ON MULTIPLIERS OF DIFFERENCE SETS ${ }^{1}$

BY
H. B. Mann and S. K. Zaremba

For the notation and terminology used in this paper see [1] chapters 6 and 7, except that we shall write groups multiplicatively. Let $\binom{a}{m}$ denote the Jacobi symbol [4, page 168], ζ_{m} a primitive m-th root of unity, and R the field of rational numbers.

Newman [3] proved the following theorem: If D is a cyclic difference set with parameters $v, k, \lambda, n=k-\lambda=2 q, q$ a prime, $(7 q, v)=1$ then q is a multiplier of D.

Turyn [5] generalized Newman's result in various ways. Turyn's result is the following:

Theorem 1. Let D be an Abelian difference set with parameters v, k, λ having $n=k-\lambda=2 \prod_{i=1}^{s} q_{i}^{a_{i}}, q_{i}$ odd primes, $\left(v, q_{i}\right)=1$. Let $t \equiv q_{i}^{b_{i}}(v)$, $i=1, \cdots$, s. If $v \equiv 0(7)$ let $\binom{t}{7}=+1$. Then t is a multiplier of D.

Turyn also remarks that $\binom{t}{7}=+1$ if $v \equiv 0(7)$ and if any of the a_{i} is odd ${ }^{\bullet}$ This follows because $\binom{t}{7}=-1 \operatorname{implies} q_{i}^{3 b_{i}} \equiv-1(7)$ and by Theorem 7.2 of [1] a_{i} must be even.

In this paper we shall be able to remove the restriction $\binom{t}{7}=+1$ for $v \equiv 0$ (7) for a number of cases including all difference sets with $n>\lambda$ and $\left(\lambda, \prod_{i=1}^{s} q_{i}\right)=1$.

We note in particular that for $s=1$, Theorem 1 implies that q_{1} is multiplier if $\binom{q_{1}}{7}=+1$ and that q_{1}^{2} is always multiplier.

The cases which are not settled by Turyn's theorem are of special interest because the existence of such a difference set with $\binom{t}{7}=-1$ would in fact disprove the conjecture that every divisor of n is multiplier. For $\binom{t}{7}=-1$ implies $\left(\frac{q_{1}}{7}\right)=-1$ and Corollary 7.2 .2 of [1] shows that q_{1} is not a multiplier since n is not a square. We shall however be able to prove nonexistence of a difference set in a large class of cases including all difference sets with $n>\lambda$ and $\left(\lambda, \prod_{i=1}^{s} q_{i}\right)=1$.

Combining Turyn's result with theorem 7.3 of [1] we can restrict ourselves to values v, k, λ where

I

$$
\begin{gathered}
k-\lambda=n=2 q^{2}, \quad q=\prod_{i=1}^{s} q_{i}^{a_{i}} \\
t \equiv q_{i}^{b_{i}}(v), i=1, \cdots, s, \quad v \equiv 0(7),\binom{t}{7}=-1, \\
n>\lambda \geqq q^{2},
\end{gathered}
$$

where the q_{i} are distinct odd primes.

[^0]It follows from I that $\binom{q_{i}}{7}=-1$ and that $b_{i} \equiv 1$ (2). This implies that the parity of the order of $t \bmod$ any divisor of v is the same as that of q_{i} and in particular that $\binom{q_{i}}{v_{1}}=\binom{t}{v_{1}}$ for every divisor v_{1} of v.

We first prove
Theorem 2. There is no difference set with parameters v, k, λ satisfying I in a group G of order v with a subgroup of order 49.

Proof. Under the conditions of theorem 2 there exists a homomorphism mapping G into G_{1}, a group of order 49. This homomorphism extends to the groupring of G. Let $D_{1}=\sum_{g \epsilon G_{1}} a_{g} g$ correspond to D in this homomorphism. Then

$$
\begin{equation*}
D_{1} D_{1}(-1)=\mu G_{1}+2 q^{2} \tag{1}
\end{equation*}
$$

where μ is an integer. Now let q_{1} be a prime factor of q. Then since $\binom{q_{1}}{7}=-1$ we have $q_{1}^{3} \equiv-1$ (7) and $q_{1}^{21} \equiv-1$ (49). Hence

$$
\left(\chi\left(D_{1}(-1)\right), q_{1}^{a_{1}}\right)=\left(\chi\left(D_{1}\right), q_{1}^{a_{1}}\right)=q_{1}^{a_{1}}
$$

for every non-principal character χ of G_{1}. Since this is true for every prime factor q_{i} of q we have

$$
\chi\left(D_{1}\right) \equiv 0 \quad(q)
$$

for every non-principal character of G_{1}. Hence from lemma 7.3 of [1] we get

$$
\begin{equation*}
D_{1}=\mu_{1} G_{1}+q H, \quad \quad \mu_{1} \text { integral. } \tag{2}
\end{equation*}
$$

Substituting this into (1) gives

$$
\begin{equation*}
H H(-1)=\mu^{*} G_{1}+2 \tag{3}
\end{equation*}
$$

with integral μ^{*}.
The following lemma shows that (3) cannot be solved in integers.
Lemma. Let $A=\sum a_{g} g$ be an element of the grouping of a group G of order v over the integers where v is a power of an odd prime. Suppose

$$
\begin{equation*}
A A(-1)=n+\lambda G \tag{4}
\end{equation*}
$$

Let

$$
x^{2}=n+\tau v, \quad 0<x<v
$$

then

$$
\begin{equation*}
n+\tau \geqq x \tag{5}
\end{equation*}
$$

Moreover equality in (5) implies that either A or $-A$ is congruent to a difference set $\bmod G$.

Proof. From (4) we have

$$
\begin{array}{rlr}
\sum a_{g} & =\varepsilon x+r v & \varepsilon= \pm 1 \\
\left(\sum a_{g}\right)^{2} & =n+\lambda v & \\
\sum a_{g}^{2} & =n+\lambda & \tag{6}
\end{array}
$$

The first two equations of (6) give

$$
\begin{equation*}
\lambda=\tau+2 \varepsilon r x+r^{2} v . \tag{7}
\end{equation*}
$$

We set $a_{g}=r+b_{g}$ then

$$
\sum b_{o}=\varepsilon x
$$

and

$$
n+\lambda=\sum a_{g}^{2}=r^{2} v+2 r \sum b_{g}+\sum b_{g}^{2}=r^{2} v+2 r \varepsilon x+\sum b_{g}^{2}
$$

Combining this with (7) we get

$$
n+\tau=\sum b_{g}^{2} \geqq\left|\sum b_{g}\right|=x
$$

Moreover equality implies that b_{g} can take only the values 1 or 0 , if we choose A so that $a_{g}>0$ for at least one g. Hence the lemma.

Applying the lemma to (3) we have $n=2, x=10, \tau=2$ which shows that (3) has no integral solutions and proves Theorem 2.

Theorem 3. If the conditions I are satisfied and if a prime factor q_{1} of q is of even order with respect to a prime factor p of $v, p \neq 7$, then no v, k, λ difference set exists.

Proof. We map G homomorphically into the group R_{p} of residues $\bmod p$. This mapping maps D into $D_{1}=\sum_{i=0}^{p=1} a_{i} x^{i}$, where x is a generator of R_{p}, satisfying (for some integer μ)

$$
D_{1} D_{1}(-1)=\mu R_{p}+2 q^{2}
$$

The conditions I imply that

$$
\left(\chi\left(D_{1}(t)\right), q\right)=\left(\chi\left(D_{1}\right), q\right)
$$

and therefore

$$
\chi\left(D_{1}\right) \chi\left(D_{1}(-t)\right) \equiv 0 \quad\left(q^{2}\right)
$$

for every non-principal character χ of R_{p}. Hence

$$
\begin{equation*}
D_{1} D_{1}(-t)=\mu R_{p}+q^{2} F \tag{8}
\end{equation*}
$$

where $\chi_{1}(F)=2$ and $F F(-1)=4$. A calculation presented in detail in [2] shows this to be impossible for $p \neq 7$ unless $F=2 x^{j}$. Multiplying (8) by $D_{1}(t)$ we get $D_{1}(t)=x^{-j} D_{1}$. But if q_{1} is of even order with respect to p then t must be of even order with respect to p (see condition I). Hence we have

$$
t^{f} \equiv-1 \quad(p)
$$

for some f, and it follows that

$$
D_{1}(-1)=D_{1}\left(t^{f}\right)=x^{u} D_{1}
$$

But this contradicts

$$
\chi\left(D_{1}\right) \chi\left(D_{1}(-1)\right)=2 q^{2}
$$

because 2 is not a square in $R\left(\zeta_{p}\right)$.

This completes the proof of Theorem 3.
We now consider the case $n>\lambda,(\lambda, q)=1$. We have

$$
k^{2}-n=k^{2}-2 q^{2} \equiv 0 \quad(\lambda), \quad k-2 q^{2}=\lambda
$$

Hence

$$
\begin{equation*}
4 q^{4}-2 q^{2} \equiv 0 \quad(\lambda) \quad 4 q^{2}-2 \equiv 0 \quad(\lambda) \tag{9}
\end{equation*}
$$

Since $2 q^{2}>\lambda>q^{2}$ this implies

$$
4 q^{2}-2=2 \lambda \quad \text { or } \quad 4 q^{2}-2=3 \lambda
$$

But $4 q^{2} \not \equiv 2(3)$ and therefore $\lambda=2 q^{2}-1$. Hence the only solution in this case is

$$
\begin{equation*}
v=8 q^{2}-1, \quad k=4 q^{2}-1, \quad \lambda=2 q^{2}-1 \tag{10}
\end{equation*}
$$

We now assume that the conditions I are satisfied and the parameters v, k, λ are given by (10). An easy calculation shows that

$$
\binom{q_{1}}{v}=+1
$$

for every prime divisor q_{1} of q. Hence if $v=7 v_{1},\left(v_{1}, 7\right)=1$ and $\binom{q_{1}}{7}=-1$ we have

$$
\binom{q_{1}}{v_{1}}=-1
$$

Hence

$$
\binom{q_{1}}{p}=-1
$$

for some prime divisor of v_{1}. Hence no difference set can exist by Theorem 3 . Together with Theorems 1 and 2 and Theorem 7.3 of [1] we therefore have

Theorem 4. Let G be an Abelian group. Assume that G has a difference set D with $n=k-\lambda=2 n_{1},\left(\lambda, n_{1}\right)=1, n>\lambda$, and that $t \equiv q_{i}^{f_{i}}(v)$ for every prime divisor q_{i} of n_{1} and some integer f_{i}. Then t is a multiplier of D.

If we drop the restriction $n>\lambda$ then (9) has the additional solution $\lambda=4 q^{2}-2$, and this gives

$$
v=9 q^{2}-2, \quad k=6 q^{2}-2, \quad \lambda=4 q^{2}-2
$$

The complementary solution to this is

$$
\begin{equation*}
v=9 q^{2}-2, \quad k=3 q^{2}, \quad \lambda=q^{2} \tag{11}
\end{equation*}
$$

If the parameters are given by (11) then $\binom{q_{1}}{v_{1}}=\binom{2}{q_{1}} . \quad$ If $v=7 v_{1},\left(7, v_{1}\right)=1$ and if $\binom{q_{1}}{7}=-1$ then

$$
\binom{q_{1}}{v_{1}}=-\binom{2}{q_{1}}
$$

Hence by Theorem 3 if a difference set with the parameters (11) exists we must have

$$
\begin{equation*}
\binom{2}{q_{1}}=-1 \tag{12}
\end{equation*}
$$

Hence we have the following theorem:
Theorem 5. Suppose a difference set with parameters given by (11) exists in an Abelian group G of order $v=7 v_{1},\left(7, v_{1}\right)=1$. Suppose moreover that the conditions I are satisfied. Then $\binom{2}{q_{1}}=-1$ for every divisor q_{1} of q.

References

1. H. B. Mann, Addition theorems, Wiley, New York, 1965.
2. R. L. McFarland, A generalization of a result of Newman on multipliers of difference sets, J. Res. Nat. Bureau Standards, vol. 69B (1965), pp. 319-322.
3. Morris Newman, Multipliers of difference sets., Canad. J. Math., vol. 15, (1963), pp. 121-124.
4. B. M. Stewart, Theory of numbers, Macmillan, New York, 1952.
5. Richard J. Turyn, The multiplier theorem for difference sets, Canad. J. Math., vol. 16 (1964), pp. 386-388.

University of Wisconsin Madison, Wisconsin

[^0]: Received August 21, 1967.
 ${ }^{1}$ Sponsored by the Mathematics Research Center, United States Army, Madison, Wisconsin.

