ISOTYPE SUBGROUPS OF DIRECT SUMS OF COUNTABLE GROUPS

$\mathbf{B}\mathbf{Y}$

PAUL HILL¹

I. Introduction

In this paper we shall deal with additively written commutative groups in which each element has finite order. By a theorem whose origin appears to be uncertain [6] such a group G can be decomposed as $G = \sum G_p$ where the summation is over the primes and for each prime p any element of G_p has order a power of p. Thus we may restrict our attention to G_p , that is, there is no loss of generality in assuming that G is primary. If G is a primary group, we define G[p] and pG as follows:

$$G[p] = \{x \in G : px = 0\} \text{ and } pG = \{px : x \in G\}.$$

If β is an ordinal, $p^{\beta}G$ is defined inductively by $p^{\beta}G = p(p^{\beta-1}G)$ provided that $\beta - 1$ exists and by $p^{\beta}G = \bigcap_{\alpha < \beta} p^{\alpha}G$ if β is a limit ordinal. The *p*-primary group *G* is divisible if pG = G and *G* is reduced if *G* does not contain a non-trivial divisible subgroup. A group always decomposes into a divisible part and a reduced part [1]. Since the structure of divisible groups is well known, interest is shifted completely to the reduced part. If *G* is reduced, there is a smallest ordinal λ such that $p^{\lambda}G = 0$; this λ is called the length of *G*. For each $\alpha \leq \lambda$, the dimension $f_{\alpha}(\alpha)$ of the vector space

$$(p^{\alpha}G \cap G[p])/(p^{\alpha+1}G \cap G[p]),$$

over the prime field of characteristic p, is called the α -th Ulm invariant of G.

It is known that within the class of direct sums of reduced countable primary groups the members are uniquely determined by their Ulm invariants [2], [7]; but subgroups of direct sums of countable groups need not be again direct sums of countable groups [11], [12], [3]. Indeed Nunke has shown in [12] that it is possible for G to be a direct sum of countable reduced primary groups and for H to be nicely embedded in G in the sense that $p^{\alpha}G \cap H = p^{\alpha}H$ for all ordinals α and still H not be a direct sum of countable groups. One of the main results of the present paper is that this can happen only if H has the longest possible length—that length is, of course, Ω . Actually, we prove the following.

THEOREM 1. Let $G = \sum_{I} G_{i}$ be a direct sum of countable primary groups G_{i} . If H is an isotype subgroup of G having countable length λ , then H is a direct sum of countable groups. Furthermore, if I_{0} is a subset of I, then $H \cap \sum_{I_{0}} G_{i}$ is a

Received April 5, 1967.

¹ This research was supported by a National Science Foundation grant.

direct summand of H if it is p^{λ} -pure in H and

 $\{H \cap \sum_{I_0} G_i, p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{I_0} G_i, p^{\alpha}G\}$ for all $\alpha \leq \lambda$.

A subgroup H of the p-primary group G is called an isotype subgroup of G if $p^{\alpha}G \cap H = p^{\alpha}H$ for every ordinal α . If β is an ordinal, we shall say that H is weakly p^{β} -pure in G if $p^{\alpha}G \cap H = p^{\alpha}H$ for all $\alpha \leq \beta$. For the definition of p^{β} -purity see [5], [12], or [9]. It is known [5] that weak p^{β} -purity compares, in the suggested way, with p^{β} -purity.

Theorem 1 is established in conjunction with the following lemmas.

LEMMA 1. Suppose that $G = \sum_{I} G_{i}$ is a direct sum of countable primary groups G_{i} and suppose that H is an isotype subgroup of G having countable length λ . Let I_0 be a subset of I such that $H \cap \sum_{I_0} G_i$ is p^{λ} -pure in H and

$$\{H \cap \sum_{I_0} G_i, p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{I_0} G_i, p^{\alpha}G\}$$

for $\alpha \leq \lambda$. Let A be a countable subgroup of H. Then there exists a subset I_1 of I containing I_0 such that

- (1) $H \cap \sum_{I_1} G_i$ is p^{λ} -pure in H, (2) $A \subseteq \sum_{I_1} G_i$, (3) $I_1 I_0$ is countable, (4) $\{H \cap \sum_{I_1} G_i, p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{I_1} G_i, p^{\alpha}G\}$ for $\alpha \leq \lambda$.

LEMMA 2. Suppose that $G = \sum_{I} G_{i}$ is a direct sum of countable primary groups G_i and let H be an isotype subgroup of G having countable length λ . Suppose that $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_{\gamma} \subseteq \cdots, \gamma < \delta$, is an ascending chain of subsets of I such that

- (i) $\{(H \cap \sum_{I_{\gamma}} G_i), p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{I_{\gamma}} G_i, p^{\alpha}G\} \text{ for each } \alpha \leq \lambda$ and each $\gamma < \delta$:
- (ii) $(H \cap \sum_{I_{\alpha}} G_i)$ is p^{λ} -pure in H for each $\gamma < \delta$.

Define $I_{\delta} = \bigcup_{\gamma < \delta} I_{\gamma}$. Then conditions (i) and (ii) hold for $\gamma \leq \delta$.

We shall prove the lemmas and theorem simultaneously by induction on the ordinal λ . More specifically, we show that the validity of Theorem 1 for all $\lambda < \mu$ implies Lemma 1 and Lemma 2 for $\lambda \leq \mu$. On the other hand, the two lemmas imply the theorem— λ for λ .

We shall see that Theorem 1 yields a rather strong uniqueness theorem. A consequence of this uniqueness theorem is the following result. If $G/p^{\beta}G$ is a direct sum of countable groups for a countable limit β , then there exists, upon identifying isomorphic subgroups, a natural correspondence from the pure subgroups of $p^{\beta}G$ to the pure subgroups of G. The correspondence is $A \to B$ where for a pure subgroup A of $p^{\beta}G$ the subgroup B is maximal in G with respect to $B \cap p^{\beta}G = A$.

II. Preliminary Results

Some of the results of this section are implicitly contained in [12]. For completeness, however, we shall in those cases abstract what is needed and provide outlines of proofs.

PROPOSITION 1. Let G be a primary group and let H be a neat subgroup of G. If $G[p] = \{H[p], p^{\alpha}G[p]\}$ for each $\alpha < \beta$, then H is p^{β} -pure in G.

Proof. It is easy to show that H is weakly p^{β} -pure in G; a proof is contained in [8]. Since weak p^{β} -purity is equivalent to p^{β} -purity for $\beta \leq \omega$, we may assume that $\beta > \omega$. The proof now is by induction on β . The induction step is trivial if β is a limit ordinal. Thus assume that $\beta = \alpha + 1 > \omega$. Let G[p] = H[p] + E where $E \subseteq p^{\alpha}G$. Since $\beta > \omega$, G/H is divisible and $\eta = p\xi$ where η is the natural map $G/H \to G/\{H, E\} \to 0$ and ξ is an isomorphism, $0 \to G/H \to G/\{H, E\} \to 0$. From the commutativity of the diagram

we have that $X_0 = X_1 \eta = X_1 p\xi = X_1 p$. Hence $pX_1 = X_0$ in Ext (G/H, H). It is straightforward to show that

$$(G/E)[p] = \{H[p], p^{\lambda}(G/E)[p]\}$$
 if $\lambda < \alpha$.

Thus $X_1 \epsilon p^{\alpha} \operatorname{Ext} (G/H, H)$ by the induction hypothesis, so

$$X_0 \epsilon p^{\beta} \operatorname{Ext} (G/H, H)$$

and H is p^{β} -pure in G.

PROPOSITION 2. If H is maximal in G with respect to $H \cap p^{\beta}G = 0$, then H is $p^{\beta+1}$ -pure in G and $H \cong \{H, p^{\beta}G\}/p^{\beta}G$ is p^{β} -pure in $G/p^{\beta}G$.

Proof. It is a simple exercise to verify that

$$G[p] = \{H[p], p^{\beta}G[p]\}$$

and

$$(G/p^{\beta}G)[p] = \{(\{H, p^{\beta}G\}/p^{\beta}G)[p], p^{\alpha}(G/p^{\beta}G)[p]\}$$

if $\alpha < \beta$. Since *H* is neat in *G*, the conclusion follows by Proposition 1.

A subgroup H of G satisfying the hypothesis of Proposition 2 will be called a β -high subgroup of G (in favor of $p^{\beta}G$ -high since p is fixed).

PROPOSITION 3. If $H/p^{\beta}H$ is p^{β} -pure in $G/p^{\beta}H$, then H is p^{β} -pure in G.

Proof. The map

$$\phi : \operatorname{Ext} \left(G/H, \, p^{\beta}H \right) \to \operatorname{Ext} \left(G/H, \, H \right)$$

induced by the inclusion map $p^{\beta}H \to H$ goes into p^{β} Ext (G/H, H); the proof is given in [5] by induction on β . Thus the complete inverse image of p^{β} Ext $(G/H, H/p^{\beta}H)$ under the map

Ext
$$(G/H, H) \rightarrow$$
 Ext $(G/H, H/p^{\beta}H)$

is precisely p^{β} Ext (G/H, H), and the proposition is proved.

PROPOSITION 4. Let H be a subgroup of the primary group G such that $H \cap p^{\lambda}G = p^{\lambda}H$. Then H is p^{λ} -pure in G if and only if $\{H, p^{\lambda}G\}/p^{\lambda}G$ is p^{λ} -pure in $G/p^{\lambda}G$.

Proof. Suppose that H is p^{λ} -pure in G. Then $H/p^{\lambda}H$ is p^{λ} -pure in $G/p^{\lambda}H$. Let $K \supseteq H$ be maximal in G with respect to $K \cap p^{\lambda}G = p^{\lambda}H = H \cap p^{\lambda}G$. Then $K/p^{\lambda}H$ is λ -high in $G/p^{\lambda}H$. According to the second half of Proposition 2, $K/p^{\lambda}H$ is p^{λ} -pure in $G/p^{\lambda}G$ under the natural embedding. It follows from $H/p^{\lambda}H \subseteq K/p^{\lambda}H \subseteq G/p^{\lambda}G$ and the transitivity of purity [12] that $H/p^{\lambda}H$ is p^{λ} -pure in $G/p^{\lambda}G$ under the natural embedding, but under this embedding $H/p^{\lambda}H$ is changed to $\{H, p^{\lambda}G\}/p^{\lambda}G$. Conversely, suppose that $\{H, p^{\lambda}G\}/p^{\lambda}G$ is p^{λ} -pure in $G/p^{\lambda}G$ and let $K/p^{\lambda}H \supseteq H/p^{\lambda}H$ be λ -high in $G/p^{\lambda}H$. Since $\{H, p^{\lambda}G\}/p^{\lambda}G$ is p^{λ} -pure in $\{K, p^{\lambda}G\}/p^{\lambda}G$ and since $K \cap p^{\lambda}G = p^{\lambda}H$, it follows that $H/p^{\lambda}H$ is p^{λ} -pure in $K/p^{\lambda}H$. Thus $H/p^{\lambda}H$ is p^{λ} -pure in $G/p^{\lambda}H$ because the λ -high subgroup $K/p^{\lambda}H$ of $G/p^{\lambda}H$ is p^{λ} -pure. By Proposition 3, H is p^{λ} -pure in G.

The next proposition generalizes Theorem 1 in [4]; the formulation is due to Nunke.

PROPOSITION 5. Let β be an ordinal and G a primary group. Suppose that H is a subgroup of G such that

- (0) $(G/H)/p^{\beta}(G/H)$ is p^{β} -projective,
- (1) $H \cap p^{\beta}G = p^{\beta}H$,
- (2) $\{H, p^{\beta}G\}/p^{\beta}G$ is a direct summand of $G/p^{\beta}G$,
- (3) $p^{\beta}H$ is a direct summand of $p^{\beta}G$.

Then H is a direct summand of G.

Proof. Let $G/p^{\beta}G = \{H, p^{\beta}G\}/p^{\beta}G + K/p^{\beta}G$ and let $p^{\beta}G = p^{\beta}H + C$. First observe that $p^{\beta}(G/H) \subseteq \{H, p^{\beta}G\}/H$ since $p^{\beta}(K/p^{\beta}G) = 0$ and since

$$(G/H)/\{H, p^{\beta}G\}/H \cong G/\{H, p^{\beta}G\} \cong (G/p^{\beta}G)/\{H, p^{\beta}G\}/p^{\beta}G \cong K/p^{\beta}G.$$

Thus $p^{\beta}(G/H) = \{H, p^{\beta}G\}/H$ and $G/\{H, p^{\beta}G\}$ is p^{β} -projective by (0). Recall that $\{H, p^{\beta}G\} = \{H, C\}$, so $G/\{H, C\}$ is p^{β} -projective. Note that $p^{\beta}(\{H, C\}/C) = \{p^{\beta}H, C\}/C = p^{\beta}G/C$, and consider the following exact sequences

(A)
$$0 \to \{H, C\}/C \to G/C \to G/\{H, C\} \to 0$$

and

(B)
$$0 \to (\{H, C\}/C)/p^{\beta}G/C \to (G/C)/p^{\beta}G/C \to G/\{H, C\} \to 0$$

The latter sequence splits since it is equivalent to

$$0 \to \{H, p^{\beta}G\}/p^{\beta}G \to G/p^{\beta}G \to G/\{H, C\} \to 0$$

and since $\{H, p^{\beta}G\}/p^{\beta}G$ is a direct summand of $G/p^{\beta}G$. Since (B) splits, (A) is p^{β} -pure, by Proposition 4, and therefore splits as well. Now G/C = (H + C)/C + L/C for some L. It follows that $G = \{H, L\}$ and that $(H + C) \cap L = C$. Thus $H \cap L \subseteq C$. But $p^{\beta}G \cap H = p^{\beta}H$ by (1). Therefore

$$C \cap H \subseteq C \cap (p^{\beta}G \cap H) = C \cap p^{\beta}H = 0,$$

and $H \cap L = 0$. Hence G = H + L.

PROPOSITION 6. Suppose that $G = \sum_{I} G_{i}$ is a direct sum of countable groups G_{i} and that H is a subgroup of G. Let β be a countable ordinal and let A be a countable subgroup of H. Suppose that J is a subset of I such that

$$\{H \cap \sum_{J} G_{i}, p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{J} G_{i}, p^{\alpha}G\}$$

for each $\alpha \leq \beta$. Then there exists K such that $J \subseteq K \subseteq I, K - J$ is countable, $A \subseteq \sum_{\kappa} G_i$, and

$$\{H \cap \sum_{\kappa} G_i, p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{\kappa} G_i, p^{\alpha}G\}$$

for $\alpha \leq \beta$.

Proof. Let K_0 be the union of J and a countable subset of I such that $A \subseteq \sum_{\kappa_0} G_i$. For each $\alpha \leq \beta$, choose a set S_0^{α} of representatives for $\sum_{\kappa_0} G_i \cap \{H, p^{\alpha}G\}$ modulo $\sum_J G_i \cap \{H, p^{\alpha}G\}$. Then $S = \bigcup_{\alpha \leq \beta} S_0^{\alpha}$ is countable. Now for each element x_{α} in S_0^{α} choose one and only one element y_{α} in $p^{\alpha}G$ such that $x_{\alpha} + y_{\alpha} \in H$. Let $K_1 \supseteq K_0$ be minimal in I such that $\{y_{\alpha}\}_{\alpha \leq \beta} \subseteq \sum_{\kappa_1} G_i$. It is easy to verify that

$$\{H, p^{\alpha}G\} \cap \{\sum_{K_0} G_i, p^{\alpha}G\} \subseteq \{H \cap \sum_{K_1} G_i, p^{\alpha}G\}$$

Choose a set S_1^{α} of representatives for $\sum_{\kappa_1} G_i \cap \{H, p^{\alpha}G\}$ modulo $\sum_{\kappa_0} G_i \cap \{H, p^{\alpha}G\}$. For each x_{α} in S_1^{α} choose an element $y_{\alpha} \in p^{\alpha}G$ such that $x_{\alpha} + y_{\alpha} \in H$. Let $K_2 \supseteq K_1$ be minimal in I such that $\{y_{\alpha}\}_{\alpha \leq \beta} \subseteq \sum_{\kappa_2} G_i$. Define K_{n+1} in terms of K_n in a similar manner and let $K = \bigcup K_n$.

PROPOSITION 7. Let $G = \sum_{I} G_{i}$ be a direct sum of countable primary groups and suppose that H is an isotype subgroup of G having countable length λ . Let I_{0} be a subset of I such that $H \cap \sum_{I_{0}} G_{i}$ is isotype in H. If A is a countable subgroup of H, there exists a subject I_{1} of I containing I_{0} such that $I_{1} - I_{0}$ is countable, $A \subseteq \sum_{I_{1}} G_{i}$, and $H \cap \sum_{I_{1}} G_{i}$ is isotype in H. Proof. It is enough to show that there is a subset J of I containing I_0 such that $J - I_0$ is countable, $A \subseteq \sum_J G_i$, and such that each element of $\{H \cap \sum_{I_0} G_i, A\}$ has the same height in $H \cap \sum_J G_i$ as it does in G. Set $H_0 = H \cap \sum_{I_0} G_i$. For each element $a \in A$ and each ordinal $\alpha \leq \lambda$, there exists (by an argument similar to Lemma 2 of [4]) a subset $J(\alpha, a)$ of Icontaining I_0 such that $J(\alpha, a) - I_0$ is countable, $a \in \sum_{J(\alpha,a)} G_i$, and such that each element of $\{H_0, a\}$ that has height at least α in H has height at least α in $H \cap \sum_{J(\alpha,a)} G_i$. Set $J = \bigcup J(\alpha, a)$.

III. Proof of the lemmas and theorem

Proof of Lemma 1. Suppose that $G = \sum_{I} G_i$, H is an isotype subgroup of G having countable length μ , $H \cap \sum_{I_0} G_i$ is p^{μ} -pure in H,

$$\{H, p^{\lambda}G\} \cap \{\sum_{I_0} G_i, p^{\lambda}G\} = \{H \cap \sum_{I_0} G_i, p^{\lambda}G\}$$

for $\lambda \leq \mu$, and suppose that A is a countable subgroup of H. Assume Theorem 1 for all $\lambda < \mu$.

First consider the case that μ is a limit ordinal. For each $\lambda < \mu$, $\{H, p^{\lambda}G\}p^{\lambda}G$ is an isotype subgroup of $G/p^{\lambda}G = \sum_{I} \{G_{i}, p^{\lambda}G\}p^{\lambda}G$. According to Theorem 1, for each $\lambda < \mu$, $\{H, p^{\lambda}G\}/p^{\lambda}G$ is a direct sum of countable groups. Furthermore,

$$\{H, p^{\lambda}G\}/p^{\lambda}G \cap \sum_{I_0} \{G_i, p^{\lambda}G\}/p^{\lambda}G = \{H \cap \sum_{I_0} G_i, p^{\lambda}G\}p^{\lambda}G$$

is p^{λ} -pure in $\{H, p^{\lambda}G\}p^{\lambda}G$ since $H \cap \sum_{I_0} G_i$ is p^{λ} -pure in H. Thus $\{H \cap \sum_{I_0} G_i, p^{\lambda}G\}/p^{\lambda}G$ is a direct summand of $\{H, p^{\lambda}G\}/p^{\lambda}G$ by Theorem 1; the additional hypothesis of the theorem is easily verified. In view of Proposition 6 it is possible to establish the existence of a subset I_1 such that conditions (2)-(4) of Lemma 1 are satisfied and such that $\{H \cap \sum_{I_1} G_i, p^{\lambda}G\}/p^{\lambda}G$ is a direct summand of $\{H, p^{\lambda}G\}/p^{\lambda}G$ since $\{H, p^{\lambda}G\}/p^{\lambda}G$ is a direct sum of countable groups. By Proposition 7, we may also assume that $H \cap \sum_{I_1} G_i$ is p^{λ} -pure in H for $\lambda < \mu$; consequently, $H \cap \sum_{I_1} G_i$ is p^{μ} -pure in H.

Now suppose that $\mu - 1$ exists; set $\lambda = \mu - 1$. As before, $\{H, p^{\lambda}G\}/p^{\lambda}G$ is a direct sum of countable groups and $\{H \cap \sum_{I_0} G_i, p^{\lambda}G\}/p^{\lambda}G$ is a direct summand of $\{H, p^{\lambda}G\}/p^{\lambda}G$. There is a subset I_1 of I such that conditions (2)-(4) of Lemma 1 are satisfied, $\{H \cap \sum_{I_1} G_i, p^{\lambda}G\}/p^{\lambda}G$ is a direct summand of $\{H, p^{\lambda}G\}/p^{\lambda}G$, and $H \cap \sum_{I_1} G_i$ is isotype in H. Since

$$\{H \cap \sum_{I_1} G_i, p^{\lambda}H\}/p^{\lambda}H \cong \{H \cap \sum_{I_1} G_i, p^{\lambda}G\}/p^{\lambda}G\}$$

is a direct summand of $H/p^{\lambda}H \cong \{H, p^{\lambda}G\}/p^{\lambda}G$, then $H \cap \sum_{I_1} G_i$ is a direct summand of H by Proposition 5 since $(H/H \cap \sum_{I_1} G_i)/p^{\lambda}(H/H \cap \sum_{I_1} G_i)$ is p^{λ} -projective. In particular, $H \cap \sum_{I_1} G_i$ is p^{μ} -pure in H, and the lemma is proved.

Proof of Lemma 2. The proof is by induction on λ . It is trivial to verify

that condition (i) of Lemma 2 is satisfied for $\gamma = \delta$. Thus we are concerned with proving only that $H \cap \sum_{I_{\delta}} G_i$ is p^{λ} -pure in H.

If $\lambda - 1$ exists, set $\beta = \lambda - 1$. Then

$$\{H, p^{\beta}G\}/p^{\beta}G \cap \sum_{I_{\delta}} \{G_{i}, p^{\beta}G\}/p^{\beta}G = \{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta}G\}/p^{\beta}G$$

is p^{β} -pure in $\{H, p^{\beta}G\}/p^{\beta}G$ by the induction hypothesis. Thus

$$\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta}H\}/p^{\beta}H$$

is p^{β} -pure in $H/p^{\beta}H$. Since

$$H/\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta}H\} \cong (\{H, p^{\beta}G\}/p^{\beta}G)/(\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta}G\}/p^{\beta}G)$$

is a direct sum of countable groups, $H \cap \sum_{I_{\delta}} G_i$ is a direct summand of H by Proposition 5. Now suppose that λ is a limit ordinal. For each $\beta < \lambda$, $\{H \cap \sum_{I_{\delta}} G_i, p^{\beta}H\}/p^{\beta}H$ is p^{β} -pure in $H/p^{\beta}H$. Therefore $H \cap \sum_{I_{\delta}} G_i$ is p^{β} -pure in H according to Proposition 4, and the lemma is proved.

Proof of theorem. Suppose that $G = \sum_{I} G_{i}$ is a direct sum of countable primary groups G_{i} . Let H be an isotype subgroup of G having countable length λ . Let I_{0} be a subset of I such that $H \cap \sum_{I_{0}} G_{i}$ is p^{λ} -pure in H and

$$\{H, p^{\alpha}G\} \cap \{\sum_{I_0} G_i, p^{\alpha}G\} = \{H \cap \sum_{I_0} G_i, p^{\alpha}G\}$$

for $\alpha \leq \lambda$. It follows from Lemma 1 and Lemma 2 that there is a chain $I_0 \subseteq I_1 \subseteq \cdots \subseteq I_{\gamma} \subseteq \cdots$ leading up to I such that $I_{\gamma} = \bigcup_{\beta < \gamma} I_{\beta}$ if γ is a limit ordinal, $I_{\gamma+1} - I_{\gamma}$ is countable, $H \cap \sum_{I_{\gamma}} G_i$ is p^{λ} -pure in H, and

$$\{H \cap \sum_{I_{\gamma}} G_i, p^{\alpha}G\} = \{H, p^{\alpha}G\} \cap \{\sum_{I_{\gamma}} G_i, p^{\alpha}G\}$$

for $\alpha \leq \lambda$. Observe that $(H \cap \sum_{I_{\gamma+1}} G_i)/(H \cap \sum_{I_{\gamma}} G_i)$ is countable and p^{λ} -projective. Hence $H \cap \sum_{I_{\gamma}} G_i$ is a direct summand of $H \cap \sum_{I_{\gamma+1}} G_i$. Thus $H = (H \cap \sum_{I_0} G_i) + \sum_J C_j$ where C_j is countable. The fact that H is a direct sum of countable groups is demonstrated by taking $I_0 = \emptyset$.

IV. Applications and related results

Our first two corollaries of Theorem 1 sharpen results of Nunke [12].

COROLLARY 1. Suppose that α is a countable ordinal. Let G be a direct sum of countable primary groups and let H be a subgroup of G. If H is weakly p^{α} -pure in G and if $p^{\alpha+\omega}G$ is countable, then H is a direct sum of countable groups.

Proof. Let $K = p^{\alpha}G$. Then K is a direct sum of countable groups and $p^{\alpha}K$ is countable. Hence $K = C + \sum$ cyclics where C is countable, so any subgroup of K is a direct sum of countable groups. Let H be weakly p^{α} -pure in G. Then $p^{\alpha}H = p^{\alpha}G \cap H = K \cap H$ is a direct sum of countable groups. Since $H/p^{\alpha}H$ is isotype in $G/p^{\alpha}G$, Theorem 1 implies that $H/p^{\alpha}H$ is a direct sum of countable groups. [4], [12].

Remark 1. If A is a neat subgroup of $p^{\alpha}G$ and if $B \supseteq A$ is maximal in G with respect to $B \cap p^{\alpha}G = A$, then B is $p^{\alpha+1}$ -pure in G by Proposition 1 since B is neat in G and since $G[p] = \{B[p], p^{\alpha}G[p]\}$. If G is a direct sum of reduced countable groups and if $p^{\omega}G$ is uncountable, then G contains a neat subgroup that is not a direct sum of countable groups; this result is due to Nunke [12], but a particularly simple proof is given in [3]. Thus it follows that if G is a direct sum of reduced countable groups such that $p^{\alpha+\omega}G$ is uncountable, then G contains a p^{α} -pure subgroup that is not a direct sum of countable groups.

The next result was proved by Nunke for purity rather than weak purity in [12]. His result, Proposition 2.5 in [12], and Theorem 1 yield the stronger form.

COROLLARY 2. Suppose that α is a countable ordinal. Let G be a direct sum of countable primary groups and let H be a subgroup of G. If H is weakly p^{α} -pure in G and $p^{\beta}G$ is countable for some $\beta < \alpha + \omega^2$, then H is p^{γ} -projective for some countable γ .

Remark 2. If G is a direct sum of countable groups and has uncountable length, there exist proper subsocles S of G such that $G[p] = \{S, p^{\alpha}G[p]\}$ for each countable α . In order to verify this, all we need to do is let K be a reduced primary group such that $K/p^{\alpha}K \cong G$ and $p^{\alpha}K \neq 0$ and let S be the socle of $\{L, p^{\alpha}K\}/p^{\alpha}K$ where L is Ω -high in K. Let S be such a subsocle of G such that G[p]/S is countable and let H be maximal in G with respect to H[p] = S. Then H is p^{α} -pure in G; in particular, H is isotype in G and G/H is countable. It is easy to show that H cannot be a direct sum of countable groups, for suppose that $H = \sum_J H_j$ and $G = \sum_I G_i$ where G_i and H_j are countable. There exist countable subsets I_0 and J_0 of I and J, respectively, such that $H \cap \sum_{I_0} G_i = \sum_{J_0} H_j$ and such that $G = \{H, \sum_{I_0} G_i\}$. Now

$$H = (H \cap \sum_{I_0} G_i) + \sum_{J=J_0} H_j$$
 and $G = \sum_{I_0} G_i + \sum_{J=J_0} H_j$,

which yields a contradiction to the statement that $G[p] = \{H[p], p^{\alpha}G[p]\}$ for each $\alpha < \Omega$; choose α such that $p^{\alpha} \sum_{I_0} G_i = 0$, and recall that $H[p] \neq G[p]$.

COROLLARY 3. Suppose that $G = \sum_{i \in I} G_i + \sum_{i \in J} G_i$ where each G_i is a countable primary group. Let α be a countable ordinal and let H be p^{α} -pure in $\sum_{I} G_i$. If K is isotype in G of length α and if

$$(K, p^{\beta}G) \cap \{\sum_{I} G_{i}, p^{\beta}G\} \subseteq \{H, p^{\beta}G\}$$

for $\beta \leq \alpha$, then H is a direct summand of K provided that $K \cap \sum_{I} G_{i} = H$.

Proof. Since K is isotype in G and has countable length α , by Theorem 1 it is enough to show that $K \cap \sum_{I} G_{i} = H$ is p^{α} -pure in K because the hypotheses immediately imply that

$$\{K \cap \sum_{I} G_{i}, p^{\beta}G\} = \{K, p^{\beta}G\} \cap \{\sum_{I} G_{i}, p^{\beta}G\}$$

for $\beta \leq \alpha$. However, $K \cap \sum_{I} G_{i}$ is p^{α} -pure in K since it is p^{α} -pure in G.

A primary group G is said to be summable if there exists a decomposition $G[p] = \sum S_{\alpha}$ of the socle of G such that the height of each nonzero element of S_{α} is precisely α .

As we mentioned in [2], it is not difficult to establish that any countable reduced primary group is summable. Hence a direct sum of such groups is summable. It would be interesting to know the answer to the following question. If G is a direct sum of countable groups and if H is an isotype subgroup of G, must H be a direct sum of countable groups provided that it is summable?

An immediate consequence of Theorem 1 and Nunke's homological characterization of direct sums of countable groups is the following corollary; see Theorem 2.12 in [12].

COROLLARY 4. Let the reduced group G be a direct sum of countable primary groups and let H be an isotype subgroup of G. Then H is a direct sum of countable groups if and only if H is p^{Ω} -projective.

We now state and prove the uniqueness theorem referred to in the introduction.

THEOREM 2. Suppose that the primary group G is such that $G/p^{\alpha}G$ is a direct sum of countable groups for a countable limit ordinal α . Suppose that each of A and A' is a neat subgroup of $p^{\alpha}G$. Let $B \supseteq A$ be maximal in G with respect to $B \cap p^{\alpha}G = A$ and let $B' \supseteq A'$ be maximal with respect to $B' \cap p^{\alpha}G = A'$. If $A \cong A'$, then $B \cong B'$.

Proof. As we observed in Remark 1, B and B' are $p^{\alpha+1}$ -pure in G. Thus $p^{\alpha}B = A$ and $p^{\alpha}B' = A'$. Moreover, $\{B, p^{\alpha}G\}/p^{\alpha}G$ and $\{B', p^{\alpha}G\}/p^{\alpha}G$ are isotype in $G/p^{\alpha}G$ with the same Ulm invariants as $G/p^{\alpha}G$. To verify that $\{B, p^{\alpha}G\}/p^{\alpha}G$ and $G/p^{\alpha}G$ have the same Ulm invariants, notice that B/A is maximal in G/A with respect to $B/A \cap p^{\alpha}(G/A) = 0$. Hence $\{B, p^{\alpha}G\}/p^{\alpha}G \cong B/A$ has the same Ulm invariants as $(G/A)/p^{\alpha}(G/A) \cong G/p^{\alpha}G$. We know that B/A and B'/A' are direct sums of countable groups by Theorem 1. Therefore $B/A \cong B'/A'$ since they have the same Ulm invariants, and the proof of the theorem is finished by Hill and Megibben's theorem [4].

An interesting consequence of Theorem 2 is that if the primary group G is a direct sum of countable groups and if A is a neat subgroup of $p^{\beta}G$ for any $\beta = \omega \alpha$, then, up to isomorphism, there exists only one subgroup B of G that is maximal with respect to $B \cap p^{\beta}G = A$.

References

- 1. L. FUCHS, Abelian groups, Hungarian Publishing House, Budapest, 1958.
- P. HILL, Sums of countable groups, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 1469– 1470.
- 3. ——, On primary groups with an uncountable number of elements of infinite height, Arch. Math., vol. (1968), pp. 279–283.

- 4. P. HILL AND C. MEGIBBEN, Extending automorphisms and lifting decompositions in abelian groups, Math. Ann., to appear.
- J. IRWIN, E. WALKER, AND C. WALKER, On p^a-pure sequences of abelian groups, Topics in abelian groups, Scott, Foresman & Co., Chicago, 1963.
- 6. I. KAPLANSKY, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1954.
- 7. G. KOLETTIS, Direct sums of countable groups, Duke Math. J., vol. 27 (1960), pp. 111-125.
- 8. C. MEGIBBEN, On mixed groups of torsion-free rank one, Illinois J. Math., vol. 11 (1967), pp. 134-144.
- 9. R. NUNKE, Purity, Notices Amer. Math. Soc., vol. 8 (1961), p. 562.
- "Purity and subfunctors of the identity" in Topics in abelian groups, Scott, Foresman & Co., Chicago, 1963.
- 11. ——, On the structure of Tor, Proceedings of the Colloquium on Abelian Groups, Budapest, 1964.
- 12. ——, Homology and direct sums of abelian groups, Math. Zeitschrift., vol. 101 (1967), pp. 182-212.
 - THE FLORIDA STATE UNIVERSITY TALLAHASSEE, FLORIDA