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In [2] we proved that, with possible exceptions in the case of low rank or
characteristic 2, the maximal unipotent subgroups of Chevalley groups are
terminal nilpotent groups. In the present paper we shall investigate the struc-
ture of the maximal unipotent subgroups of the Steinberg groups in order to
show that they also are usually terminal.

Notation in this paper derives largely from Steinberg’s original paper [3].
In particular, let U be a maximal unipotent subgroup of a Steinberg group of
type A 1, D , or E6, and let r, .1, S, U, Us, and U be defined as in [3] (with
the change from German to Roman U). Let H1+ be the set of all S e II
which consist of positive roots.
The proof of terminality in [2] used to good advantage the structure of the

system of positive roots of the associated Lie algebra. In this case the Stein-
berg group has associated with it no sets S of type (3), then the set H1+ can
be given the structure of a system of positive roots of a Lie algebra, which
proves very useful in the arguments to follow.

Therefore, we shall first consider the cases where there are no sets S of
type (3). That is, if the Steinberg group in question is of type A, we assume
to be odd. Define S - S’ to be the set of all roots of the form r - r’, where
rS, r’S’, and S, S’II+. We note that either S S’ is empty or
S + S’ e II+. Then there is a 1-1 map r such that:

(i) in A, odd, r maps II+ onto the set of positive roots of C(+I)/.,
(ii) in D II +, r maps onto the set of positive roots of B_,
(iii) in E, r maps HI+ onto the set of positive roots of F, and in each

case r(S + S’) r(S) + r(S’) for all S, S’ e II1+. We shall call r a "root
system isomorphism." Given S, S’ e II+, there may exist an S" e II+ such
that S + S" S’. If such an S" exists, it is uniquely determined by S
and S’, and so we shall denote it by S’ S.

In U we have the central series defined by U U l U, where U is as
defined in [1]. From Corollary 4.5 and Lemma 4.6 of [3], it follows that

We now investigate, in the Lie ring associated with this central series, the
Ii1+commutator relations between U and U,, for S, S’ e
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If S {r} and S’ r’} are both of type (1), we have

[xr(t), xr,(v)] 0 if S -t- S’ is empty

II1+x+,(N,, tv) if S -t- S’
where Nr,, 4-1.

If S {r} is of type (1) and S’ {r’, r’}, r’ < r’, is of type (2), we have

[x(t), x,(v)x;(o)] 0 if S -t- S’ is empty

H1+Xr+r’(Nr,r’ tV)Xr+-j(Nr,r, tO) if S -t- S’ e

where N,,, 4-1.
r rIf S {r, }, r < , and S’ r’, }, <: r’, are both of type (2), we have

[x(t)x(), x,(v)x;()]

0 if S -t- S’ is empty

x+,(N,, tv)x;+;(Nr,r, O) if S + S’ II1+ and r -Jr- r’ e H

Hi+ Hx+vz(N,, tO)x.+,(Nr,;; v) if S -t- S’ and r -t-
where Nr,r’, N,-# 4-1.

In this last case, it may happen that r -- r’ + r’, so that

x+;7 N,j tO) x+r, Nr,; v x+j 2N,p Re (t)),

where Re (t) is defined to be (t + )/2, so that S -t- S’ is of type (1).
Now, for S {r}, write x(t) xz(t), and for S It, }, write x(t)x()
xz(t). Then we always have

(,) [x(t), x,(v)]

=0

x+,(N,,, 2 Re (to))

x+,(N,, tv)

where Nz,z, 4-1.

if S - S is empty

if S - S’ e and S, are of type

(2) while S - S’ is not

1-[1+if S + S’ e otherwise.

Proof. By Corollary 4.5 and Lemma 4.6 of [3], it suffices to show that in

THEOREM 1. Let U be a maximal unipotent subgroup of a Steinberg group
of type A for odd l, D or E, and let the characteristic of the field be different
from 2. Then

(i) U is generated by the Us for IS} a fundamental system of sets of H;
(ii) the U form the lower central series of U.

In particular, the class of U is the height of the highest root in the system iso-
morphic to II+.
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the Lie ring associated with the central series UI,,, every one of the graded
summands U/UI+I is generated by m-fold simple commutators of the
elements Xs(t). To show this, it suffices to show that every xs(t), as an
element of the Lie ring, is such an m-fold commutator for m ht r, where
r r(S).

Let ri T(S). By [1, p. 20], we can write r as a sum

where every partial sum r + r + -t- rk is a root.
application of (.), we have

Then by repeated

x(t) [[[...[x,(1), x()], .-.], x..()], x(t/c)]
where c 4-2 for some j. Since we are assuming the field characteristic is
-2, we have c 0. Since rl -- r -t- -t- rk is a root, the set

(...(, + z) +...) +
is always nonempty.

THEOE 2. Let U be a maximal unipotent subgroup of a Steinberg group
over a field of characteristic 2 of any of the following types"

A for l>_ 7, /odd; D for l>_ 5; E.
Then U is terminal.

Proof. Let h be the class of U1. We assume by way of contradiction that
there is a nilpotent / such that /F+1(1)

_____
U and r+.() 1.

We form the Lie rings associated with the lower central series of U and .
The homomorphism of onto U induces a homomorphism of the Lie ring
of / onto the Lie ring of U with kernel r+(l).

In this homomorphism, let ys(t) be the element of
mapping onto the element xs(t) in the Lie ring of U, m being the height of
r(S). Since the ys(t) generate the first summand /r.((r) of the Lie
ring of 1, if we show that each ys(t) commutes with ys.(V) for the set S*
such that ht r(S*) h, since ys.(V) is an arbitrary element of
r+(/), it will follow that rh+l() 0, a contradiction.

S’Now suppose we can find an such that r(S*) r(S’) is a positive root
and such that neither of r(S,i) + r(S’), r(S) + r(S*) r(S’) is a root.
On account of the ys(t) being uniquely determined by the xs(t), the com-

mutator formula (.) holds with x replaced by y and "= 0" replaced by
"e r+()". Then, using the fact that v and the Jacobi identity, we
have

[ys(t), ys.(v)] [ys(t), [ys,(1/c), ys.-s,(V)]]

--[ys,(1/c), [ys.-s,(V), ys(t)]]

[ys._s,(V), [ys(t), ys,(1/c)]],

where c 4-1 or 4-2.
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By our assumptions on S’, each of the interior commutators in the last two
lines belongs to rh+l(1), and so each of the last two lines is 0, implying that
ysi(t) commutes with ys.(v).

It therefore suffices to give examples of S’ for each of A, D, E. We do
this by finding r’ in the root system isomorphic to H1+ such that if r* is the root
of highest height, r* r is a root and r -}- r’, r* q- r r’ are not roots.

For the case A, odd, the root system isomorphic to II1+ is that of C,
n (1 q- 1)/2. Examples of r’ for C, n _> 4, were given in [2]. Thus, U
will be terminal when > 7.
For the case E, the root system isomorphic to II+ is that of F4. Again,

examples of r’ for F4 were given in [2].
For the case D, the root system isomorphic to II1+ is that of B, n 1.

In the case B,, n >_ 4, examples of r’ were given in [2] for all re except rl.

To show that ysl(t) commutes with ys.(v), we show that

(**) [yzl(t), y.(v)] --[ysl(t), ys.(v)]

which implies that
[Ysl(t), ys.(2 v)] 0,

and since we assume the field characteristic is not 2, this shows that ysl (t)
commutes with an arbitrary ys.(v).
The computation to prove (**) is practically the same as the one appearing

in [2], but since the commutator relation (.) here is more complicated than
the one in that paper, we give the argument again, to show it indeed does follow
from the relation (.). Note that ny S for which ht r(S) >_ h 2 is of
type (1). Thus, the second alternative of (.) does not arise in what is to
follow"

[ys(t), ys.(v)] [y(t), [ys.(1), yz._z(v/Ns,s.-s)]]

[y 1 ), [ys.-s(v/N,._ ), y (t)]]

[ys,_ (v/Ns ,s._s ), [ysl (t), ys 1 )]].

The first of the last two terms is 0, since S q- (S* S:) is empty. We
proceed with the second term"

[ys(t), y.(v)]

[[y(t), ys(1)], [y(t), y(s._)_s,(v/{tN.,,_sNl,(,_.)_s})]]
-[y(t), [y(,_)_s(v/{tNs,s,_N,(.-s.)-}), [yl(t), ys(1)]]]

[y(s._z.)_s(v/{tNs,s.-s Ns,,(s.-s)-s,}), [[ys(t), yz,(1)], ys,(t)]].

Here the last term is 0, since ($1 -}- S.) q- S is empty. Now

[ys(1), [y(s._s)_s(v/{tN,,._sNs,,(s.-s)-s}), ys(t)]],
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of which the first term is 0, since S* $1 is empty. The second term is

[ys. (1), [ys t), y(s,-s)-s (v/{ tNs.s,-s Ns,(s,-s)-s,} )]]

[ys(1), ys,-s(v/Ns.s,-s)] ys,(v).

Thus (**) is established, and the proof is complete.
We now turn our attention to the case A. Here matters are complicated

by the fact that H+ consists of sets of types (2) and (3), and an attempt to
define S + S’ yields sets which cn be non-empty and yet not elements of H+.
As before, in U define the central series whose ruth term is U U. We let
r, r now denote fundamental system of roots ofA (as opposed to a
undamental system in the root system isomorphic to H+. No confusion will
result, as we no longer hve root system isomorphism.)
We define

(a) Xi(t) Xri(t)Xr2_i+() for i 1, ---, k 1

(b) x(t) x(t)x,+(/)xr++(N.+ tU2)

LEMMA. Let U be a maximal unipotent subgroup of a group of type A,
and let the characteristic of the field be different from 2. Then

(i) U is generated by all elements of the forms (a) and (b)
(ii) the U form the lower central series of U.

In particular, the class of U is 2.

Proof. Again, we show that in the Lie ring associated with the central
series U, every one of the summunds U/U+ is generated by m-fold
simple commutators of the elements of forms (u) and (b).

In cse m is even, U/U+ is generated by elements of the forms

(c) x_()++...++()(t), -(d) x+...++(t)x__++...+_+(), where

j-l, j<2lc-.j-m+l, and j+mk

(e) Xr...+(t)x++...+_+()X+...+r_(W), where

w N+...+.++...+_+ t/2

In case m is odd, U/U+ is generated by elements of the forms (d) and (e).
Now any element of the form (c) is the m-fold left-normed commutator

[x 1 ), x (-), x_ 1 ), x_(), x_(/:)+ 1 ), X--(m/)+ t/2 )].

If j + m k, n element of the form (d) is the m-fold left-normed com-
mutator

[x(1 ), x+(1 ), x+_(1 ), x+( t)].
If j + m > k, an element of the form (d) is the m-fold left-normed com-
mutator
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[xk(1), xk(1/2), Xk-l(1), Xk--l(1/2),""", X2k--]--m+l(1), X2--’--m+l(1/2),

X2--’--m(1), X2k--i-m--i(1), Xi+1(1),

An element of the form (e) modulo U,+I, is the m-fold left-normed com-
mututor

[x.(1), Xj+I(1), Xk-l(1), Xk(::t)].

THEOnEM 3. Let U be a maximal unipotent subgroup of a group of type
Ak, ]

_
4, and let the characteristic of the field be different from 2. Then U is

terminal.

Proof. Let h and 1 be as described in the first two paragraphs of the proof
of Theorem 2. In the Lie ring homomorphism, we let yi(t) be the element of
l/r2(l mapping onto the element of UI/F(U) which corresponds to
xi(t), and let y(t) be the element of Fh()/Fh+(1) mapping onto the
element Xrl+...+rk(V) of Fh(U).

Let y’ 1 [yk 1 ), y (1/2), y (1), y (1/2), y (1) ]. Then we huve

[y(t), y(v)] lye(t), [y’(1), y(4-v/2)]]

[y’(1), [y1(-4-y/2), y(t)]] [y(::kv/2), lye(t), y’(1)]].

Each of the interior commutators in the last two lines is an element of lh+(1),
unless i 1 or 2, so if i 1, 2, we have that y(t) commutes with y(v), and so
with all of r+l().
For the cases i 1, 2, let y" (1) be

[y(1), y(1/2), .-., y(1), y(1/2), ya(1/2), y.(1/2), y(1/2)].

Then we huve

lye(t), y(v)] [y(t), [y" (1), lye(l), y(1), y(=t=v)]]]

--[y"(1), [[ya(1), y(1), yl(=i=v)], y(t)]]

--[[y(1), y(1), yl(q-v)], lye(t), y"(1)]],

and so again y(t) commutes with y(v), which completes the proof.
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