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Introduction

Let X denote a connected space dominated by a finite CW-complex and let
rl(X). In his paper Finiteness conditions for CW-complexes [6], C. T. C.

Wll ssocites to X n element (X) e/0 (Z()), clled the obstruction to
finiteness of X, whose vanishing is necessary and sufficient for X to be of the
homotopy type of a finite complex. Also Wall shows that given any finitely
presentable group and any a e/0 (Z()) there exists a CW- complex X dom-
inated by a finite complex and satisfying 1(X) r; a (X) .
Any compact topological manifold is a retract of a finite complex. As such

to each connected compact manifold M is associated an element
(M) e/0(Z() (where M) which is the obstruction to finiteness of
M. It is a conjecture of Milnor that for a connected, closed manifold M of
dimension n the relation (M) (-1)n(M) holds, where bar denotes the
involution in/0(Z()) rising from the involution mx --. mx of
Z(). Thus if this conjecture is proved it will follow that not every element
in /0(Z()) can be realised as the Wall obstruction of a closed manifold,
where r is an arbitrary finitely presentable group. Siebenmann in his thesis
[4] proves this equality with the additional assumption that M Rcarries
differentiable structure for some integer/. The object of this paper is to prove
this equality for all closed, orientable manifolds.
The author has learned that the formula (M) (-1)n) for a closed

orientable manifold M of dimension n has been proved independently by
Milnor and Wall and that Milnor’s proof will appear in a forthcoming paper of
Wall entitled Poincar$ complexes I to appear in the Annals of Mathematics
shortly. This proof is purely algebraic whereas the author’s proof is more geo-
metric. Also the author has learned that the result on the Wall obstruction
for sphere bundles obtained in this paper has also been obtained by S. Gersten.
But none of these has appeared in print at the time of acceptance of this paper.
The idea of the proof can briefly be explained as replacing M P, in

Siebenmann’s proof by the total space of an orientable topological R bundle
(i.e. a microbundle) over M carrying a differentiable structure. In the course
of his proof Siebenmann uses the fact that the Wall obstruction for M
is zero when/ 1 is odd. For our proof we have to study the Wall obstruction
of a sphere bundle over a connected CW-complex X dominated by a finite
complex. We have information only in the case of S bundles when/ _>- 2
(Theorem 3.3). For an S bundle over X we do not have any information.
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1. Notations and conventions
We writef A --- A’ to denote thatf is a homotopy equivalence of the space

A with the space A’. If f (A, B) .--> (A’, B’) is a map of pairs of topological
spaces (i.e. to say B c A B’ c A’ and f(B) c B’) satisfying f A A’ and
fiB B B’ then we call f a pseudo homotopy equivalence or shortly a p.h.
equivalence of (A, B) in (A’, B’). As usual by a CW-pair (X, Y) we mean a
CW complex X together with a subcomplex Y of X. We denote by ff (Re-
spectively ) the family of CW complexes dominated by a finite complex (re-
spectively having in each dimension a finite number of cells). By a fibre
bundle we mean a locally trivial fibre space. Thus by a sphere bundle of fibre
dimension/c or shortly an S-bundle over B we mean a locally trivial fibre
space over B with fibre S.

Let C, C’ be chain complexes over a ring A and C-- C’ a chain map. By
"abuse of language" we will refer to as a chain equivalence if it induces iso-
morphisms of homology modules. If , (C, D) -- (C’, D’) is a chain map of
pairs of chain complexes (i.e. to say D and D’ are subcomplexes of C and C’
respectively and (D) D’ we call a chain equivalence of pairs if , C --> C’
and D -- D’ are chain equivalences. In this case the induced chain map, C/D --. C’/D’ is also a chain equivalence.

2. Sphere bundles and cohomology extensions

The main reference for the results stated here is Section 7, Chap. 5 of [5]
dealing with the homology of fibre bundles. The homology and cohomology
groups we use are the singular ones and when no coefficients are mentioned we
mean integer coefficients.
Let (E,/) be a fibre bundle pair over B with fibre pair (D, S-1), with pro.-

jection pair (p, t5),/ being, an integer => 1. In otherwords (E,/) is a pair
of topological spaces with E E and p E -- B is a map with the property
that an open covering U}z of B and for each a a homeomorphism

0," V (D, S-) (p-(U), p-(U.) n )
of pairs such that the composition p o 0 U X D - U is the projection onto
the first factor. The map i5 "/ -- B is the restriction of p to/. For any
x e B the pair

(D S-1 )(p-(x), (x) n

is the fibre pair over x.
tension.

We now recall the definition of a cohomology ex-

DEFINITION 2.1. By a cohomology extension for the bundle pair (E, )
Hwe mean a cohomology class U e (E, /) such that for each x e B the in-

clusion (D, Sk-1)x c (E, /) carries U onto a generator of H( x, S).D-When such a cohomology extension exists the pair (E, /) is said to be an
orientable bundle pair.

If is a (k 1 sphere bundle with total space/ and projection 5 / --. B,
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the mapping cylinder E of/i with the canonical retraction p E - B gives
a bundle pair (E,/) with fibre (D, S-1). The sphere bundle is said to be
orientable if the bundle pair (E,/) is orientable.
For the rest of this section X denotes a connected space which is of the

homotopy type of a CW complex; r denotes the fundamental group of X and
the universal covering of X. As usual r is considered as a group of oper-

ators on . Let -- X denote the covering projection.
Let now (E, /) be an orientable bundle pair over X with fiber pair

(D, S-1) and projection pair (p, /i). Choose a cohomology extension
U e H(E, ). Let , e CS(E, ) be a fixed cocyle rep.resenting U. (We
denote the singular chain and cochain complexes of (E, E) by CS(E, ) and
CS*(E, 1) respectively.) Let 10"/ -- be the pull back of the bundle
p"E -- X by means of the map a" -- X. Thus/ is the subspace of 2 X E
consisting of elements (4, e) such that a() p (e). The map
is given by p($, e) 4. The group r acts in an obvious way on/, namely
a.(a, e) (a., e) for all a e and (4, e)e/. The map B’/--* E given by
B($, e) e is clearly a bundle map covering the map a: --* X. Also it
is clear that B’/ -- E is the universal covering of E. Let/"
Then

p" p [/’./---, X
is precisely the pull back of the bundle/i"/ -- X by a’. -- X and (/,/’)
is a bundle pair over X with fibre pair (D, S-). It is clear that
V B*(U) e H(/,/’) is a cohomology extension for the bundle pair (/,/’)
and that g*(,)e CS(,, ’) is a cocycle representing V.
The operations of r carry/" into itself and hence the singular chain complex

CS(/,/’) acquires the structure of a Z() chain complex.

LEMMA 2.2. The map z/ n "CS,(, ’) -- CSm_(, ’) carrying any
c e CSm(, ,’) into the cap product n c is a homomorphism of Z()-modules.

Proof. Let f: -- E be any singular simplex. Let f(0.1.....k) denote the
front k-dimensional face of f and f(k.....) the rear (m )-dimensional face
of f. Then by the definition of the cap-product

n f 1)-(f0,...,)f,...,
Now, for ny a e r it is clear that

(a.f)(o,...,,) a.(f(o,...,)) and (a.f)(,...,) a.(f(,...,,)).

Also

,(a.f(o,...,)) (a.(f(o,...,)) {/.(a.(f(o,...,k)))}.

Since B(a.) B() for every e/ we see that

,{/5.(a.(f(0,....))} 5’{gC.(f(0....,))} {f(0,...,)}
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Hence , a (a.f) 1 )(-),((a.f) (o,... ,) (a.f) (,,...

1)(’-*)- (f(o,...,)){ a.(f(,...,.))

This proves Lemm 2.2.

Let H be the chain complex over Z defined byH Z ndH 0 for i k.
The tensor product CS(X) (R) H is considered s chain complex over
Z() in the obvious wy, nmely the -opemtors on CS() s usual nd trivial
-opertors on H.

LEMMA 2.3. The map r CS , " ---> CS (R)z H defined by

(c) c()( c) (R)

is a Z(r)-homomorphism of chain complexes inducing isomorphisms in homology.

Proof. Clearly p’E - X commutes with operators of . That r is a
Z(v)-homomorphism follows from Lemma 2.2 and the above observation.
That it is a chain map inducing isomorphisms in homology is proved in Sec. 7,
Chap. 5 of [5].

3. The Wall obstruction for sphere bundles

LEMMA 3.1. Suppose K is a finite simplicial complex and p’E .--, K a
locally trivial fibre space with fibre a finite simplicial complex L. Then E is
dominated by a finite complex.

Proof. Clearly E is a compact metric space satisfying the second count-
ability axiom and is further local ANR. By Theorem 3.2 of [3] it is an ANR.
Any compact ANR is dominated by a finite complex.

LEMMA 3.2. Let X e and p’E --, X a locally trivial fibre space with fibre
a finite simplical complex. Then E is dominated by a finite complex.

Proof. X is dominated by a finite simplicial complex. Let

xLg x
be maps such that g o f Idx with K finite simplicial complex. If E denotes
the total space of the pull back of the bundle p"E - X by means of the map
g"K --+ X, it is easy to show that E is dominated by E. By Lemma 3.1 E is
dominated by a finite complex and hence E too is dominated by a finite
complex.

Let now X denote connected CW complex in and r (X). If
i5"/ -- X is a sphere bundle over X of fiber dimension/ 1 >_- 2 then/
is connected and i5," (/) --* (X) is an isomorphism. We use this iso-
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morphism to identify (/) with . By Lemma 3.2,/ is a space dominated
by a finite complex and hence one can talk of the obstructiona() to finiteness
of/ which is an element of/0(g()). The main result proved in this sec-
tion is the following.

THEORE 3.3. Let Xe and ro(X) O, ’(X) . Let

(X)/0(Z())
be the obstruction to finiteness of X. Then for any orientable sphere bundle: --, X of fibre dimension k 1 >-_ 2 we have

a(/) 0 if (k 1)is odd

2a(X) if(It- 1) is even.

Remark. This theorem can be thought of as a generalization of the product
formula for Wall obstruction to orientable sphere bundles of fibre dimen-
sion _-> 2.

For the rest of this section we will be considering only connected spaces and
hence the word space will mean a connected space. Before actually giving
the proof of Theorem 3.3 we state some lemmas all of which are easy con-
sequences of standard auguments but as we need them in the proof of the
theorem we prefer to state them separately and indicate their proofs.

LEMX 3.4. Let (A, B) be a pair of spaces such that A and B are separately
dominated by finite complexes. Then a CW pair (P, Q) with P e (and
hence Q also) and a p.h. equivalence f: (P, Q) -- (A, B).

Proof. Let i:B A denote the inclusion. Since A, B are dominated by
finite complexes B elements Y, Z in and homotopy equivalences " Y -- B;
b" Z -. A. Let 0"A -- Z be a homotopy inverse to . Let g: Y -- Z be any
cellular map such that g 0: Y- Z. LetM be the mapping cylinder of g.
Then clearlyM e . If "M- Z is the canonical retraction (which is also a
homotopy equivalence) we have o j g where j: Y - M is the obvious
inclusion. Now o o j o g o 0 . Since j is a cofibration l
amaph’M-Awithhoandhoj . NowP M,Q Yand
f h clearly satisfy the requirements of the lemma.

For any CW complex X we denote the cellular chain complex of X by C(X).
Iff"X -- Y is a cellular map there is an obvious induced mapf." C(X) -- C(Y).
If . is the universal covering of X and (X) then the operations of
on make C()) a free Z()-chain complex. Also if f:X -- Y is a cellular

homotopy equivalence one can choose a cellular "lift" ]: -/7 of f and the
induced map]." C() -, C(/7) is a chain equivalence of Z()-chain complexes,
when we agree to identify v(Y) with v by means of the inverse of the iso-
morphism f." (X) (Y).

LEMMA 3.5. Let X be a countable CW complex and the universal covering
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of X and let r rl(X). There exists a Z(-)-chain equivalence

c (2) c(2).

Proof. Since X is countable it is of the homotopy type of loclly finite
simplicil complex K [7]. We cn choose cellular homotopy equivalences

"K - X; O:X -- K which re inverses of one nother in homotopy. The
universal covering is also locally finite simplicial complex nd rl(K)
operates without fixed points on K. By result of S. Eilenberg [1] 1 Z()-
chain mp ,’CS(R) -- C(R) inducing isomorphisms in homology. Now

o o

where ," C(/) -- C(X) is gotten from :/ -* clearly satisfies the re-
quirements of Lemma 3.5.

Let (X, Y) be a CW pair with t," r(Y) - (X) an isomorphism, where
i: Y -- X is the inclusion map. Let a’ - X be the projection from the
universal covering , of X. Then F a-l(Y) is the univeral covering of Y.
The operations of v(X) on X carry F into itself and (C(), C(1)) and
(CS(X), CS(F)) become Z() chain complex pairs.

LEMMA 3.6. There exists a Z() chain equivalence

,’(C(2), C(?)) - (CS(2), C(F).

Proof. Using J. H. C. Whitehead’s geometric realization of the singular
complex with the triangulation described on page 103 of [8] it is not difficult
to show that t a simplicial pir (K, L) and a p.h. equivalence
g" (K, L) - (X, Y). Using the fct that i" Y -- X is a cofibration it is esy
to get a map f:(X, Y) -- (K, L) such that g of Id and
g f Y Idr Y -- Y. Also f can be chosen to be cellular. Let t:K --. K
be the projection from the universal covering/ of K. Then since the in-
clusion of L in K induces an isomorphism of fundamental groups it follows
that f-(L) , is the universal covering of L. If ]:. -/ is a cellular
"lift" offin the sense that t o] f o a then?(l) c/ and]: (2, 1) -* (/, )
is a p.h. equivalence. Similarly if is a "lift" of g (i.e. to say
then (/) c ly and " (/, ) -- (X, Y) is a p.h. equivalence. Let

j: (C(R), C([,) (CS(R), CS(i))

be the natural inclusion of the simplicial chain complex pair into the singular
chain complex pair then k CS() j o]. satisfies the requirements of the
Lemma.

LEMMA 3.7. Consider the same situation as explained in the paragraph
preceding Lemma 3.6. In addition assume that both X and Y are elements in
e n . Then the Z(r)-chain complex C()/C(F) satisfies condition G of
Gersten [2] for some integer N.
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Proof. That C(X)/C(I) is a free Z(r)-chain complex of finite type is
clear. (Finite type means each C(,)/C,(I) is a finitely generated Z(r)-
module.) Also since X and Y are separately dominated by finite complexes
we can find an integer L > 2 having the following properties"

(1) H(X, Y; ) 0 for all local coefficient systems over X and j > L

(2) Hj(.g, I; Z) 0 for all j > L.

Denoting the complex C(X)/C(I?) by C we have BL 0(C+1) a Z(r)-
module and it determines a local coefficient system & over X. Let
0:C,+1 -+ C be factored into

with j the inclusion and c the canonical map. H*(X, Y; (B) is the homology
of the complex of r-homomorphisms of C into B and thus c determines an
(L -t- 1) cochMn. Since c 0 0 it is a cocyle. Since H"+I(X, Y; 5) 0,
c has to be a coboundary and hence c s 0 for some s: C,. -+ B,.. Thus
c s o j o c and since c is an epimorphism we have sj Id.. This shows
that BL is a direct summand of C, and is hence projective. Now condition
(2) yields Z+ B,.+I 0 (CL+) where Z+ Ker 0: C+ -+ C. Thus
C,.+I/B , BL is Z(r)-projective. Also it is finitely generated being a
direct summand of CL.

This shows that C satisfies condition G+I of Gersten. The above proof is
actually a reproduction of Wall’s proof in [6].

Proof of Theorem 3.3. Without loss of generality X can be assumed to be
an element in e n ft. In fact t a Y e e and a homotopy equivalence g" Y ----- Y.It is now clear that Y e n ff and that the total space g*() of the pull back
bundle has the same homotopy type as/ and it suffices to prove the theorem
for Y instead of X. We therefore assume X e n ft. If E is the mapping
cylinder of/i :/ -+ X and p’E ---+ X the canonical retraction then (E,/) is a
bundle pair with (D, S-1) as the fibre pair and further it is orientable. By
Lemma 3.2 both E and/ are dominated by finite complexes. Since

p.: (E) -+ r(X)

is an isomorphism for all n it follows that p’E -+ X is a homotopy equivalence
and hence a(E) a(X), (i.e. when we identify rrl(E) with r by means of the
isomorphism p.). By Lemma 3.4 t a CW pair (P, Q) with P, Q e e and a
p.h. equivalence f: (P, Q) -+ (E,/). Since/ 1 => 2 by assumption, we
have r,(/) --. r,(E) under the map induced by the inclusion. Hence the
inclusion Q P induces an isomorphism rr (P) r, (Q). Applying Lemma
3.6 we get a chain equivalence

x: (c(P), (cs(P),
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of Z()-chain complexes. It follows that

cs(}) oX. (c(P), c(O)) - (cs(), cs())
is a chain equivalence of Z()-chain complexes, where/ and/" have the
same meanings as in Section 2. Denoting the induced map

c(P)/c(() - cs()/cs() cs(, ,)
by e we see that

c(P)/c(O) - cs($, )
is a Z() chain equivalence.
By Lemma 2.3, r CS(, ’) -- CS(,) (R),. H is a Z() chain equivalence.

Applying Lemma 3.5 and noting that operators on H are trivial we see
that

(R) Id, CS(2) (R)z H-, C(2) (R)z H

is a Z()-chain equivalence. If we choose the usual triangulation for
(D, S-) (i.e. as (A, A") with A the k-dim simplex) the complex H is
the same as C(D, S-). Another description for C() @z H is that it is
the k fold suspension ’ C(J) of C(J) as defined in [2].
We now recall the definition of the Wall obstruction for a free chain complex

C of finite type over Z() satisfying condition G for some integer N. It is
defined to be the element 1)[C/BN] in R:0(Z(r)). It is shown in [2]
that if C satisfies G it also satisfies G+i for any i >- 0 and that

(- 1)N+’[C+ B+d (-1)[C
so that the Wall obstruction is a well defined element say k(C)/0(Z(v)).
With this definition the Wall obstruction of C is the same as (- 1)k(C).

Since P and Q are in e and are also dominated by finite complexes the
chain complexes C(P) and C(O) are free Z() chain complexes of finite type
satisfying condition Gs for some N. Also by Lemma 3.7, C(_P)/C() C
(say) has the same property. Now

is a chain equivalence and hence by a result of Gersten [2] we have

k(C) k(C(2)) (-1)k(C(2)) (-1)a(X).
Since f: P -- E and p E --_ X we have k(C(i)) a(P) a(E) a(X).
Now, the exact sequence

o-, c( O,) - c(P) c--.o
yields

(i) (c(P)) (c(O)) + (c).
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Also sincef Q" Q ---/ we have k(C() a(Q) a (/). Thus the equality
(i) yields a(X) (/) -F (-1)a(X) or what is the same as

(/) 0 if/o is even

2.(X) if lois odd

This completes the proof of Theorem 3.3.

4. The main theorem
The min theorem s lredy stated in the introduction is the following.

THEOREM 4.1. If M" is a closed, connected, orientable topological manifold
of dimension n then a M 1 M

Proof. M cn be imbedded in R+ for some lrge/c so s to hve normal
microbundle. Since M is orientable the normal microbundle hs to be
orientble. By tking the imbedding M R+ I:+ X R into R++

one gets normal orientble disk bundle in R"++. If E is the total spce of
this disc bundle then E is compact topological mnifold with boundary,
nd if the boundary is denoted by/ then the pir (E,/) is n orientble
bundle over M with fibre pir (D+, S). Now Int E being n open subset of
R++ is an open differentible mnifold nd whenever/o q- 1 ->_ 2 this manifold
Int E hs one end. Moreover it is clear that this eud sy is tme nd that
the fundamental group r(c) t the end is isomorphic to r r(M) whenever
/0 _>_ 2. Let () be Siebenmnn’s obstruction [4] to closing the mnifold
Int E t the end . Now/ dmits of topological collar in E nd hence
/ X R crries differentible structure. Since/ is compact the mnifold
/ X R hs two ends sy + nd

_
nd there is duality formul (+)

(-1)’+z(s_) relating the obstructions for closing F at the ends s+ nd
_

respectively [4]. However it is clear that one of the ends sy s+ is the sme
s the end of Int E nd that the obstructions () nd (+) re equal.
Also it is not difficult to see that (E) (). In ddition one hs

(/) (+) + (-) (+) +
(+) +

(Corollary 11.3 of [4]). Also El CW complex X e Y n e nd homotopy
equivalence f" X M. It is esily seen that the totul spce f*(/) of the
inverse image of the bundle p l/"/ --+ M (where p E --+ M is the projec-
tion of the bundle E) is of the sme homotopy ype s/. By Theorem 3.3
the obstruction for f*(/) wnishes if/ is odd nd hence (/) 0 when/o is
odd. We cn without loss of generality choose k odd. Then we hve

.(+) 1)"+<-:)(+)
i.e. to sy z(E) (-1)%(E). But z(E) z(M) nd hence we hve
z(M) (--1)=z(M).
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