parameters as there
are intermediate terminals. Our goal is to have only this minimal number of free
parameters and no more.

It is now time to make the second crucial observation for our method.

Lemma 5.3. Consider a network arising from an undirected graph in the manner
described in Section 4 and labeled as indicated in that section. The block structure
of the matrices PIO, PIH , PHH , and PHO is preserved under the change of
variables (5.1). That is, PHO and A have the same block structure, and so do
PIO and X, PHH and W , and PIH and Y .

Proof. By our labeling convention, PHO is a block diagonal matrix, and this is
not changed under inversion. Thus, A and PHO have the same block structure.

Since PIO and A are block diagonal with the same size blocks, X = PIOA has
the same block structure.

Let us now show that PHH and W = APHH have the same block structure.
Assume that A has r blocks of sizes s1 × s1, s2 × s2, . . . , sr × sr, respectively. By
our labeling convention, between rows s1 + · · ·+ si−1 + 1 and s1 + · · ·+ si there
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are si blocks of size si × 1. These thin blocks do not occur on the diagonal, and
in each column of PHH , there is exactly one block of size si × 1 for some i.

Let s1 + · · · + si−1 + 1 ≤ t ≤ s1 + · · · + si, and consider the t, r entry of the
product W = APHH . If r is not the index of a column where an si × 1 block
occurs, then the scalar product of the tth row of A and the rth column of PHH

will be zero (one vector has zeros where the possibly nonzero entries of the other
are). This implies that the block structure is preserved.

A similar argument shows that PIH and Y have the same block structure.

Now, the fact that A and W , and X, and Y have “disjoint” block structures
allows us to solve the linear systems from Lemma 5.1 symbolically, meaning that
we obtain formulas for the entries of A, X, Y , and W in terms of the entries
of QIO and R without first giving numerical values for these last two matrices.
This is tantamount to solving for PIO, PIH , PHH , and PHO symbolically.

The problem still remains that we will have free parameters. As we mentioned
before, it is impossible to avoid having as many free parameters as intermediate
terminals. The question now is whether the systems in Lemma 5.1 give enough
constraints so that we have exactly the minimal number of free parameters. We
have been able to check that this is the case in every example we tried of networks
arising from undirected graphs as explained in Section 4. We conjecture that
this holds for all such networks.

Here is our procedure to recover the transition probabilities for a given network
arising from an undirected graph as in Section 4:

1. We set up the linear systems from Lemma 5.1.

2. We solve these equations symbolically. (The block structure ensures that
we can do this: we can simply use Cramer’s rule to obtain explicit formu-
las.)

3. Then, if we have the minimal number of free parameters, we invert the
change of variables.

It is clear that the class of networks constructed in Section 4 is quite restricted.
These networks are tailor-made so that the equations in Lemma 5.1 can be solved
symbolically. Notice that not only do we need to have the same number of
incoming, outgoing, and intermediate terminals (so that the change of variables
makes sense), we also use the very special block structure that disentangles the
variables.

We do not believe that this method of obtaining explicit formulas will work for
general networks on the same number of incoming, outgoing, and intermediate
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terminals, let alone networks with more intermediate terminals than incoming
or outgoing (these are the most interesting networks for applications). On the
other hand, from general principles, one would believe that the inversion problem
that we have stated is completely intractable in a symbolic manner, and we were
pleasantly surprised to find a class (even a restricted class) of examples for which
the solution is feasible. It is our hope that more work on this type of inverse
problems will eventually produce solutions for more realistic networks with a
view toward concrete applications.

6. An Explicit Example

In this section we consider the multiterminal network drawn in Figure 8. This
seemingly complicated network was constructed from the very simple graph in
Figure 9 following the prescription given in Section 4.

The data are the matrices QIO = (qij) and R = (rij). Then, the unknown
PIO can be solved explicitly in terms of the data, while the unknowns PIH , PHH ,
and PHO depend on the data and four extra parameters a, b, c, d.

More specifically, we will see that the matrix PIO as well as the matrices
PIHF

−1, FPHHF
−1, and FPHO (with F an arbitrary diagonal matrix) can be

given in terms of the data. We note that the expressions that follow are valid
generically, i.e., only when the data is such that the denominators involved do
not vanish. We also recall that the matrices in which we are interested have the
block structure given in Figure 10.

We start by giving the matrix PHH up to conjugation by an arbitrary diagonal
matrix F as indicated above. Using this freedom, we can assume that the (3, 2)
and (4, 1) entries of PHH are equal to 1; then (see Figure 10), the 2×2 nontrivial
block in PHH is given by the matrix

1
e+ f + g + h

(
2a e+ k −m+ h

e− k +m− h −2b

)
,

where the following abbreviations are used:

a =
∣∣∣∣ q13 q23
r13 r23

∣∣∣∣ ; b =
∣∣∣∣ q14 q24
r14 r24

∣∣∣∣ ; e =
∣∣∣∣ r13 r14
r23 r24

∣∣∣∣ ;

f =
∣∣∣∣ q13 q14
r23 r24

∣∣∣∣ ; g =
∣∣∣∣ r13 r14
q23 q24

∣∣∣∣ ; h =
∣∣∣∣ q13 q14
q23 q24

∣∣∣∣ ;
k =

∣∣∣∣ q13 r14
q23 r24

∣∣∣∣ ; m =
∣∣∣∣ r13 q14
r23 q24

∣∣∣∣ .
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Figure 8. The network arising from a two-point star.

33
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3 43 4

1

1 21 2
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443

Figure 9. The two-point star graph on the left. On the right, a diagram repre-
senting the states: dotted arrows are incoming or outgoing depending on how
they point; solid arrows are intermediate states.

Figure 10. The block structure of PIO and PHO on the left, and that of PHH and
PIH on the right. These correspond to the network arising from the two-point
star.
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The matrix PHO can be assumed (using the freedom in choosing F ) to have
its (3, 3) and (4, 4) entries equal to 1; then, the only nontrivial 2 × 2 block is
given by the matrix

1
e+ f + g + h

(
α β
γ δ

)
,

where the following abbreviations are used:

α = −
∣∣∣∣ r11 r13
r21 r23

∣∣∣∣−
∣∣∣∣ r11 r21
q13 q23

∣∣∣∣ ; β = −
∣∣∣∣ r12 r13
r22 r23

∣∣∣∣−
∣∣∣∣ r12 r22
q13 q23

∣∣∣∣ ;

γ =
∣∣∣∣ r11 r14
r21 r24

∣∣∣∣+
∣∣∣∣ r11 r21
q14 q24

∣∣∣∣ ; δ =
∣∣∣∣ r12 r14
r22 r24

∣∣∣∣+
∣∣∣∣ r12 r22
q14 q24

∣∣∣∣ .
The matrix PIH (up to multiplication by F−1) has nonzero elements given as

follows. The entries (3, 2) and (4, 1) are given by the expressions

2∣∣∣∣ r11 r12
r21 r22

∣∣∣∣
(
q32

∣∣∣∣ r11 q13
r21 q23

∣∣∣∣+ q31

∣∣∣∣ q13 r12
q23 r22

∣∣∣∣
)

and
2∣∣∣∣ r11 r12

r21 r22

∣∣∣∣
(
q42

∣∣∣∣ r11 q14
r21 q24

∣∣∣∣+ q41

∣∣∣∣ q14 r12
q24 r22

∣∣∣∣
)
,

respectively. We now list the entries of the remaining 2 × 2 nonzero block in
PIH :

(PIH)1,3 =
2
(
q213(r24 + q24) − q13(q14r23 + r14q23) + (r13 − q13)q14q23

)
e+ f + g + h

,

(PIH)1,4 =
−2
(
q214(r23 + q23) − q14(q24r13 + r24q13) + (r14 − q14)q13q24

)
e+ f + g + h

,

(PIH)2,3 =
−2
(
q223(r14 + q14) − q23(q13r24 + r13q24) + (r23 − q23)q13q24

)
e+ f + g + h

,

(PIH)2,4 =
2
(
q224(r13 + q13) − q24(q14r23 + r14q23) + (r24 − q24)q14q23

)
e+ f + g + h

.
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We finally come to the matrix PIO, whose entries are determined completely in
terms of the data. First, we list the (3, 3) and (4, 4) entries of this matrix, which
are, respectively,

1∣∣∣∣ r11 r12
r21 r22

∣∣∣∣
⎛
⎝
∣∣∣∣∣∣
q33 r13 r23
q31 r11 r21
q32 r12 r22

∣∣∣∣∣∣+ q23

∣∣∣∣ r11 q31
r12 q32

∣∣∣∣+ q13

∣∣∣∣ r22 q32
r21 q31

∣∣∣∣
⎞
⎠

and

1∣∣∣∣ r11 r12
r21 r22

∣∣∣∣
⎛
⎝
∣∣∣∣∣∣
q44 r14 r24
q41 r11 r21
q42 r12 r22

∣∣∣∣∣∣+ q24

∣∣∣∣ r11 q41
r12 q42

∣∣∣∣+ q14

∣∣∣∣ r22 q42
r21 q41

∣∣∣∣
⎞
⎠ .

The entries in the remaining 2 × 2 block are listed next:

(PIO)1,1 =

∣∣∣∣∣∣
q11 r11 r21
q13 r13 r23
q14 r14 r24

∣∣∣∣∣∣+ r11φ+ q11ψ

e+ f + g + h
,

(PIO)1,2 =

∣∣∣∣∣∣
q12 r12 r22
q13 r13 r23
q14 r14 r24

∣∣∣∣∣∣+ r12φ+ q12ψ

e+ f + g + h
,

(PIO)2,1 =

∣∣∣∣∣∣
q21 r11 r21
q23 r13 r23
q24 r14 r24

∣∣∣∣∣∣+ r21φ+ q21ψ

e+ f + g + h
,

(PIO)2,2 =

∣∣∣∣∣∣
q22 r12 r22
q23 r13 r23
q24 r14 r24

∣∣∣∣∣∣+ r22φ+ q22ψ

e+ f + g + h
,

where

φ =
∣∣∣∣ q13 q14
q23 q24

∣∣∣∣ ; ψ =
∣∣∣∣ q14 q13
q24 q23

∣∣∣∣+
∣∣∣∣ r14 r13
q24 q23

∣∣∣∣+
∣∣∣∣ q14 r24
q13 r23

∣∣∣∣ .
In our general procedure for constructing multiterminal networks from graphs,

the more complicated the graph, the more complicated the network. For in-
stance, for the three-point star and the square in Figure 11, we obtain the net-
works in Figures 12 and 13, respectively.
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Figure 11. A three-point star and a square.

Figure 12. The network arising from
a three-point star.

Figure 13. The network arising from
a square.

means

Figure 14. A convention for simplifying figures.

We used the convention depicted in Figure 14 to make Figures 12 and 13 less
cluttered.

In all these examples, the same results hold; that is, we can provide explicit
expressions for all the unknowns in terms of as many free parameters as there
are intermediate terminals. However, the formulas are not as simple as the ones
that we have shown here.
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7. Limitations of the Model

It is not hard to point out shortcomings in our model as a caricature of the
Internet or other realistic networks. Maybe the most obvious ones are related to
the following scenario: in practice, messages carry an address, and the traffic of
any message is affected by that of the others. We expect to address these issues
in the future.

A technical limitation of our method is that we are restricted to multiterminal
networks with a common value for the number of incoming, intermediate, and
outgoing nodes.

8. Summary and Conclusions

The problem of determining the traffic matrix of a network from input-output
measurements leads to an apparently unsolvable inverse problem as soon as we
allow for loops.

Here we have considered a highly simplified model of a realistic multiterminal
network with plenty of loops. We give a general method for producing networks
of arbitrary size (including those based on a hypercube) for which we can give
a complete discussion of the underlying nonlinear inverse problem. The results
are illustrated by giving explicit inversion formulas (depending upon some free
parameters) in the case of a small but highly nontrivial network.

In our view, the main point of the paper is that the resulting highly nonlinear
equations can be solved explicitly. We hope to be able to extend these results to
more realistic networks, and we welcome suggestions as to the kind of networks
that might be of practical interest in regard to this general inversion problem.
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[Grünbaum 92] F. A. Grünbaum. “Diffuse Tomography: The Isotropic Case.” Inverse
Problems 8 (1992), 409–419.
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[Grünbaum and Matusevich 02b] F. A. Grünbaum and L. F. Matusevich. “A Nonlinear
Inverse Problem Inspired by 3-Dimensional Diffuse Tomography.” Int. J. Imaging
Technology 12 (2002), 198–203.
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