ISOTYPE SUBGROUPS OF DIRECT SUMS OF COUNTABLE GROUPS

BY

Paul Hill ${ }^{1}$

I. Introduction

In this paper we shall deal with additively written commutative groups in which each element has finite order. By a theorem whose origin appears to be uncertain [6] such a group G can be decomposed as $G=\sum G_{p}$ where the summation is over the primes and for each prime p any element of G_{p} has order a power of p. Thus we may restrict our attention to G_{p}, that is, there is no loss of generality in assuming that G is primary. If G is a primary group, we define $G[p]$ and $p G$ as follows:

$$
G[p]=\{x \in G: p x=0\} \quad \text { and } \quad p G=\{p x: x \in G\} .
$$

If β is an ordinal, $p^{\beta} G$ is defined inductively by $p^{\beta} G=p\left(p^{\beta-1} G\right)$ provided that $\beta-1$ exists and by $p^{\beta} G=\bigcap_{\alpha<\beta} p^{\alpha} G$ if β is a limit ordinal. The p-primary group G is divisible if $p G=G$ and G is reduced if G does not contain a nontrivial divisible subgroup. A group always decomposes into a divisible part and a reduced part [1]. Since the structure of divisible groups is well known, interest is shifted completely to the reduced part. If G is reduced, there is a smallest ordinal λ such that $p^{\lambda} G=0$; this λ is called the length of G. For each $\alpha \leqq \lambda$, the dimension $f_{G}(\alpha)$ of the vector space

$$
\left(p^{\alpha} G \cap G[p]\right) /\left(p^{\alpha+1} G \cap G[p]\right),
$$

over the prime field of characteristic p, is called the α-th Ulm invariant of G.
It is known that within the class of direct sums of reduced countable primary groups the members are uniquely determined by their Ulm invariants [2], [7]; but subgroups of direct sums of countable groups need not be again direct sums of countable groups [11], [12], [3]. Indeed Nunke has shown in [12] that it is possible for G to be a direct sum of countable reduced primary groups and for H to be nicely embedded in G in the sense that $p^{\alpha} G \cap H=p^{\alpha} H$ for all ordinals α and still H not be a direct sum of countable groups. One of the main results of the present paper is that this can happen only if H has the longest possible length-that length is, of course, Ω. Actually, we prove the following.

Theorem 1. Let $G=\sum_{I} G_{i}$ be a direct sum of countable primary groups G_{i}. If H is an isotype subgroup of G having countable length λ, then H is a direct sum of countable groups. Furthermore, if I_{0} is a subset of I, then $H \cap \sum_{I_{0}} G_{i}$ is a

[^0]direct summand of H if it is p^{λ}-pure in H and
$$
\left\{H \cap \sum_{I_{0}} G_{i}, p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{I_{0}} G_{i}, p^{\alpha} G\right\}
$$
for all $\alpha \leqq \lambda$.
A subgroup H of the p-primary group G is called an isotype subgroup of G if $p^{\alpha} G \cap H=p^{\alpha} H$ for every ordinal α. If β is an ordinal, we shall say that H is weakly p^{β}-pure in G if $p^{\alpha} G \cap H=p^{\alpha} H$ for all $\alpha \leqq \beta$. For the definition of p^{β}-purity see [5], [12], or [9]. It is known [5] that weak p^{β}-purity compares, in the suggested way, with p^{β}-purity.

Theorem 1 is established in conjunction with the following lemmas.
Lemma 1. Suppose that $G=\sum_{I} G_{i}$ is a direct sum of countable primary groups G_{i} and suppose that H is an isotype subgroup of G having countable length λ. Let I_{0} be a subset of I such that $H \cap \sum_{I_{0}} G_{i}$ is p^{λ}-pure in H and

$$
\left\{H \cap \sum_{I_{0}} G_{i}, p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{I_{0}} G_{i}, p^{\alpha} G\right\}
$$

for $\alpha \leqq \lambda$. Let A be a countable subgroup of H. Then there exists a subset I_{1} of I containing I_{0} such that
(1) $H \cap \sum_{I_{1}} G_{i}$ is p^{λ}-pure in H,
(2) $A \subseteq \sum_{I_{1}} G_{i}$,
(3) $I_{1}-I_{0}$ is countable,
(4) $\left\{H \cap \sum_{r_{1}} G_{i}, p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{I_{1}} G_{i}, p^{\alpha} G\right\}$ for $\alpha \leqq \lambda$.

Lemma 2. Suppose that $G=\sum_{I} G_{i}$ is a direct sum of countable primary groups G_{i} and let H be an isotype subgroup of G having countable length λ. Suppose that $I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{\gamma} \subseteq \cdots, \gamma<\delta$, is an ascending chain of subsets of I such that
(i) $\left\{\left(H \cap \sum_{I_{\gamma}} G_{i}\right), p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{I_{\gamma}} G_{i}, p^{\alpha} G\right\}$ for each $\alpha \leqq \lambda$ and each $\gamma<\delta$;
(ii) $\left(H \cap \sum_{I_{\gamma}} G_{i}\right)$ is p^{λ}-pure in H for each $\gamma<\delta$.

Define $I_{\delta}=\bigcup_{\gamma<\delta} I_{\gamma}$. Then conditions (i) and (ii) hold for $\gamma \leqq \delta$.
We shall prove the lemmas and theorem simultaneously by induction on the ordinal λ. More specifically, we show that the validity of Theorem 1 for all $\lambda<\mu$ implies Lemma 1 and Lemma 2 for $\lambda \leqq \mu$. On the other hand, the two lemmas imply the theorem- λ for λ.

We shall see that Theorem 1 yields a rather strong uniqueness theorem. A consequence of this uniqueness theorem is the following result. If $G / p^{\beta} G$ is a direct sum of countable groups for a countable limit β, then there exists, upon identifying isomorphic subgroups, a natural correspondence from the pure subgroups of $p^{\beta} G$ to the pure subgroups of G. The correspondence is $A \rightarrow B$ where for a pure subgroup A of $p^{\beta} G$ the subgroup B is maximal in G with respect to $B \cap p^{\beta} G=A$.

II. Preliminary Results

Some of the results of this section are implicitly contained in [12]. For completeness, however, we shall in those cases abstract what is needed and provide outlines of proofs.

Proposition 1. Let G be a primary group and let H be a neat subgroup of G. If $G[p]=\left\{H[p], p^{\alpha} G[p]\right\}$ for each $\alpha<\beta$, then H is p^{β}-pure in G.

Proof. It is easy to show that H is weakly p^{β}-pure in G; a proof is contained in [8]. Since weak p^{β}-purity is equivalent to p^{β}-purity for $\beta \leqq \omega$, we may assume that $\beta>\omega$. The proof now is by induction on β. The induction step is trivial if β is a limit ordinal. Thus assume that $\beta=\alpha+1>\omega$. Let $G[p]=H[p]+E$ where $E \subseteq p^{\alpha} G$. Since $\beta>\omega, G / H$ is divisible and $\eta=p \xi$ where η is the natural map $G / H \rightarrow G /\{H, E\} \rightarrow 0$ and ξ is an isomorphism, $0 \rightarrow G / H \rightarrow G /\{H, E\} \rightarrow 0$. From the commutativity of the diagram

we have that $X_{0}=X_{1} \eta=X_{1} p \xi=X_{1} p$. Hence $p X_{1}=X_{0}$ in $\operatorname{Ext}(G / H, H)$. It is straightforward to show that

$$
(G / E)[p]=\left\{H[p], p^{\lambda}(G / E)[p]\right\} \quad \text { if } \quad \lambda<\alpha
$$

Thus $X_{1} \in p^{\alpha} \operatorname{Ext}(G / H, H)$ by the induction hypothesis, so

$$
X_{0} \in p^{\beta} \operatorname{Ext}(G / H, H)
$$

and H is p^{β}-pure in G.
Proposition 2. If H is maximal in G with respect to $H \cap p^{\beta} G=0$, then H is $p^{\beta+1}$-pure in G and $H \cong\left\{H, p^{\beta} G\right\} / p^{\beta} G$ is p^{β}-pure in $G / p^{\beta} G$.

Proof. It is a simple exercise to verify that

$$
G[p]=\left\{H[p], p^{\beta} G[p]\right\}
$$

and

$$
\left(G / p^{\beta} G\right)[p]=\left\{\left(\left\{H, p^{\beta} G\right\} / p^{\beta} G\right)[p], p^{\alpha}\left(G / p^{\beta} G\right)[p]\right\}
$$

if $\alpha<\beta$. Since H is neat in G, the conclusion follows by Proposition 1.
A subgroup H of G satisfying the hypothesis of Proposition 2 will be called a β-high subgroup of G (in favor of $p^{\beta} G$-high since p is fixed).

Proposition 3. If $H / p^{\beta} H$ is p^{β}-pure in $G / p^{\beta} H$, then H is p^{β}-pure in G.
Proof. The map

$$
\phi: \operatorname{Ext}\left(G / H, p^{\beta} H\right) \rightarrow \operatorname{Ext}(G / H, H)
$$

induced by the inclusion map $p^{\beta} H \rightarrow H$ goes into $p^{\beta} \operatorname{Ext}(G / H, H)$; the proof is given in [5] by induction on β. Thus the complete inverse image of $p^{\beta} \operatorname{Ext}\left(G / H, H / p^{\beta} H\right)$ under the map

$$
\operatorname{Ext}(G / H, H) \rightarrow \operatorname{Ext}\left(G / H, H / p^{\beta} H\right)
$$

is precisely $p^{\beta} \operatorname{Ext}(G / H, H)$, and the proposition is proved.
Proposition 4. Let H be a subgroup of the primary group G such that $H \cap p^{\lambda} G=p^{\lambda} H$. Then H is p^{λ}-pure in G if and only if $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ is p^{λ}-pure in $G / p^{\lambda} G$.

Proof. Suppose that H is p^{λ}-pure in G. Then $H / p^{\lambda} H$ is p^{λ}-pure in $G / p^{\lambda} H$. Let $K \supseteq H$ be maximal in G with respect to $K \cap p^{\lambda} G=p^{\lambda} H=H \cap p^{\lambda} G$. Then $K / p^{\lambda} H$ is λ-high in $G / p^{\lambda} H$. According to the second half of Proposition 2, $K / p^{\lambda} H$ is p^{λ}-pure in $G / p^{\lambda} G$ under the natural embedding. It follows from $H / p^{\lambda} H \subseteq K / p^{\lambda} H \subseteq G / p^{\lambda} G$ and the transitivity of purity [12] that $H / p^{\lambda} H$ is p^{λ}-pure in $G / p^{\lambda} G^{\gamma}$ under the natural embedding, but under this embedding $H / p^{\lambda} H$ is changed to $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$. Conversely, suppose that $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ is p^{λ}-pure in $G / p^{\lambda} G$ and let $K / p^{\lambda} H \supseteq H / p^{\lambda} H$ be λ-high in $G / p^{\lambda} H$. Since $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ is p^{λ}-pure in $\left\{K, p^{\lambda} G\right\} / p^{\lambda} G$ and since $K \cap p^{\lambda} G=p^{\lambda} H$, it follows that $H / p^{\lambda} H$ is p^{λ}-pure in $K / p^{\lambda} H$. Thus $H / p^{\lambda} H$ is p^{λ}-pure in $G / p^{\lambda} H$ because the λ-high subgroup $K / p^{\lambda} H$ of $G / p^{\lambda} H$ is p^{λ}-pure. By Proposition 3, H is p^{λ}-pure in G.

The next proposition generalizes Theorem 1 in [4]; the formulation is due to Nunke.

Proposition 5. Let β be an ordinal and G a primary group. Suppose that H is a subgroup of G such that
(0) $(G / H) / p^{\beta}(G / H)$ is p^{β}-projective,
(1) $H \cap p^{\beta} G=p^{\beta} H$,
(2) $\left\{H, p^{\beta} G\right\} / p^{\beta} G$ is a direct summand of $G / p^{\beta} G$,
(3) $p^{\beta} H$ is a direct summand of $p^{\beta} G$.

Then H is a direct summand of G.
Proof. Let $G / p^{\beta} G=\left\{H, p^{\beta} G\right\} / p^{\beta} G+K / p^{\beta} G$ and let $p^{\beta} G=p^{\beta} H+C$. First observe that $p^{\beta}(G / H) \subseteq\left\{H, p^{\beta} G\right\} / H$ since $p^{\beta}\left(K / p^{\beta} G\right)=0$ and since

$$
(G / H) /\left\{H, p^{\beta} G\right\} / H \cong G /\left\{H, p^{\beta} G\right\} \cong\left(G / p^{\beta} G\right) /\left\{H, p^{\beta} G\right\} / p^{\beta} G \cong K / p^{\beta} G
$$

Thus $p^{\beta}(G / H)=\left\{H, p^{\beta} G\right\} / H$ and $G /\left\{H, p^{\beta} G\right\}$ is p^{β}-projective by (0). Recall that $\left\{H, p^{\beta} G\right\}=\{H, C\}$, so $G /\{H, C\}$ is p^{β}-projective. Note that $p^{\beta}(\{H, C\} / C)=\left\{p^{\beta} H, C\right\} / C=p^{\beta} G / C$, and consider the following exact sequences

$$
\begin{equation*}
0 \rightarrow\{H, C\} / C \rightarrow G / C \rightarrow G /\{H, C\} \rightarrow 0 \tag{A}
\end{equation*}
$$

and
(B) $\quad 0 \rightarrow(\{H, C\} / C) / p^{\beta} G / C \rightarrow(G / C) / p^{\beta} G / C \rightarrow G /\{H, C\} \rightarrow 0$.

The latter sequence splits since it is equivalent to

$$
0 \rightarrow\left\{H, p^{\beta} G\right\} / p^{\beta} G \rightarrow G / p^{\beta} G \rightarrow G /\{H, C\} \rightarrow 0
$$

and since $\left\{H, p^{\beta} G\right\} / p^{\beta} G$ is a direct summand of $G / p^{\beta} G$. Since (B) splits, (A) is p^{β}-pure, by Proposition 4, and therefore splits as well. Now $G^{\gamma} / C=$ $(H+C) / C+L / C$ for some L. It follows that $G=\{H, L\}$ and that $(H+C) \cap L=C$. Thus $H \cap L \subseteq C$. But $p^{\beta} G \cap H=p^{\beta} H$ by (1). Therefore

$$
C \cap H \subseteq C \cap\left(p^{\beta} G \cap H\right)=C \cap p^{\beta} H=0
$$

and $H \cap L=0$. Hence $G=H+L$.
Proposition 6. Suppose that $G=\sum_{I} G_{i}$ is a direct sum of countable groups G_{i} and that H is a subgroup of G. Let β be a countable ordinal and let A be a countable subgroup of H. Suppose that J is a subset of I such that

$$
\left\{H \cap \sum_{J} G_{i}, p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{J} G_{i}, p^{\alpha} G\right\}
$$

for each $\alpha \leqq \beta$. Then there exists K such that $J \subseteq K \subseteq I, K-J$ is countable, $A \subseteq \sum_{K} G_{i}^{r}$, and

$$
\left\{H \cap \sum_{K} G_{i}, p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{K} G_{i}, p^{\alpha} G\right\}
$$

for $\alpha \leqq \beta$.
Proof. Let K_{0} be the union of J and a countable subset of I such that $A \subseteq \sum_{K_{0}} G_{i}$. For each $\alpha \leqq \beta$, choose a set S_{0}^{α} of representatives for $\sum_{K_{0}} G_{i} \cap\left\{H, p^{\alpha} G\right\}$ modulo $\sum_{J} \bar{G}_{i} \cap\left\{H, p^{\alpha} G\right\}$. Then $S=\bigcup_{\alpha \leqq \beta} S_{0}^{\alpha}$ is countable. Now for each element x_{α} in S_{0}^{α} choose one and only one element y_{α} in $p^{\alpha} G$ such that $x_{\alpha}+y_{\alpha} \in H$. Let $K_{1} \supseteq K_{0}$ be minimal in I such that $\left\{y_{\alpha}\right\}_{\alpha \leqq \beta} \subseteq \sum_{K_{1}} G_{i}$. It is easy to verify that

$$
\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{K_{0}} G_{i}, p^{\alpha} G\right\} \subseteq\left\{H \cap \sum_{K_{1}} G_{i}, p^{\alpha} G\right\}
$$

Choose a set S_{1}^{α} of representatives for $\sum_{K_{1}} G_{i} \cap\left\{H, p^{\alpha} G\right\}$ modulo $\sum_{k_{0}} G_{i} \cap\left\{H, p^{\alpha} G\right\}$. For each x_{α} in S_{1}^{α} choose an element $y_{\alpha} \in p^{\alpha} G$ such that $x_{\alpha}+y_{\alpha} \epsilon H$. Let $K_{2} \supseteq K_{1}$ be minimal in I such that $\left\{y_{\alpha}\right\}_{\alpha \leqq \beta} \subseteq \sum_{\kappa_{2}} G_{i}$. Define K_{n+1} in terms of K_{n} in a similar manner and let $K=U K_{n}$.

Proposition 7. Let $G=\sum_{I} G_{i}$ be a direct sum of countable primary groups and suppose that H is an isotype subgroup of G having countable length λ. Let I_{0} be a subset of I such that $H \cap \sum_{I_{0}} G_{i}$ is isotype in H. If A is a countable subgroup of H, there exists a subject I_{1} of I containing I_{0} such that $I_{1}-I_{0}$ is countable, $A \subseteq \sum_{I_{1}} G_{i}$, and $H \cap \sum_{I_{1}} G_{i}$ is isotype in H.

Proof. It is enough to show that there is a subset J of I containing I_{0} such that $J-I_{0}$ is countable, $A \subseteq \sum_{J} G_{i}$, and such that each element of $\left\{H \cap \sum_{I_{0}} G_{i}, A\right\}$ has the same height in $H \cap \sum_{J} G_{i}$ as it does in G. Set $H_{0}=H \cap \sum_{I_{0}} G_{i}$. For each element $a \epsilon A$ and each ordinal $\alpha \leqq \lambda$, there exists (by an argument similar to Lemma 2 of [4]) a subset $J(\alpha, a)$ of I containing I_{0} such that $J(\alpha, a)-I_{0}$ is countable, $a \in \sum_{J(\alpha, a)} G_{i}$, and such that each element of $\left\{H_{0}, a\right\}$ that has height at least α in H has height at least α in $H \cap \sum_{J(\alpha, a)} G_{i} . \quad$ Set $J=U J(\alpha, a)$.

III. Proof of the lemmas and theorem

Proof of Lemma 1. Suppose that $G=\sum_{I} G_{i}, H$ is an isotype subgroup of G having countable length $\mu, H \cap \sum_{I_{0}} G_{i}$ is p^{μ}-pure in H,

$$
\left\{H, p^{\lambda} G\right\} \cap\left\{\sum_{I_{0}} G_{i}, p^{\lambda} G\right\}=\left\{H \cap \sum_{I_{0}} G_{i}, p^{\lambda} G\right\}
$$

for $\lambda \leqq \mu$, and suppose that A is a countable subgroup of H. Assume Theorem 1 for all $\lambda<\mu$.

First consider the case that μ is a limit ordinal. For each $\lambda<\mu$, $\left\{H, p^{\lambda} G\right\} p^{\lambda} G$ is an isotype subgroup of $G / p^{\lambda} G=\sum_{I}\left\{G_{i}, p^{\lambda} G\right\} p^{\lambda} G$. According to Theorem 1, for each $\lambda<\mu,\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct sum of countable groups. Furthermore,

$$
\left\{H, p^{\lambda} G\right\} / p^{\lambda} G \cap \sum_{I_{0}}\left\{G_{i}, p^{\lambda} G\right\} / p^{\lambda} G=\left\{H \cap \sum_{I_{0}} G_{i}, p^{\lambda} G\right\} p^{\lambda} G
$$

is p^{λ}-pure in $\left\{H, p^{\lambda} G\right\} p^{\lambda} G$ since $H \cap \sum_{I_{0}} G_{i}$ is p^{λ}-pure in H. Thus $\left\{H \cap \sum_{I_{0}} G_{i}, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct summand of $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ by Theorem 1; the additional hypothesis of the theorem is easily verified. In view of Proposition 6 it is possible to establish the existence of a subset I_{1} such that conditions (2)-(4) of Lemma 1 are satisfied and such that $\left\{H \cap \sum_{I_{1}} G_{i}, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct summand of $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ since $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct sum of countable groups. By Proposition 7, we may also assume that $H \cap \sum_{I_{1}} G_{i}$ is isotype in H. It follows from Proposition 4 that $H \cap \sum_{I_{1}} G_{i}$ is p^{λ}-pure in H for $\lambda<\mu$; consequently, $H \cap \sum_{I_{1}} G_{i}$ is p^{μ}-pure in H.

Now suppose that $\mu-1$ exists; set $\lambda=\mu-1$. As before, $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct sum of countable groups and $\left\{H \cap \sum_{I_{0}} G_{i}, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct summand of $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$. There is a subset I_{1} of I such that conditions (2)-(4) of Lemma 1 are satisfied, $\left\{H \cap \sum_{I_{1}} G_{i}, p^{\lambda} G\right\} / p^{\lambda} G$ is a direct summand of $\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$, and $H \cap \sum_{I_{1}} G_{i}$ is isotype in H. Since

$$
\left\{H \cap \sum_{I_{1}} G_{i}, p^{\lambda} H\right\} / p^{\lambda} H \cong\left\{H \cap \sum_{I_{1}} G_{i}, p^{\lambda} G\right\} / p^{\lambda} G
$$

is a direct summand of $H / p^{\lambda} H \cong\left\{H, p^{\lambda} G\right\} / p^{\lambda} G$, then $H \cap \sum_{I_{1}} G_{i}$ is a direct summand of H by Proposition 5 since $\left(H / H \cap \sum_{I_{1}} G_{i}\right) / p^{\lambda}\left(H / H \cap \sum_{I_{1}} G_{i}\right)$ is p^{λ}-projective. In particular, $H \cap \sum_{I_{1}} G_{i}$ is p^{μ}-pure in H, and the lemma is proved.

Proof of Lemma 2. The proof is by induction on λ. It is trivial to verify
that condition (i) of Lemma 2 is satisfied for $\gamma=\delta$. Thus we are concerned with proving only that $H \cap \sum_{I_{\delta}} G_{i}$ is p^{λ}-pure in H.

If $\lambda-1$ exists, $\operatorname{set} \beta=\lambda-1$. Then

$$
\left\{H, p^{\beta} G\right\} / p^{\beta} G \cap \sum_{I_{\bar{\delta}}}\left\{G_{i}, p^{\beta} G\right\} / p^{\beta} G=\left\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta} G\right\} / p^{\beta} G
$$

is p^{β}-pure in $\left\{H, p^{\beta} G\right\} / p^{\beta} G$ by the induction hypothesis. Thus

$$
\left\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta} H\right\} / p^{\beta} H
$$

is p^{β}-pure in $H / p^{\beta} H$. Since

$$
H /\left\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta} H\right\} \cong\left(\left\{H, p^{\beta} G\right\} / p^{\beta} G\right) /\left(\left\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta} G\right\} / p^{\beta} G\right)
$$

is a direct sum of countable groups, $H \cap \sum_{I_{\delta}} G_{i}$ is a direct summand of H by Proposition 5. Now suppose that λ is a limit ordinal. For each $\beta<\lambda$, $\left\{H \cap \sum_{I_{\delta}} G_{i}, p^{\beta} H\right\} / p^{\beta} H$ is p^{β}-pure in $H / p^{\beta} H$. Therefore $H \cap \sum_{I_{\delta}} G_{i}$ is p^{β}-pure in H according to Proposition 4, and the lemma is proved.

Proof of theorem. Suppose that $G=\sum_{I} G_{i}$ is a direct sum of countable primary groups G_{i}. Let H be an isotype subgroup of G having countable length λ. Let I_{0} be a subset of I such that $H \cap \sum_{I_{0}} G_{i}$ is p^{λ}-pure in H and

$$
\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{I_{0}} G_{i}, p^{\alpha} G\right\}=\left\{H \cap \sum_{I_{0}} G_{i}, p^{\alpha} G\right\}
$$

for $\alpha \leqq \lambda$. It follows from Lemma 1 and Lemma 2 that there is a chain $I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{\gamma} \subseteq \cdots$ leading up to I such that $I_{\gamma}=\bigcup_{\beta<\gamma} I_{\beta}$ if γ is a limit ordinal, $I_{\gamma+1}-I_{\gamma}$ is countable, $H \cap \sum_{I_{\gamma}} G_{i}$ is p^{λ}-pure in H, and

$$
\left\{H \cap \sum_{I_{\gamma}} G_{i}, p^{\alpha} G\right\}=\left\{H, p^{\alpha} G\right\} \cap\left\{\sum_{I_{\gamma}} G_{i}, p^{\alpha} G\right\}
$$

for $\alpha \leqq \lambda$. Observe that $\left(H \cap \sum_{I_{\gamma+1}} G_{i}\right) /\left(H \cap \sum_{I_{\gamma}} G_{i}\right)$ is countable and p^{λ}-projective. Hence $H \cap \sum_{I_{\gamma}} G_{i}$ is a direct summand of $H \cap \sum_{I_{\gamma+1}} G_{i}$. Thus $H=\left(H \cap \sum_{I_{0}} G_{i}\right)+\sum_{j} C_{j}$ where C_{j} is countable. The fact that H is a direct sum of countable groups is demonstrated by taking $I_{0}=\emptyset$.

IV. Applications and related results

Our first two corollaries of Theorem 1 sharpen results of Nunke [12].
Corollary 1. Suppose that α is a countable ordinal. Let G be a direct sum of countable primary groups and let H be a subgroup of G. If H is weakly p^{α}-pure in G and if $p^{\alpha+\omega} G$ is countable, then H is a direct sum of countable groups.

Proof. Let $K=p^{\alpha} G$. Then K is a direct sum of countable groups and $p^{\omega} K$ is countable. Hence $K=C+\sum$ cyclics where C is countable, so any subgroup of K is a direct sum of countable groups. Let H be weakly p^{α}-pure in G. Then $p^{\alpha} H=p^{\alpha} G \cap H=K \cap H$ is a direct sum of countable groups. Since $H / p^{\alpha} H$ is isotype in $G / p^{\alpha} G$, Theorem 1 implies that $H / p^{\alpha} H$ is a direct sum of countable groups. Thus H is a direct sum of countable groups [4], [12].

Remark 1. If A is a neat subgroup of $p^{\alpha} G$ and if $B \supseteq A$ is maximal in G with respect to $B \cap p^{\alpha} G=A$, then B is $p^{\alpha+1}$-pure in G by Proposition 1 since B is neat in G and since $G[p]=\left\{B[p], p^{\alpha} G[p]\right\}$. If G is a direct sum of reduced countable groups and if $p^{\omega} G$ is uncountable, then G contains a neat subgroup that is not a direct sum of countable groups; this result is due to Nunke [12], but a particularly simple proof is given in [3]. Thus it follows that if G is a direct sum of reduced countable groups such that $p^{\alpha+\omega} G$ is uncountable, then G contains a p^{α}-pure subgroup that is not a direct sum of countable groups.

The next result was proved by Nunke for purity rather than weak purity in [12]. His result, Proposition 2.5 in [12], and Theorem 1 yield the stronger form.

Corollary 2. Suppose that α is a countable ordinal. Let G be a direct sum of countable primary groups and let H be a subgroup of G. If H is weakly p^{α}-pure in G and $p^{\beta} G$ is countable for some $\beta<\alpha+\omega 2$, then H is p^{γ}-projective for some countable γ.

Remark 2. If G is a direct sum of countable groups and has uncountable length, there exist proper subsocles S of G such that $G[p]=\left\{S, p^{\alpha} G[p]\right\}$ for each countable α. In order to verify this, all we need to do is let K be a reduced primary group such that $K / p^{\Omega} K \cong G$ and $p^{\Omega} K \neq 0$ and let S be the socle of $\left\{L, p^{\Omega} K\right\} / p^{\Omega} K$ where L is Ω-high in K. Let S be such a subsocle of G such that $G[p] / S$ is countable and let H be maximal in G with respect to $H[p]=S$. Then H is p^{Ω}-pure in G; in particular, H is isotype in G and G / H is countable. It is easy to show that H cannot be a direct sum of countable groups, for suppose that $H=\sum_{J} H_{j}$ and $G=\sum_{I} G_{i}$ where G_{i} and H_{j} are countable. There exist countable subsets I_{0} and J_{0} of I and J, respectively, such that $H \cap \sum_{I_{0}} G_{i}=\sum_{J_{0}} H_{j}$ and such that $G=\left\{H, \sum_{I_{0}} G_{i}\right\}$. Now

$$
H=\left(H \cap \sum_{I_{0}} G_{i}^{\prime}\right)+\sum_{J-J_{0}} H_{j} \quad \text { and } \quad G=\sum_{I_{0}} G_{i}+\sum_{J-J_{0}} H_{j}
$$

which yields a contradiction to the statement that $G[p]=\left\{H[p], p^{\alpha} G[p]\right\}$ for each $\alpha<\Omega$; choose α such that $p^{\alpha} \sum_{I_{0}} G_{i}=0$, and recall that $H[p] \neq G[p]$.

Corollary 3. Suppose that $G=\sum_{i \epsilon I} G_{i}+\sum_{i \epsilon J} G_{i}$ where each G_{i} is a countable primary group. Let α be a countable ordinal and let H be p^{α}-pure in $\sum_{I} G_{i}$. If K is isotype in G of length α and if

$$
\left(K, p^{\beta} G\right) \cap\left\{\sum_{I} G_{i}, p^{\beta} G\right\} \subseteq\left\{H, p^{\beta} G\right\}
$$

for $\beta \leqq \alpha$, then H is a direct summand of K provided that $K \cap \sum_{I} G_{i}=H$.
Proof. Since K is isotype in G and has countable length α, by Theorem 1 it is enough to show that $K \cap \sum_{I} G_{i}=H$ is p^{α}-pure in K because the hypotheses immediately imply that

$$
\left\{K \cap \sum_{I} G_{i}, p^{\beta} G\right\}=\left\{K, p^{\beta} G\right\} \cap\left\{\sum_{I} G_{i}, p^{\beta} G\right\}
$$

for $\beta \leqq \alpha$. However, $K \cap \sum_{I} G_{i}$ is p^{α}-pure in K since it is p^{α}-pure in G.

A primary group G is said to be summable if there exists a decomposition $G[p]=\sum S_{\alpha}$ of the socle of G such that the height of each nonzero element of S_{α} is precisely α.

As we mentioned in [2], it is not difficult to establish that any countable reduced primary group is summable. Hence a direct sum of such groups is summable. It would be interesting to know the answer to the following question. If G is a direct sum of countable groups and if H is an isotype subgroup of G, must H be a direct sum of countable groups provided that it is summable?

An immediate consequence of Theorem 1 and Nunke's homological characterization of direct sums of countable groups is the following corollary; see Theorem 2.12 in [12].

Corollary 4. Let the reduced group G be a direct sum of countable primary groups and let H be an isotype subgroup of G. Then H is a direct sum of countable groups if and only if H is p^{2}-projective.

We now state and prove the uniqueness theorem referred to in the introduction.

Theorem 2. Suppose that the primary group G is such that $G / p^{\alpha} G$ is a direct sum of countable groups for a countable limit ordinal α. Suppose that each of A and A^{\prime} is a neat subgroup of $p^{\alpha} G$. Let $B \supseteq A$ be maximal in G with respectto $B \cap p^{\alpha} G=A$ and let $B^{\prime} \supseteq A^{\prime}$ be maximal with respect to $B^{\prime} \cap p^{\alpha} G=A^{\prime}$. If $A \cong A^{\prime}$, then $B \cong B^{\prime}$.

Proof. As we observed in Remark 1, B and B^{\prime} are $p^{\alpha+1}$-pure in G. Thus $p^{\alpha} B=A$ and $p^{\alpha} B^{\prime}=A^{\prime}$. Moreover, $\left\{B, p^{\alpha} G\right\} / p^{\alpha} G$ and $\left\{B^{\prime}, p^{\alpha} G\right\} / p^{\alpha} G$ are isotype in $G / p^{\alpha} G$ with the same Ulm invariants as $G / p^{\alpha} G$. To verify that $\left\{B, p^{\alpha} G\right\} / p^{\alpha} G$ and $G / p^{\alpha} G$ have the same Ulm invariants, notice that B / A is maximal in G / A with respect to $B / A \cap p^{\alpha}(G / A)=0$. Hence $\left\{B, p^{\alpha} G\right\} / p^{\alpha} G$ $\cong B / A$ has the same Ulm invariants as $(G / A) / p^{\alpha}(G / A) \cong G / p^{\alpha} G$. We know that B / A and B^{\prime} / A^{\prime} are direct sums of countable groups by Theorem 1. Therefore $B / A \cong B^{\prime} / A^{\prime}$ since they have the same Ulm invariants, and the proof of the theorem is finished by Hill and Megibben's theorem [4].

An interesting consequence of Theorem 2 is that if the primary group G is a direct sum of countable groups and if A is a neat subgroup of $p^{\beta} G$ for any $\beta=\omega \alpha$, then, up to isomorphism, there exists only one subgroup B of G that is maximal with respect to $B \cap p^{\beta} G=A$.

References

1. L. Fuchs, Abelian groups, Hungarian Publishing House, Budapest, 1958.
2. P. Hill, Sums of countable groups, Proc. Amer. Math. Soc., vol. 17 (1966), pp. 14691470.
3. -, On primary groups with an uncountable number of elements of infinite height, Arch. Math., vol. (1968), pp. 279-283.
4. P. Hill and C. Megibben, Extending automorphisms and lifting decompositions in abelian groups, Math. Ann., to appear.
5. J. Irwin, E. Walker, and C. Walker, On p^{α}-pure sequences of abelian groups, Topics in abelian groups, Scott, Foresman \& Co., Chicago, 1963.
6. I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, 1954.
7. G. Kolettis, Direct sums of countable groups, Duke Math. J., vol. 27 (1960), pp. 111-125.
8. C. Megibben, On mixed groups of torsion-free rank one, Illinois J. Math., vol. 11 (1967), pp. 134-144.
9. R. Nunke, Purity, Notices Amer. Math. Soc., vol. 8 (1961), p. 562.
10. -, "Purity and subfunctors of the identity" in Topics in abelian groups, Scott, Foresman \& Co., Chicago, 1963.
11. - On the structure of Tor, Proceedings of the Colloquium on Abelian Groups, Budapest, 1964.
12. -, Homology and direct sums of abelian groups, Math. Zeitschrift., vol. 101 (1967), pp. 182-212.

The Florida State University
Tallahassee, Florida

[^0]: Received April 5, 1967.
 ${ }^{1}$ This research was supported by a National Science Foundation grant.

