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Abstract. Today’s search engines are increasingly required to broaden their capa-
bilities beyond free-text search. More complex features, such as supporting range
constraints over numeric data, are becoming common; structured search over XML
data will soon follow. This is particularly true in the enterprise search domain, where
engines attempt to integrate data from the web and corporate knowledge portals with
data residing in proprietary databases. In this paper we extend previous schemes by
which an inverted-index-based search engine can efficiently support queries that con-
tain numeric restrictions in addition to standard, free-text portions. Furthermore, we
analyze both the known schemes and our extensions in terms of index-build time, in-
dex space, and query processing time. We show how to maximize query processing
performance while respecting limits on index size and build time, or conversely, how
to minimize index space and build time while maintaining guarantees on runtime per-
formance. Thus, we concisely analyze the trade-off between index size and build time,
and runtime performance. Finally, we present experimental results that demonstrate
significant performance benefits attained by our method, as compared to alternative
approaches.

[. Introduction

Both the search engine and database communities are increasingly focusing re-
search efforts on integrating text search with structured and semi-structured
data, in an attempt to narrow the gap between the two technological domains
[Agrawal et al. 02, Bhalotia et al. 02, Gravano 01, Gravano et al. 03, Hristidis and
Papakonstantinou 02, Raghavan and Garcia-Molina 01, Raghavan and Garcia-
Molina 03]. Databases, which have traditionally managed structured data, are
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busy developing free-text search capabilities to efficiently and effectively handle
queries over unstructured text columns in their records. Meanwhile, free-text
search engines are broadening their scope to support semi-structured search over
structured and semi-structured data. One particular example, which is the focus
of this paper, is the increasing support in the search engine industry for searching
over numeric fields, which we refer to as numeric search.

Recently, numeric search has become an important feature of free-text search
engines. Product and shopping search applications such as Froogle and Yahoo!
Shopping allow users, while entering a free-text search query describing a prod-
uct, to also restrict the results to a certain price range. In eBay’s advanced
search, users can mix free-text search with numeric constraints such as the prod-
uct’s price range and the supplier’s distance from a given zip code. In the
advanced article search page of the Los Angeles Times website (as in most sites
of major newspapers), users can restrict the set of articles that match a given
free text query to those that were published within a certain range of dates. As
the amount of semi-structured data increases—whether it is intrinsically sup-
plied as part of the data or extracted from the data automatically—efficient
algorithms for evaluating free-text queries with numeric constraints will become
more important.

In this paper, we analyze and extend methods that augment inverted-index-
based search engines with numeric search support. Note that these methods
include the data representation aspect (indexing the numeric data associated
with the documents) and the runtime aspect (accessing the text and numeric
data when evaluating mixed queries). The main parameters of our analysis will
mirror these aspects and will include (1) the time required to build the numeric
portion of the index, (2) the space consumed by the numeric index, and (3)
the time required to evaluate numeric constraints. Furthermore, we quantify
the relationship between the first two quantities (index size and build time) and
present a concise trade-off between the latter two quantities (index size and
runtime performance).

Unlike known approaches in the literature to numeric search and related prob-
lems, our proposed scheme is completely insensitive to the type of numeric values
found in the data (integer/floating point, positive/negative), to the distribution
of values across the documents (clustered /nonclustered values), and to the gran-
ularity, or precision, requested by the queries. We thus make no assumptions on
any of these issues.

The rest of this paper is organized as follows. Section 2 describes the types
of queries we handle, introduces the inverted-index data structure, defines our
model of a free-text query containing numeric constraints, and discusses the
document-at-a-time (DAAT) evaluation model that is adopted in this paper.
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Section 3 surveys related work. Section 4 discusses naive solutions to the numeric
search problem, and Section 5 recounts the novel approach of Burrows to this
problem [Burrows 96]. Sections 6 and 7 present our extensions to Burrows’ work,
analyze the performance trade-offs involved, and discuss implementation issues.
Section 8 reports on experiments that we conducted with an implementation of
our scheme inside an intranet search engine. We conclude in Section 9.

2. Preliminaries

2.1.  Numeric Data and Queries

Our data model consists of a corpus of N text documents, where each document
may also contain one or more numeric attributes, or fields (price, date,! age,
longitude/latitude, etc.)

In general, documents may contain multiple values for some numeric field (e.g.,
a product in a catalog may come in several sizes). Alternatively, it could be that
some documents do not contain any value for some numeric field. However, to
ease the presentation, the analysis will mostly focus on the case where, for each
numeric field, a single value is associated with each document. This allows our
notations to be kept simple, with the symbol N denoting both the number of
documents as well as the number of numeric (document,value) pairs to be indexed
for each field. This simplifying assumption notwithstanding, the indexing and
retrieval algorithms we present are easily extended to support multiple or no
values per field per document, as explained in Section 6.4.

The queries that we address in this paper are those that contain both a free-
text portion as well as constraints on the values of one or more numeric fields.
Each such numeric constraint consists of an allowed range of values per some
specific numeric field. Numeric constraints can be one-sided, defining ranges,
[v,00] or [—o0,v] (e.g., price < 50), or two-sided, defining ranges, [Umin, Vmaz)
(e.g., 2001 < year < 2004). Two-sided queries are more general, and so most
of the discussion in this paper will focus on those.

Note that queries in a search engine will seldom contain only numeric con-
straints; queries will typically contain a mixture of both free-text query terms
and numeric constraints. For instance, a typical query could be “java book
price < 50,” which has both textual and numeric constraints. We consider nu-
meric constraints to be boolean restrictions, or filters, on the set of matching
documents—we are not attempting to rank documents by their numeric values.

1One accepted numeric representation of dates is as the number of seconds since January
1st, 1970.
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Rather, documents that respect the numeric constraints (and only them) will be
ranked and returned according to the free-text portion of the query.

2.2.  The Inverted Index

The inverted index (sometimes called inverted file) is the data structure of choice
for full-text indexing in search engines [Arasu et al. 01, Witten et al. 99]. Al-
gorithms for building inverted indexes are widely published [Baeza-Yates and
Ribeiro-Neto 99, Brin and Page 98, Heinz and Zobel 03, Melnik et al. 01, Witten
et al. 99]. Our goal is to develop a method that incorporates efficient numeric-
search capabilities into the inverted-index model.

In an inverted index, each term or field appearing in the corpus is represented
by a postings list. The set of all unique terms and numeric fields in the data
is placed in a dictionary. Each dictionary entry points to a postings list, which
contains a posting entry <doclD, offset, payload> for each occurrence of the
term in the corpus. The posting entries encode the location (docID and offset
within document) of the occurrences and are typically sorted by this location.
Indexing the offsets within the document enables the engine to support phrase
queries and to perform proximity-based ranking of search results. In addition,
an occurrence-specific payload is associated with each posting entry. Brin and
Page used the payload to encode contextual information about the occurrence,
such as the font size and capitalization [Brin and Page 98|. In general, for text
tokens, the payload contains attributes used for ranking and display purposes.
For numeric fields, the occurrence-specific payload may contain the value of the
field.

Figure 1 shows our index structure. We assume that the index is stored on sec-
ondary storage and not in RAM and that each postings list is stored contiguously
on disk.
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Figure 1. Index structure.
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23.  Document at a Time Evaluation

There are two main approaches to query evaluation using an inverted index. One
is the document-at-a-time model (DAAT) [Brin and Page 98, Broder et al. 03], in
which the postings lists of all query terms are traversed in parallel during query
execution, identifying and scoring one candidate document after the other. The
second is the term-at-a-time model (TAAT), in which the postings lists of the
terms are traversed sequentially and a pool of accumulators is used to aggregate
the contributions of the various terms to the candidate documents.

Each of the two models attempts to minimize the I/O required to evaluate
queries. The TAAT model is useful when evaluating disjunctive (OR) queries,
where the union of the documents containing any of the terms defines the set of
matching documents. Since scoring the documents involves reading the entire
postings lists of all the terms of the query, those lists are traversed sequentially,
maximizing the amount of sequential I/O and minimizing the amount of disk
seeks. On the other hand, the DAAT model is more efficient when evaluat-
ing conjunctive (AND) queries, where only the documents containing all query
terms are considered as matching the query. This is particularly true in the
presence of selective query terms (terms appearing in relatively few documents),
as cursors on each postings list are moved efficiently to minimize disk I/O and
optimize evaluation time. Here, the increased amount of disk seeks caused by
the parallel traversal of different postings lists is offset by the much smaller
amount of data that is actually read. Furthermore, DAAT evaluation natu-
rally supports proximity-based scoring and is better suited for handling queries
containing exact-match phrases.

The enormity of the web, coupled with the tendency of users to submit very
short queries to web search engines, has caused conjunctive semantics to emerge
as the de-facto standard in web and intranet search engines. Furthermore, as
proximity plays a very important role in scoring short queries, DAAT is now
the dominant evaluation model of web and intranet search engines. Note that
DAAT is nicely suited to support our notion of numeric constraints as filters,
presented in Section 2.1.

3. Related Work

Databases have been serving queries over numeric values for decades. Free-
text queries have been served traditionally by full-text information retrieval sys-
tems and in the past decade by web search engines. In recent years there has
been substantial research in augmenting databases with keyword search capabil-
ities [Agrawal et al. 02, Bhalotia et al. 02, Gravano 01, Gravano et al. 03, Hris-
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tidis and Papakonstantinou 02] and in extending search engines to support richer
query languages [Raghavan and Garcia-Molina 03].

Squeal is a system that allows SQL queries over web repositories [Spertus and
Stein 00]. Its main goal is to support relational queries over web documents,
while our approach allows for combined keyword and numeric search.

Recently, several XML processing algorithms that work over inverted indexes
have been proposed [Bruno et al. 02, Carmel et al. 03, Kaushik et al. 04]. These
algorithms use the information stored in postings lists to check structural con-
straints for XML queries. They also support the integration of XML and textual
constraints and exploit these constraints in ranking [Carmel et al. 03]. How-
ever, none of these algorithms handle the parametric and numeric restrictions
supported by XML query languages.

The problem of indexing numeric values using postings lists can be viewed
as a bi-dimensional index problem, where the two dimensions are the loca-
tion and the value. Several multi-dimensional index structures have been pro-
posed in the database literature, such as UB-trees [Ramsak et al. 00] and R-
trees [Guttman 84]. See [Samet 90] for a reference on the applications of spatial
data structures.

To the best of our knowledge, the only previously disclosed work specifically
addressing the support of numeric constraints in search engines is the patent filed
by Burrows [Burrows 96] as part of his work on the core of the AltaVista search

2

engine.” For deductive purposes, we defer the detailed description of Burrows’

scheme to Section 5.

4. Naive Solutions
4.1.  Single-List Approaches

Perhaps the easiest way to support numeric constraints in an inverted index is
to create a single postings list for each numeric field. Like all postings lists, the
entries in the numeric postings list will be ordered by docID, with each posting
element storing the value that corresponds to the document. In order to simplify
the presentation, we ignore the offset part of the location in the reminder of the
paper.

During evaluation, the numeric postings list is filtered: query evaluation is
driven by the free-text terms, and candidate documents matching the text por-
tion of the query are filtered according to whether their numeric values match
the given range constraints. We call this kind of numeric postings list a filtered
postings list.

2 AltaVista was then owned by Digital Equipment Corporation.
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The solution above could be reasonably efficient when the free-text part of
the query is selective (i.e., relatively few candidate results are passed through
the numeric filter), but it is quite inefficient if the selectivity lies mostly in the
numeric part of the query. In other words, the selectivity of the free-text part of
the query serves as the lower bound to the number of numeric posting elements
that must be scanned, regardless of the eventual size of the result set for the
query. Since accessing each numeric posting may involve random I/0, filtered
postings lists offer a simple indexing solution that comes at the cost of expensive
runtime resources.

An alternative single-list approach holds the N (docID, value) pairs sorted
by values rather than by docIDs. Here, two binary searches can identify the
section of the list that holds values respecting the numeric restriction of a given
query, thus identifying the documents that match the numeric part of the query.
However, the matching documents are given in arbitrary order; they will need
to be joined with the candidates determined by the free-text part of the query,
which are typically produced in docID order. This is inefficient in cases where
the numeric restriction is not highly selective. Furthermore, this join-based
algorithm does not fit well within the architecture and flow of search engines.

4.2.  Postings List per Distinct Value

A more advanced solution, which is efficient whenever the number of distinct
values per field is small, is to have a dedicated postings list (naturally sorted by
location) per value in each field. This solution also requires a sorted table of all
distinct values per field, with each entry of the table pointing to the correspond-
ing postings list (in other words, a dictionary of values for each field, sorted by
values). During query evaluation, one consults the field’s dictionary to determine
the indexed values that fall within the requested range. Then, the corresponding
postings lists are OR-ed (merged by docID) and AND-ed with the rest of the
query’s terms. Note that, in general, merging M postings lists involves reading
in parallel from M different disk locations and becomes expensive as M grows.
Therefore, to further optimize I/O in this approach, the various postings lists
should be laid out contiguously on disk, sorted by the numeric value. Then,
when sufficient RAM is available so that the lists can be merged in memory, the
numeric part of each query requires reading a single contiguous area.

Despite the above optimization, this approach is not efficient for general value
distributions in DAAT evaluation. In numeric fields containing a large number
of unique values, the number of (often very short) postings lists that need to
be OR-ed during evaluation grows. Furthermore, if the postings lists cannot
be stored on disk contiguously by value, or cannot be read once and merged
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in-memory, performance may rapidly deteriorate as more distinct postings lists
are accessed in parallel.

The scheme above is related to laying out the postings lists corresponding to
text terms in lexicographic order, in order to efficiently support suffix completion,
i.e., trailing wildcard queries such as “intern*” [Cutting and Pedersen 90].

5. Burrows’ Scheme

Note that while the three simple approaches presented in Section 4 all suffer from
inefficiencies in runtime performance, they index each (docID, value) pair once.
Thus, the overhead in terms of index space is kept minimal. The breakthrough
in Burrows’ work [Burrows 96] involved improving runtime performance at the
expense of additional preprocessing resources—indexing time and space.

Basically, Burrows proposes to re-index the same numeric data multiple times,
naturally organizing the data differently each time. Specifically, Burrows sug-
gests indexing numeric values in a multilayered scheme. He starts off by dedicat-
ing a postings list per distinct numeric value per field, as in Section 4.2: this set
of postings can be thought of as being layer-0. He then builds additional layers
of postings lists, with each layer being the result of merging pairs of adjacent-
valued postings lists from the previous layer. Concretely, if layer 0 contained k
postings lists for values vg < v < ... < vg_1, layer 1 will contain k/2 postings
lists,® where layer-1 list j is the result of merging layer-0 lists 25 and 2j + 1 by
location (docID). This implies that the postings lists in each layer fully index the
data, and hence the size of each layer is linear in the number of (docID, value)
pairs, which we have denoted by N.

When one builds [log, k] — 1 extra layers beyond layer 0, the last layer will
contain two postings lists. Now, any one-sided query requires merging no more
than a single list from each layer, and any two-sided query requires merging no
more than two lists from each layer. Therefore, any numeric restriction requires
the merging of O(log(k)) numeric postings lists, and some resiliency against
multi-valued distributions is achieved. The price to be paid, of course, is the
extra index space and index-build time required to build these extra layers.

6. Multilayered Schemes: Extension and Analysis

This section presents our main body of work, where we extend Burrows’ mul-
tilayered scheme and concisely analyze the trade-off between index space and
build time, and runtime performance.

3For simplicity, assume that k is even.
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We begin by addressing several issues that arise from Burrows’ scheme.

e Starting off with a postings list per distinct numeric value in layer 0 still
leaves the scheme sensitive to the distribution of values. One may need to
invest in many additional index layers until the number of postings lists to
merge per query drops to acceptable levels. Furthermore, the size of the
dictionary needed per field may be large—in the extreme case, the number
of entries per field can equal the number of documents.

e Is the merging of pairs of adjacent postings lists from one layer to the
next optimal? Could the merging of more than two postings result in
better performance? What about changing the number of postings to
merge within a layer? What about merging different numbers of postings
as more layers are built?

e Denoting the number of extra index layers per field by L and the number
of postings lists that may need to be merged per that field by M, can one
generalize the trade-off between L and M, in a sense minimizing M given
constraints on L and minimizing L given constraints on M?

Section 6.1 addresses the first issue, the structure of layer 0, and represents the
first step toward our proposed solution. Sections 6.2 and 6.3 then explain and
analyze our full scheme, and Section 6.4 discusses several implementation issues
that arise from it. Section 7 presents a further extension, which is analyzed for
the case of allowing a single extra layer of postings lists per numeric field.

6.1. A First Step: Equal-Sized Postings Lists of Increasing Value Ranges

As discussed in Section 4, when the number of distinct values present for some
numeric field is large (when few documents share the same value), keeping a
postings list for each value results in poor performance. The field’s dictionary
becomes quite large, and a query may require us to fetch many short postings
lists and then to merge them by docID. In order to overcome such inefficiencies
and to remove any dependency of runtime performance on the distribution of
the values within the documents, we argue that longer and fewer postings lists
should be created, by having each list £ cover a range of values, r(¢).

Specifically, we propose the following three-step process that creates b postings
lists, each of size %, and two b-sized lookup tables, T}, and T4 The two
lookup tables will serve together as the dictionary of the field (thus limiting its
size to O(b)).

1. Sort all N (docID,value) pairs by value. Let V' denote the set of distinct
values.
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2. Cut the single sorted list into b blocks of size %. For each block, populate
Tnin with the minimal value of the block (the value of the first item in the
block), and T},4, with the maximal value of the block (the value of the
last item in the block).

3. Create a postings list from each of the b blocks, by re-sorting the elements
within each block by docID. Note that while elements within a block are
no longer sorted by value, for 1 < i < j < b, all values in block i are no
greater than any value in block j.

The complexity of the above procedure (index build time) is dominated by that
of the first step, O(N log N) if using a comparison-based sort or O(N) if using a
fixed-width radix sort [Fontoura et al. 04]. The index space complexity is O(N),
which is still minimal.

At runtime, upon receiving a query that requests a value range of R =
[Vimin, Umaz)], evaluation proceeds according to the following three steps:

First step. Consult Ty, and Tqq (using two binary searches) to find the minimal
and maximal list indexes, 4,,i, and 4,,.., defined as follows:
- mane{o,...,b—l}{ ] : Tmaz[]] < Umin} + 1 if Tmax[o] < Umin, (6 1)
e 0 1f Tmam [0] Z Umins .

i _ minje{&...,b—l}{ Jt Thin []} > Umax} -1 if Tmzn[b - 1] > Umaz
"0 if Thinlb — 1] < Vmae-
(6.2)

It follows that whenever 4,5 = b, tmaz = —1, OF imin > Imaz, N0 documents
match the query. In all other cases, the union of values in postings lists i,,n
through 4,4, includes all indexed values that fall within the range R. Formally,

ROV c | r(e).

J=tmin

Second step. Construct a filtered postings list from £ that only considers entries
whose values are no smaller than v,,;,. Similarly, construct a filtered postings

tmin

list from ¢ that only consider entries whose values are no greater than v,,,q-

imaw
Denote these filtered lists by f; . and f; . , respectively. Whenever i,,;, =
Imaz, the single postings list £ is filtered by both the lower bound v,,;, and

the upper bound v,,42-

Tmin
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Third step. Merge the following postings lists by docID, effectively OR~ing them:

Jimin> Cimint1s -5 i =15 Jian-
Add the resulting postings list to the evaluation.

The above design, which is completely oblivious to the distribution and gran-
ularity of the numeric values, implies two worst-case guarantees on runtime per-
formance:

1. The amount of filtering (length of filtered-postings) is bounded by 2% for
two-sided queries.

2. The number of postings to merge is bounded by the number of blocks, b.

Clearly, we have a trade-off between the amount of filtering and the number of
postings to be merged during query evaluation. Keeping both values low requires
more resources, namely index space, as described in the next subsection.

The structure of the first step is similar in spirit to a B4+Tree. The tables T},in
and Ty,q. fill the role of the internal nodes of the tree, while the b equal-sized
postings lists can be seen as the leaves of the tree. However, there are notable
differences: first, in B+Trees, the physical size of the leaves usually corresponds
to the physical organization of data on a disk, whereas in our scheme the number
of posting entries in each postings list (%) bounds the amount of filtering that
is required (and does not correspond to the physical layout of the postings lists
on disk). Second, the data in the leaves of a B+Tree and its internal nodes are
sorted by the same key; in our scheme, the T-tables are sorted by numeric value,
whereas the postings lists are sorted by locations (docIDs).

6.2. (L, c)-Canopy Design

In this section, we build a multilayered scheme on top of the b equal-sized (bal-
anced) postings lists built in the previous subsection. The simplest way to achieve
this would be to take the b postings as a balanced layer 0 and proceed to build
additional layers as proposed by Burrows. We take this further by deriving the
optimal manner to build the extra layers and by analyzing the trade-offs involved.

And so, with the b balanced postings comprising layer 0, let ¢ > 1 and L > 1
be natural numbers: L denotes the number of additional layers of postings lists
for the numeric field, and ¢ will denote a clustering factor. For simplicity of
exposition, we assume that ¢” divides b.

The basic idea is that, for each layer j, j =1,..., L, we construct % postings

lists of size NT"J As in layer 0, each document appears in exactly one postings
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, C% — 1, of layer j is composed of the

merging (by docID) of postings lists ic,..., (i + 1)c — 1 of layer j — 1. In other
words, each layer clusters the postings lists of the previous layer in groups of size
¢, ending up with larger (but fewer) postings lists. We call this an (L, ¢)-canopy
design, as the L layers of postings can be seen as the leaf layers of L B+Trees.
However, these trees (as well as the tree of layer 0) all share the same “trunk”:
the two tables Ty, and Ti,q.. Therefore, rather than being a forest of L + 1
trees, the layers correspond to a large canopy of a single tree. Figure 2 shows an
(3,2)-canopy design, with three extra postings layers and a clustering factor 2.

list of each layer. Postings list 4, « =0, ...

6.2.1.  Query evaluation at runtime. During runtime, the following steps are executed:

e Consult T;,;, and T}, as explained in Section 6.1. This implies which
layer-0 postings lists define the range.

e Build filtered postings for the two extreme postings lists of layer 0.

e Select the appropriate postings lists from each layer so as to minimize
the number of selected postings. We label the postings lists using a special
numbering scheme in which each list in layer 0 is numbered sequentially and
each higher-layer list is labeled using its layer-0-equivalent starting point
(Figure 2). We choose the lists by a greedy iterative algorithm depicted in
Figure 3. The intuition behind this algorithm is to use the longer postings
lists from deeper layers as much as possible. A list from layer i > 0 will be
selected if and only if its value range fully satisfies the query constraint,
while some values of its containing list in level ¢ + 1 fall beyond the query
constraint.

e Merge the selected postings lists by doclDs, essentially OR-ing them via
heap merge. The complexity of this step is O(logm Y i~ |¢;]), where the
m lists ¢1,...,¢,, are OR-ed and |¢;| denotes the length of list i. Please
note that this complexity is somewhat less than optimal if the lists have
different sizes, in which case it could be better to recursively merge the two
smallest lists until only one large list remains. Either of these two merge
strategies can be applied in this step.

ayerol 0 [ 1] 2 ][ a ][ «] s ] e ][ 7] [ o][1o][+1][12] 1] 1e][ ]

avert|_ 0 || 2 | 4 || o | & [ w0 | w2 || ]

Layer 2| 0 " 4 ” 8 ” 12 |

Layer 3| 0 ” 8 |

Figure 2. Numbering of postings lists for the list-selection algorithm.
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void selectPostingsLists(

int m, // minimal layer-0 list index
double Vinin, // the minimal value desired
int M, // maximal layer-0 list index

double Vinax, // the maximal value desired
int clustering) // clustering coefficient

int from = m;

int to = M;

// We assume here that m < M. The case

// where m equals M should be handled separately.

// getPostingsList takes as input the list index

// and layer and returns the appropriate list.

b = getPostingsList(m,0);

if ( Vmin > getMinValueInList(b) ) {
OrPostings.addFiltered(b) ;
from=from+1;

}

b = getPostingsList(M,0);

if ( Vimaee < getMaxValueInList(b) ) {
OrPostings.addFiltered(b);
to=to-1;

}

// Lists from...to should all be taken as is (no filtering).
while (from < to) {
layer = dive(from, to, clustering);
OrPostings.add(getPostingsList (from,layer));

from += clustering'®¥c";

}

// Helper function for list selection
int dive ( int fromListNum, int toListNum, int clustering ) {
int layer = O;
int range = toListNum - fromListNum + 1;
// Check if the layer+l is a good candidate.
while ( (clustering'®*"*! divides fromListNum)
&% (range > clustering®* 1)
&& ((layer+1) < L) ) {
layer++;
}

return layer;

Figure 3. List-selection algorithm.

165
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Required range: layer-0 blocks 2-14

< RILUOLIEOEL S
HEEEEN .

] —

E= Postings lists that require filtering
[ Postings lists not requiring filtering

Legend:

Figure 4. Postings list selection during query evaluation.

Figure 4 exemplifies the postings lists that are OR~ed for a query that ranges
from layer-0 lists 2 to 14 in a (2,2)-canopy scheme. Only six postings lists
are accessed, covering the range of the 13 layer-0 lists. The role of the canopy
should now be clear: the different sizes of the postings lists in each layer allow a
numeric constraint to be satisfied with fewer, but longer, postings lists without
increasing the amount of filtering required. The strict relationship between the
sizes of the postings lists in the layers allows the canopy to share a single “trunk”
(Tonins Tmaz) and allows the list-selection algorithm to efficiently select “leaves”
from multiple layers to satisfy constraints.

6.2.2.  Index build time. We now examine how the (L, ¢)-canopy postings lists are
written to disk during indexing time. We discuss two schemes, depending on the
amount of available RAM during the index build phase.

e Inductive creation of layers. Assume that we can fit 2V records in memory, giving
us the ability to hold two layers simultaneously in memory. As explained
in Section 6.1, creating layer 0 requires O(N log N) time and is dominated
by the initial sorting of the N (docID,value) pairs by value. Layer 0 can
then be written contiguously to disk. The remaining L layers are created
as follows: we hold two memory buffers of size N—one for the last layer
already created and one for the layer being currently created. Given layer
Jj, layer j + 1 can be prepared in time O(N logc), as we heap-merge by
docID ¢ postings lists of layer j at a time. Layer j + 1 is then written to
disk in a contiguous manner, one list at a time. Then, we build layer j + 2
using the buffer that previously held layer j. Overall, index build time is
O(Nlog N + Llog c]), where all layers are written sequentially without any
intermediate disk seeks (and no reads at all).

o C(reation of layers from raw data. If the available RAM can hold 3N + O(b) records
at once, we can create all L + 1 layers in O(N[log N 4 L]) as follows:
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5.

. In the first N-sized buffer, we hold the N (docID,value) pairs sorted

by docID.

. We sort the N pairs by value into a second N-sized buffer and build

the tables T}, and T 00 -

. Reusing the second buffer, we consult the T-tables and write, for

every document d, the index of the layer-0 list that will hold the
entry corresponding to d.

For each layer j = 0,...,L, we logically divide the third N-sized
buffer into the & lists of layer j. All the lists are initially considered

empty. We then scan the first buffer (the data, sorted by docID) and,
for each (d,v) pair, fetch the layer-0 list corresponding to d, which

we wrote in the second buffer. Let k£ denote that list number. The

pair (d,v) belongs in list | £ | of layer j, and we write it to the first

o
empty space in that list. Since we scan the data by doclDs, we are

guaranteed that each layer-j list will be sorted by docIDs as well.

Each layer is written to disk in one motion.

Overall, sorting the N pairs by value and finding the layer-0 list corre-
sponding to each document requires O(N[log N + logb]) = O(Nlog N).
Then, each of the L + 1 layers is prepared in linear time, O(NL). Again,
all layers are written sequentially without intermittent seeks.

We note that in RAM-limited environments it is also possible to build each
layer efficiently (though with substantially more disk I/O) by using a sorted list
(ordered by value) of size N on disk and making one pass over it to generate
each layer using a RAM buffer of size % that is accumulated, sorted by doclD,
and written to disk as needed.

6.3.

Analyzing the Canopy Design

It is clear that a design with L layers introduces space demands of O(LN), as each
layer includes entries for each of the N documents. While space demands grow

linearly with L, the runtime’s worst-case performance guarantees are reduced as

follows:

o Amount of Filtering. The amount of filtering (length of filtered-postings) remains
bounded by 2% for two-sided queries. Filtering is done at most on the two

extreme postings lists of layer 0. Each such list is of size 7-.

N

o Number of OR-ed postings lists. The number of lists that should be OR-ed for this
numeric term, denoted by M(L,b,c), is bounded by 2L(c — 1) + 5 in
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layer 0 we might need to OR 2c¢ lists (¢ postings with low values, ¢ postings
with high values). From each layer j = 1,...,L — 1, we need to consider
no more than 2(c¢ — 1) lists. In layer L, we may need to OR all but two of
the lists: c% — 2. Summing the above,

M(Lbe) = 2e4+2L—1)(c—1)+ %2
C
b
= 2L(c—1)—|—c—L_

In particular, when L = log.b, the number of postings lists to OR is
reduced to O(clogb).

The above formulation allows us to minimize M (L, b, c) given constraints on
the number of extra layers L and the amount of filtering tolerated, F'. This is
achieved by optimizing c.

Proposition 6.1. The optimal value of ¢ in an L-layered canopy, when filtering should

be done on no more than F records, is copt(L,b) = (g)L#+1 where b= 2%.

Proof. The filtering limit F’ implies that each postings list in layer 0 should contain

no more than g documents. This implies that the number of lists in layer 0 is

b= 2.4 Now, for given values of b and L,

2F
OM(L.be) _ORL(e—D+ ] 0 0 )
Oc dc ’

o 1
which is zero whenever ¢ = (2)7+1. O

We can now substitute cop¢(L,b) in M(L,b, c), and we deduce that

= 2(g)ﬁ(Lﬂ)—u. (6.3)

So far we have shown how to minimize M for tolerated values of b (or, equiv-
alently, F)) and L. Equation (6.3) readily allows us to maximize b (thereby
minimizing F') given tolerated values of L and M.

Corollary 6.2. The mazimal value of b in an L-layered canopy where up to M OR-ed
postings lists are tolerated is

M+2Lr+1

mazLaM =2 |-
bmaz (L, M) {2L+2

4For simplicity we assume that F divides N.
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Finally, we note that minimizing L for tolerated values of M and b (calculating
Linin (M, 1)) can be achieved in ©(log L,,in) time using standard bracket and
bisection schemes [Press et al. 88].

So far we have considered the clustering factor ¢ to be the same across all
layers. As noted at the beginning of Section 6, two questions arise:

1. Can allowing each layer to have its own clustering factor result in better
performance? In particular, for given values of b and L, might L different
clustering factors ci,...,cy, yield better performance than just fixing a
single value for ¢?

2. When building layer k + 1, can clustering the postings lists of layer k in
groups of unequal size result in better performance?

The answer to the second question is yes, as will be shown in Section 7. However,
as we subsequently show, the answer to the first question is negative: a uniform
value of ¢ is optimal.

In what follows, we assume that the product of ¢q, ..., cy, divides b. We denote
by M(L,b,{c1,...,cr}) the bound on the number of postings lists to be OR-ed
when using an L-layered canopy with clustering coefficients ¢, ..., cr.

Proposition 6.3. For given values of L, b, and ¢y, ..., cr, let € denote the average of
c1,...,cr. Then,
M(L,b,c) < M(L,b,{c1,...,cL}).

Proof. By considerations similar to those used above, we bound the number of
lists that each of the L layers may contribute to the OR for this parameter. We
deduce that
< b
M(Laba{cla"'ch}) = 22(0_7 - 1)+ HLi
j=1

j=1Cj

Now,
M(LJ), {(217. .. ,CL}) - M(LJ),E)

= QEL(C-fl)Jr b *2L(571)—£

B 5 / HI-‘Zlcj ck
= J

b

b
- Y —— >0
mk_¢; ek O

—
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Another way to understand this result is to observe the symmetric roles of
C1y...,cp in M(L,b,{c1,...,cr}). Such symmetry intuitively suggests that all
the ¢;s should be equal.

6.4.  Final Implementation Notes

6.4.1.  Omitting values in postings lists of layers other than layer O. The postings of layer 0 are
composed of (docID, value) ordered pairs. This allows for these postings lists to
be filtered by value when some of the values in the list fall outside the numeric
range R defined by the query. Postings of layers deeper than 0, however, are
never filtered since they only participate in the evaluation when R fully contains
the numeric range of the list. Therefore, the (value) component is redundant
for the sake of retrieval and can be dropped if the application does not need the
actual value, resulting in a more compact postings-list representation, in which
each element carries no payload beyond the location.

6.4.2.  Multiple values per field per document. In some cases, documents may contain
multiple values for the same numeric field. For example, a page from a product
catalog might describe products of different sizes. Our scheme is easily extended
to support such cases, with minor changes both to implementation and analysis.
Implementation-wise, in layer 0, distinct entries must be kept for multiple values
of the same document: this enables filtering by value on the layer 0 postings
lists. However, in all other layers, multiple occurrences of the same docID in a
list are collapsed into a single entry. Actually, this is a direct consequence of the
previous paragraph which proclaimed that only docIDs need be saved in deeper
layers (the values are redundant there).

6.4.3.  Value-based dlustering of layer O. So far, in order to bound the amount of filtering
required by each query to 2F', we have set the size of each layer 0 list to exactly
F = %. In practice, however, it makes sense to impose another restriction on
layer-0 lists: not allowing a single value to span across more than one postings
list.

Figure 5 shows a simple algorithm that constructs layer 0 in a manner re-
specting both restrictions. Its input is the set of (docID, value) pairs, sorted by
value.

Clearly, the algorithm does not allow a value to span multiple postings lists.
Furthermore, any postings list containing two or more distinct values will surely
be smaller than F, respecting the 2F bound on filtering. Note that the algorithm
may create lists whose size is larger than F' whenever a single value is shared by
more than F' documents. In such a case, a list will be dedicated to that value.
Nevertheless, as large as they may become, these lists never need to undergo
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// B = the current postings list being constructed
// V = the set of distinct values
// B, = set of documents associated with value v
B«— ¢
Foreach v € V (ordered by increasing values){
if (|B|+|By| < F):
B+~ BUB,
else {
write B (sorted by docIDs)
B — B,

}
}

write B (sorted by docIDs)

Figure 5. Value-based clustering algorithm of layer 0.

filtering. Their value either falls within the query’s range, requiring the entire
list to be taken, or it does not, rendering the whole list as irrelevant to the query.
In addition, for equality constraints (where v,,in = Umar = v), we never need
to consider more than one postings list, thus eliminating the need of merging
multiple lists.

This approach can potentially reduce the number of lists at layer 0, but it
may also fragment layer 0 to include some small postings lists (with rare values
sandwiched between two popular values). However, since every two adjacent
postings lists are at least of size F' 4 1, the overall number of layer-0 lists is
bounded by 2[%] + 1L

1. Variable Clusterings within Layers

The canopy scheme discussed in the previous sections constructs an initial layer
of postings lists, layer 0, whose size depends on the tolerable amount of filtering
F. For each subsequent layer ¢ (¢ > 1), it employs a clustering factor ¢; that
defines how many postings lists of layer ¢ — 1 are merged into each list of layer 1.
Proposition 6.3 proved that nothing can be gained by having different layers use
different clustering factors; i.e., there is no reason to set ¢; # c;. However, we
have yet to consider using different clustering factors within a single layer. This
section shows that, in general, clustering variable amounts of layer i — 1 postings
lists when constructing level i results in better performance. Specifically, it
typically lowers the bound on the number of postings lists that need to be OR-
ed when evaluating a query.

We begin with an example, setting L = 1 and b = 50. The optimal canopy
design with one extra layer has M,,;,(1,50) = 18, achieved when setting ¢ = 5,
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Layer 0, 50 posting lists of size N/50 Layer 0, 50 posting lists of size N/50
S e S e e e e | | e T | | = e S &
5-regular design: 10 postings of size N/10 Irregular design: 10 postings of variable lengths
(a) (b)

Figure 6. Regular (a) versus variable (b) clustering factors.

as shown in Figure 6(a). However, clustering the 50 postings lists of layer 0 in
groups of 3,4, 5,6, 7,7, 6, 5, 4, and 3 lowers M to 14, as shown in Figure 6(b).

A full analysis of designs with variable clusterings within layers is left for future
work. In this section, we analyze the case of a single extra layer (L = 1) for a
given number of postings lists in layer 0, denoted by b.

Definition 7.1. A {c1,ca,...,cx} two-layered design is a design in which layer 0

contains b = Zle ¢; blocks, layer 1 contains k blocks, and block ¢ of layer 1

covers blocks 1 + Z;;ll ¢; through 22:1 ¢; of layer 0 (¢; > 0).

Definition 7.2. A {c1,co,...,cx} two-layered design is called M-bounded if any
numeric query requires the merging of no more than M blocks.

It is easy to see that the following is true.

Lemma 73. A {c1,co,...,cx} two-layered design is M-bounded if and only if the
following two conditions hold:

(a) Foralli=1,...,k, ¢; <M.
(b) For alli,j such that 1 <i<j <k,

CZ+C]+(j—Z—].)§M

With the above definitions and characterization of M-bounded two-layered
designs, we proceed to bounding b, given a design limit on M, the maximal
number of postings to merge in any single query.

Definition 7.4. Let b(M) denote the maximal value of b such that there exists an
M-bounded two-layered design {cy,ca,...,c,} with Zle c¢; =b.
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Proposition 7.5.

(MEL)2 if M is odd,

MM +1) if Mis even.

b(M)>{

Proof. We begin by showing an M-bounded two-layered construction for odd
values of M. Let k = M, and consider the design

M-1 M+1 M-1
i 2,1}

1,2,...
{77 ) 9 ) 2 ) 2 ) 77}

First, by summing up these numbers, we deduce that layer 1 covers (%)2

layer-0 postings:

M—1
M+1 2 M+1 M+1M-—1 M+1)\?
2 = — .
2 " ;’ 2 2 2 ( 2 )

Trivially, the first condition of Lemma 7.3 holds. For the second condition, we
note that any two layer-1 postings that are separated by n postings cover no more
than M — n layer-0 blocks. In other words, for all 7,5 such that j —i —1 =mn,
ci+c; < M —n. This implies that the second condition of Lemma 7.3 holds, and
so the suggested design is indeed M-bounded and consequently b(M) > (%)2

The construction for even values of M also has k = M, with the design being

M M
—, = 2,1

1,2,... .
{77 72727 77}

Summing up the numbers gives %(% + 1), as claimed, and the two conditions
of Lemma 7.3 hold in the same manner as for the case of odd values of M. [O

Proposition 7.5 constructively lower-bounds b(M). Before proceeding to show
that the bound is tight, we present the following two lemmas.

Llemma 7.6. Let {ci,ca,...,cpr—1, ¢} be an M-bounded two-layered design. Then,
M (%)2 if M is odd,
> e
i=1 ML +1) if Mis even.

Proof. We use the second part of Lemma 7.3 to deduce that ¢; = ¢y = 1,
otherwise ¢; + car + (M —2) > M and the design is not M-bounded. Now, with
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c1 = ¢y = 1, the same lemma also implies that, for all j =2,..., M — 1,
¢ < mn{M—-1-(-2),M—-1—-(M—-j—-1)}
= min{M —j+1,j}. (7.1)

In fact, Equation (7.1) holds also for j = 1, M. Therefore, for even values of M,

M M/2 M

D= DGt DG

j=1 j=1 j=1+M/2
M/2

IN

M (M
2 = — (= +1
> s (3 +1).

and the proof for odd values of M is similar.
Note that the construction in Proposition 7.5 indeed defined ¢; = min{M —
j+1ljtforall j=1,...,M. 0

lemma 7.1.  Let {c1,...,ck} be an M-bounded two-layered design such that
2 < k < M. Then, either ¢, = ¢, = 1 or one can construct a two-layered
M -bounded design {do,...,dy} such that

k k
Z d; > Z Ci.
=0 =1

Proof. Assume without loss of generality that ¢; > 1. We claim that the two-
layered design {do,d;,...,d;} where dg = 1 and d; = ¢; for all i = 1,... k is
still M-bounded and, of course,

k
d; > ZC,’.

k
i=0 i=1
Consider the conditions of Lemma 7.3. Adding dy to the original design clearly
doesn’t violate the first restriction. Regarding the second condition, we must
only verify that, for all j =1,...,k, dy +d; + (j — 1) < M. This immediately
holds whenever 57 > 1, since
do+dj+(G—-1) = 14+c¢+(G—1)
— = (- te+(-1)
< ategH(-2) <M.
Asfor j =1, since k > 1 and ¢; + ¢o < M, it must follow that ¢; < M, and thus
1+01:1+d1§M O
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We can now prove the upper bound on b(M).

Proposition 7.8.
(A2 if M is odd,
b(M) =

M +1) if Mis even.

Proof. Let {c1,...,cx} be an M-bounded two-layer design. Note the following:

e k cannot exceed M. Otherwise, if k > M,
ateg+k-2)>14+14+(k-2)=k>M
and the design is not M-bounded.

e Whenever k£ = M, Lemma 7.6 has already shown that Zf\il ¢; cannot
exceed the claimed bound on b(M).

We are therefore left with the case k < M. First, note that we can exclude
the case where k = 1, since ¢; < M and Proposition 7.5 already implies that
b(M) > M for all M.

Thus, we examine the case where 2 < k < M, and we assume by way of
contradiction that the given design is optimal, i.e., b(M) = Zle ¢i. We now
prove by induction that, for all i = 1,..., %-\, Ci = Cha1—i = 1.

Lemma 7.7 provides us with the base of the induction, since if the design is
optimal then necessarily ¢; = ¢, = 1. Thus, assume that, for any j in the range
2,...,[%], for all i < j it holds that ¢; = cg4;—1 = i, and consider ¢; (the proof
for ¢y1—; is symmetric). If ¢; # j, then one of the following three cases holds:

(ase . (¢; < j —1.) Define the two-layered design {d,...,dr} where, for all
i # j, d; = ¢; and dj = ¢; + 1. Showing that {d1,...,dy} is M-bounded would
contradict the optimality of {¢1,...,cx}. To this effect, we note that for all ¢ < j
ditdj+(j—i—1) < i+j+(G—i—1)
= 2j—1<k<M,

whereas for all t > j

N

dt+dj+(t—j—1) < Ct+j+(t—j—1)
= Ct+(t—1)

e+ (-2 <M.
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(ase 2. (j < ¢; < M —j.) Define the two-layered design {d,...,d;} where, for
alli # (j—1),d; = ¢; and dj_1 = ¢;_1+1 = j. We again show that {di,...,ds}
is M-bounded, since for all : < 7 —1

di+dji1+(G—i—2) = i+j+({—1—2)
< di+jH+(G-i—1)
< ¢t +(j—i—1)<M.

Also,
dj+dj—1 <M —j+j=M,

and for all £ > j
de+djia+(t—j) = a+j+—))

a+(G+)+(E—35-1)
< g+ +(t—j7—-1) <M.

(ase 3. (j <¢j =M —(j—1).) For this case, we first prove that k = 2j — 1:

e k > 27 — 2, since j does not exceed (%1 during the induction, and so
j < k+2
5

e ik <2j—1, since the design is M-bounded, and so

0>[cj+ep+(k—j—1)]-M=[M—-(j—1)+1+(k—j—1)|—-M = k—2j+1.

Since k < M, k = 2j — 1 implies that M > 2j, or equivalently # >j—1.
Therefore,

k j—1 k
I W
i=1 i=1 i=j+1
j—1
= ¢+ Z(Cz‘ + Cht1-i)
i=1
j—1
G-1)+2 Z ¢; (by the induction hypothesis)
i=1
G-D+i0G-1)
(j—1)?

Mf
M_

M —2\? M\?
e (M2) 2 () <o a2

IN
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Having ruled out all three cases above, we conclude that ¢; (and also cg41-5)
must equal 7, completmg the induction. Finally, since ¢; = cxqi-1 = ¢, © =
[ and k< M, Zi:l ¢; < b(M), which completes the proof. O

Comparing the result of Proposition 7.8 to the substitution of L = 1 in Corol-
lary 6.2, we deduce that by moving from fixed clustering to variable clustering
within layer 1, while keeping M fixed, one can double b—thus halving the amount
of worst-case filtering required by any query.

Corollary 7.9. For a given value of b, when variable-cluster designs are considered,

Comparing this result to the substitution of L = 1 in Equation (6.3), we
deduce that by moving from fixed clustering to variable clustering within layer
1, while keeping b fixed, one can reduce M,,;, by a factor of /2.

8. Experimental Results

In this section we experiment with the benefits and trade-offs of the (L, ¢) canopy
design. We have implemented this design in Trevi, an intranet search engine
built in IBM that is currently used to serve queries in the IBM world-wide
intranet [Fontoura et al. 04]. We ran all experiments on a Linux system with
a dual 2.4GHz Intel Xeon processor and 4 GB of main memory. In order to
account for the I/O overhead in processing the queries, we used cold buffers in
all experiments that measure running time. We used real data sets from the
IBM intranet, augmented with two synthetically generated numeric fields per
document. The values for these fields were derived from two random distributions
on real numbers, causing the number of distinct values per field to be very close
to the number of documents in the dataset. Furthermore, the distributions
were derived independently of the documents’ content and of their docIDs, so
the numeric values are independent of any other postings list in the index and
are uncorrelated to the order of the documents in the inverted index. For all
experiments we used an index of 2.5 million documents. The index size for the
IBM intranet is approximately 5 million documents after duplicate elimination.
However, numeric postings lists of 2.5 million documents in size are common,
since not all documents have numeric fields.
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|L| | Theoretical ¢ | Used ¢
2 70.7 64
3 17.1 16
4 8.40 8
5 5.49 4

Table |. Index configurations tested.

8.1. Index Size and Build Performance

For measuring index size and build performance, we built several configurations
of the numeric postings, varying the number of extra layers (L) and the clustering
factor (c). Let us define |L| = L + 1 to be the total number of layers. For these
experiments we fixed the filtering factor F' by setting the block sizes for layer 0 to
4,096 bytes. In this configuration, each block in layer 0 can hold approximately
250 values, which caused the number of blocks in layer 0 to be 10,000 for our
2.5 million document index. We then varied |L| and ¢, computing the best
possible ¢ for each | L| using the result of Proposition 1. The index configurations
we used are summarized in Table 1. In our implementation the value of ¢ must
be a power of two, so we present two values for ¢ in Table 1: theoretical c is
the value computed from Proposition 6.1, and used c is its closest power of two,
which is the value we used for the experiments. Besides the configurations listed
in Table 1, we have also built indexes with no extra layers (|L| = 1), for which
the clustering factor is irrelevant.

Table 2 shows the sizes of the numeric postings lists for each index. It also
shows the index-space overhead due to these postings, i.e., the percent of space
used by the numeric postings lists in the index. This overhead is heavily depen-
dent on the number of numeric fields per document, and it grows linearly with
this number (as mentioned above, we indexed two numeric fields per document).
An important point is that the overhead due to layer 0 (|L| = 1) is higher than
the overhead due to the extra layers since the numeric value itself is only stored
in the layer-0 postings lists, as discussed in Section 6.4.

|L| | Size (MB) | Overhead
1 54 0.45%
2 72 0.60%
3 90 0.75%
4 108 0.90%
5 126 1.05%

Table 2. Numeric postings list sizes for the different index configurations.
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|L| | Time (ms) | Overhead
1 27123 1.01%
2 51857 1.93%
3 75090 2.83%
4 100934 3.77%
5 126028 4.70%

Table 3. Numeric postings list build time for the different index configurations.

Table 3 shows the performance for building the numeric postings lists. It also
shows the time overhead (percent of indexing time) for building the numeric
postings lists for the extra layers. Our implementation used the RAM-limited
approach where we first sorted the numeric postings by value and wrote them
to disk. Then, each layer was built by scanning that sorted list, once per layer.
This overhead reached up to 4.70%. As expected, both the index size and the
build time grow linearly with the number of layers. Nevertheless, the overall
impact of the extra layers is small, both in size and in build time performance.

8.2.  Runtime Performance of Range Queries

Figure 7 plots the query response times as a function of the selectivity of the
numeric field. Selectivity pertains to the fraction of the 2.5 million documents
that satisfy the numeric constraint. We varied the selectivity of the numeric
field from 1 down to 27%, for i € {1,...,10}. The y-axis is plotted in logarithmic
scale. Most of the plots correspond to the number of numeric postings layers,
with the relatively level line plotting the performance resulting from using the
filtered postings list mechanism described in Section 4. We ran these experiments
with cold buffers to avoid any caching. The bulk of the time for all the runtime
numbers is due to I/O: the CPUs were mostly idle for every pair of query and
index configuration that we tested. The approach based on no extra layers
(IL] = 1) was not considered, since it turned out to be extremely inefficient
due to the large merge overhead. Therefore, we omit the results for |L| = 1 in
Figure 7.

The filtered-postings approach behaved consistently across the entire selectiv-
ity spectrum, timing at about 8,000 ms per query, clearly worse than any of the
multilayered designs. The main reason for this higher runtime overhead is the
extra I/O required, since each posting entry in the filtered list needs to store the
value in its payload (8 bytes per posting entry), which is not required for the
postings lists for the extra layers. Moreover, CPU utilization is also higher since
it needs to examine the data payload for every posting entry, checking if it is
within the specified range.
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Figure 7. Query response times versus query selectivity for several values of |L|.

Among the layered schemes, query throughput increases with the number
of extra layers until query selectivity reaches the 0.8% point. For the more
selective queries, all layered designs attain comparable performance figures (less
than 10 ms per query). This is expected since, for larger indexes, reducing the
merge overhead is a key performance factor for nonselective queries. Figure 7 also
shows that increasing the number of layers to more than four did not improve
performance for this index size. The reason is that for |L| = 4 the number of
postings lists to merge is already small. In this case the extra layers do not add
significant benefit, and for very selective queries they even add some noticeable
overhead.

8.3. Runtime Performance of Range Queries Combined with Text Terms

The previous experiments illustrated scenarios in which the numeric constraint
drove the query execution. In this section we study the case where a more
selective text predicate drives the execution. The bulk of the query evaluation
time is due to I/O on the postings lists for each of the query terms. In the case
where one or more text terms drive the query execution, we are interested in the
overhead that is added by the numeric postings lists.

In Figure 8 we ran experiments in our 2.5 million document index built with
|L| = 4. We used the keyword “almaden” for the text part of the query since
it is selective, appearing in only 1.6% of the documents in the index. We varied
the selectivity of the numeric field from 1 down to 27%, for i € {1,...,10}. The
y-axis is plotted in logarithmic scale. This graph also shows the running time of
a query involving two text terms: “almaden” and a synthetic term that appears
in every document. This flat curve is labeled “Text.” When the selectivity is 1,
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Figure 8. Query performance for a range query combined with keyword “almaden.”

i.e., the furthest point to the left, both queries (“Text” and |L| = 4) produce the
same number of results. The comparison between these two queries shows that
the overhead for the numeric list is lower than the overhead for a text term: the
curve for “Text” is always above the curve of |L| = 4, even when the selectivity
is 1. This is due to the fact that the numeric lists for the extra layers are smaller
than postings lists for regular text terms, since they do not store any payload
information.

The running time for the query involving the numeric field (]L| = 4) decreases
proportionally to the number of results. This is because the combined query is
able to run more efficiently since it can process fewer documents by performing
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Figure 9. Query performance for a range query combined with keyword “java.”
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efficient cursor movements (larger skips) on the postings lists, saving considerable
amounts of I/O. When the numeric term is less selective, less skipping is possible.
In Figure 9 we used the keyword “java” instead of “almaden.” The selectivity of
“java” is higher: it appears in 10.3% of the documents. Nevertheless, the results
are still similar to those presented in Figure 8.

9. Conclusions and Future Work

This paper studied the problem of efficiently supporting numeric search in search
engines. We began by discussing the shortcomings of several naive approaches to
this problem. We then proposed several modifications and extensions to a state-
of-the-art algorithm for the problem, addressing implementation issues along
the way. Our ensuing analysis described how inverted lists representing numeric
fields can be constructed so as to maximize query-processing performance while
respecting limits on index size and build time, or conversely, how index space
and build time can be minimized while maintaining guarantees on runtime per-
formance. Our experimental results confirmed our performance analysis and
demonstrated significant performance improvement (on the order of 10 times)
over the naive filtered posting list approach.

For future work, we plan to further investigate multilayered schemes with
variable clustering, going beyond the case of L = 1 studied in Section 7. For
example, for b = 42 (42 blocks in layer 0), Figure 10 shows (half of) a design
with three extra layers where no more than eight merges are needed for any
query. Note that Ly and Lo constitute an optimal 12-bounded two-layer design
as proven in Section 7. This is an improvement over optimal (L, ¢)-canopies—as
shown in Section 6.3, with three extra layers, M,,;,(3,42) = 11—Dbarely better
than the optimal 12-bounded two-layer design.

42 Original blocks,

Half shown (L), © OO 00O COOO OO0 OOOOOO
o [ bR [ e] [2T2] [2[ e ] [e ] s ]
ol el e e JEs e ]
W7 L |

Figure 10. Left half of a multilayered variable clustering design with b = 42 and
three extra layers.
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We also plan to integrate our approach in XML search engines and to study
how to support XPath/XQuery queries with parametric restrictions in inverted
index-based search engines. Note that Holistic twig-join [Bruno et al. 02], which
is the current state-of-the-art in XML query-processing algorithms over inverted
indexes, efficiently checks the structural constraints of XML while traversing the
postings lists. However, it does not check the parametric or numeric restrictions
of the query. We intend to extend the holistic twig-join algorithm to check
numeric restrictions using the approach proposed in this paper.
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