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I. Introduction

In this paper we shall deal with additively writtet commutative groups in
which each element has finite order. By a theorem whose origit appears to be
uncertain [6] such a group G can be decomposed as G ’ Gp where the sum-
marion is over the primes and for each prime p aty elemett of Gp has order a

power of p. Thus we may restrict our attention to Gv, that is, there is no loss
of generality in assuming that G is primary. If G is a primary group, we define
G[p] and p( as follows"

G[p] {x e G px 0} and pG {px x e G}.

If is an ordinal, pG is defined inductively by pG p(pS-G) provided that
fl 1 exists and by pG f)< pG if is a litnit ordital. The p-primary
group G is divisible if pG G and G is reduced if G does not contain a non-
trivial divisible subgroup. A group always decomposes into a divisible part
and a reduced part [1]. Since the structure of divisible groups is well known,
interest is shifted completely to the reduced part. If G is reduced, there is a
smallest ordinal X such that pXG 0; this X is called the length of G. For each
a =< X, the dimension f(a) of the vector space

(pG n G[p]) /(p"+G n G[p]),

over the prime field of characteristic p, is called the a-th Ulm invariant of G.
It is known that within the class of direct sums of reduced countable pri-

mary groups the members are uniquely determined by their Ulm invariants
[2], [7]; but subgroups of direct sums of countable groups need not be again
direct sums of countable groups [11], [12], [3]. Indeed Nunke has shown in
[12] that it is possible for G to be direct sum of countable reduced primary
groups and for H to be nicely embedded in G in the sense that p"G n H pH
for all ordinals a and stillH not be a direct sum of countable groups. One of the
main results of the present paper is that this can happen only if H has the
longest possible lengthttmt length is, of course, ft. Actually, we prove the
following.

THEOREM 1. Let G G. be a direct sum of countable primary groups G.
IfH is an isotype subgroup of G having countable length X, then H is a direct sum

of countable groups. Furthermore, if Io is a subset of I, then H n o G is a
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direct summand of H if it is pX-pure in H and

for all c <= .
A subgroup H of the p-primary group G is called an isotype subgroup of G if

p"G n H p"H for every ordinal a. If/ is an ordinal, we shall say that H
is weakly pe-pure in G if pG n H p"H for all a =</. For the definition of
pe-purity see [5], [12], or [9]. It is known [5] that weak pe-purity compares,
in the suggested way, with pe-purity.
Theorem 1 is established in conjunction with the following lemmas.

LEMMA 1. Suppose that G x Gi is a direct sum of countable primary
groups G and suppose that H is an isotype subgroup of G having countable
length ). Let Io be a subset of I such that H n o Gi is pX-pure in H and

{H o G, p"G} H, p"G} n {-o G, p"G}

for a -<
of I containing Io such that

(1) H 1 G is pX-pure in H,
(2) A
(3) Ix Io is countable,
(4) {H

IEMMA 2. Suppose that G G is a direct sum of countable primary
groups G and let H be an isotype subgroup of G having countable length . Sup-
pose that Io I1 I . < , is an ascending chain of subsets
of I such that

(i) {(H
and each

(ii) (H

Define
We shall prove the lemmas and theorem simultaneously by induction on the

ordinal h. More specifically, we show that the validity of Theorem 1 for all
< implies Lemm 1 and Lemma 2 for =< . On the other hand, the two

lemmas imply the theorem--k for .
We shall see that Theorem 1 yields rather strong uniqueness theorem. A

consequence of this uniqueness theorem is the following result. If G/peG is u
direct sum of countable groups for countable limit , then there exists, upon
identifying isomorphic subgroups, natural correspondence from the pure
subgroups of peg to the pure subgroups of G. The correspondence is A -- Bwhere for a pure subgroup A of peg the subgroup B is maximal in G with re-
spect to B pG A.
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II. Preliminary Results

Some of the results of this section are implicitly contained in [12]. For
completeness, however, we shall in those cases abstract what is needed and pro-
vide outlines of proofs.

PROPOSITION 1. Let G be a primary group and let H be a neat subgroup of
G. If G[p] {H[p], pG[p]} for each < , then H is p-pure in G.

Proof. It is easy to show that H is weakly p-pure in G; a proof is contained
in [8]. Since weak p-purity is equivalent to p-purity for __< , we may
assume that > . The proof now is by induction on f. The induction step
is trivial ifis alimit ordinal. Thus assume that 1 > . Let
G[p] H[p] E where E pG. Since > , G/H is divisible and / p
where v is the natural map G/H -- G/{H, E} -- 0 and is an isomorphism,
0 -- G/H -- G/{H, El -- O. From the commutativity of the diagram

Xo" H :: G ---- G/H

H, ---,,

we have ghag Xo Xn Xp X p. Hence pX Xo in
Ext (G/H, H). It is sraighforward to show hag

(G/E)[p] {H[p], pX(G/E)[pl} if X < .
Thus X e p Ext (G/H, H) by the induction hypothesis, so

X0 e p Ext (G/H, H)
and H is pa-pure in G.

PROPOSITION 2. If H is maximal in G with respect to H peg O, then
H is p+l-pure in G and H

__
{H, pG}/pG is p-pure in G/pG.

Proof. It is a simple exercise to verify that

G[p] IH[p], pG[p]}

(G/pG)[p] {({H, pG}/pG)[p], p(G/pG)[p]}
if a < . Since H is neat in G, the conclusion follows by Proposition 1.
A subgroup H of G satisfying the hypothesis of Proposition 2 will be called

a -high subgroup of G (in favor of pG-high since p is fixed).

PROeOSITON 3. If H/pH is p-pure in G/pH, then H is p-pure in G.

Proof. The map

Ext (G/H, pH) Ext (G/H, H)



induced by the inclusion map pH -- H goes into p Ext (G/H, H); the proof
is given in [5] by induction on . Thus the complete inverse image of
p Ext (G/H, H/pOH) under the map

Ext (G/H, H) -- Ext (G/H, H/pH)
is precisely p Ext (G/H, H), nd the proposition is proved.

PROPOSITION 4. .Let H be a subgroup of the primary group G such that
H pG p’H. Then H is p-pure in G if and only if 1H, pXG}/pG is pX-pure
in G/pG.

Proof. Suppose that H is pX-pure in G. Then H/pXH is pX-pure in G/pXH.
Let K H be maximal in G with respect to K n pG pXH H n pXG. Then
K/pH is h-high in G/pXH. According to the second half of Proposition 2,
K/pH is p-pure in G/pXG under the natural embedding. It follows from
H/pXH K/pXH G/pXG and the transitivity of purity [12] that H/pH is
p-pure in G/pG under the natural embedding, but under this embedding
H/pXH is changed to Ill, pXG} /pXG. Conversely, suppose that H, pXG} /pG
is p-pure in G/pXG and let K/pXH H/pH be ,-high in G/pXH. Since
H, pG}/pG is pX-pure in {K, pGI/pXG and since K pXG pH, it follows
that H/pH is p-pure in K/pXH. Thus H/pXH is p-pure in G/pXH because
the h-high subgroup K/pXH of G/pXH is pX-pure. By Proposition 3, H is
p -pure in G.

The next proposition generalizes Theorem 1 in [4]; the formulation is due to
Nunke.

I)ROPOS1TION 5. Let be an ordinal and G a primary group. Suppose that
H is a subgroup of G such that

(0) (G/H)/p(G/H) is p-projective,
(1) H n pG pH,
(2) {H, pGI/pG is a direct summand of G/pG,
(3) pH is a direct summand of pG.

Then H is a direct summand of G.

Proof. Let G/pG H, pG}/pG + K/pG and let pG pH + C.
First observe that p(G/H) !H, pG}/H since p(K/pG) 0 and since

(G/H)/{H, pG}/H
__

G/{H, pG} (G/pG)/IH, pG}/pG
__

K/pG.

Thus p(G/H) H, pG}/H and G/{H, pG} is p-projective by (0). Re-
call that H, pG} H, C} so G/ H, C} is p-projective. Note that
p({H, C}/C) {pIt, C}/C pG/C, and consider the following exact
sequences

(A) 0 - {H, C}/C G/C -- G/{It, C} -- 0
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and

(B) 0 .-+ H, C1/C)/pG/C --> (G/C)/pG/C -/ G/[H, C} --> O.

The latter sequence splits since it is equivalent to

0 .- H, pG}/pG G/pG --> G/{H, C} -+ 0

and since {H, pC}/pG is a direct summand of alpha. Since (B) splits, (A)
is p-pure, by Proposition 4, and therefore splits as well. Now G/C
(H + C)/C d- L/C for some L. It follows that G {H, L} and that
(H-t- C) nL C. ThusHnL C. ButpGnH=pHby(1). There-
fore

CnH Cn(pGnH) CnpH 0,

and H n L 0. Hence G H -t- L.

I?OOSTON 6. Suppose that G (; is a direct sum of countable
groups C,i and that H is a subgroup of G. Let be a countable ordinal and let A
be a countable subgroup of H. Suppose that J is a subset of I such that

for each o <= . Then there exists K such that J c__ K _C_ I, K J is countable,
A c_ r (;i, and

for o 5.

Proof. Let K0 be the union of J and a countable subset of I such that
A G Y’KoG. For each c <__ , choose a set S;’ of representatives for

o G,: n {H, pG} modulo G n {H, pG}. Then S USg is countable.
Now for each element x in Sg choose one and only one element y in pG
such that x + y e H. Let K K0 be minimal in I such that
{y}> G ,G. It is easy to verify that

H, pG} n {ro C,, pC} {It n , G, p(]}.

Choose a set S, of representatives for G n {II, pG}’ modulo
o G n H, pG}. For each x in S choose an element y pG such that
z + yeH. LetK K be minimal in I sueh that {y} G.
Define K+ in terms of K in a similar manner and let K U K.
PROPOSITION 7. Let G r G be a direct sum of countable primary

groups and suppose that H is an isotype subgroup of G having countable length. Let Io be a subset of I such that H n o G is isotype in H. If A is a
countable subgroup of H, there exists a subject I of I containing Io such that
I Io is countable, A G and H n 1 G is isotype in H.



Proof. It is enough to show that there is a subset J of I containing I0
such that J I0 is countable, A j G, and such that each element of
[H n x0G, A} has the same height in H n j Gi as it does in G. Set
H0 H n x0 G. For each element a e A and each ordinal a =< h, there
exists (by an argument similar to Lemma 2 of [4]) a subset J(a, a) of I
containing I0 such thatJ(a, a) I0 is countable, a e J(,.a) G and such
that each element of {H0 a} that has height at least a in H has height at
least a in H n Er(a,a) (i. Set J UJ(a, a).

I!1. Proof of the lemmas and theorem

Proof of Lemma 1. Suppose that G Gi, H is an isotype subgroup
of G having countable length t, H n z0 G is p’-pure in H,

{H, pG} n {0 G, pG} {U n -,o G, pe}
for h =< , and suppose that A is a countable subgroup of H. Assume Theorem
1 for allX < .

?.trst, consider the case that g is a limit ordinal. For each X < g,

H, p’G} p’G is an isotype subgroup of G/pXG _, G p’G} pXG. Accord-
ing to Theorem 1, for each ), < g, {H, pXG}/pG is a, direct sum of count-
able groups. Furthermore,

H,  2,0 {H

is pX-pure in H, pXG}pXG since H n 0 G is pX-pure in H. Thus
{H n ,o G, pXG}/pXG is a direct summand of {H, pXG}/pXG by Theorem 1;
the additional hypothesis of the theorem is easily verified. In view of Propo-
sition 6 it is possible to establish the existence of a subset I such that con-
ditions (2)-(4) of Lemma 1 are satisfied and such that {H n Gi, pXG}/pXG
is a direct summand of {H, pXG}/pxG since {H, pXG}/pXG is a direct sum of
countable groups. By Proposition 7, we may also assume that H n G is
isotype in H. It follows from Proposition 4 that H n ’Xl G is p-pure in H
for , < ; consequently, H , G is p’-pure in H.
Now suppose that - 1 exists; set ) 1. As before, {H, pXG}/pXG

is u direct sum of countable groups and {H _,o G, pXG}/pXG is a direct
summand of [H, pXG}/pG. There is subset I of I such that conditions
(2)-(4) of Lemma 1 are satisfied, [H n Gi, pXG}/pXG is a direct summand
of [H, pXG}/pXG, and H n - G is isotype in H. Since

{H n EI G, pXH} /pXH {H n , G, pXG} /pXG

is a direct summand of H/pXH {H, pxG}/pXG, then H n z G is a direct
summand of H by Proposition 5 since (H/H n _,1 G)/PX(H/H n _, Gi) is
p -projective. In particular, H n Xl Gi is p"-pure in H, and the lemma is
proved.

Proof of Lemma 2. The proof is by induction on h. It is trivial to verify
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that condition (i) of Lemma 2 is satisfied for 3" . Thus we are concerned
with proving only that H n z Gi is pX-pure in H.

If X-- lexists, set X-- 1. Then

{H, pG}/pG n {G, pG}/pG {H n G, pGl/pG
is p-pure in {H, pG}/pG by the induction hypothesis. Thus

is p-pure in H/pH. Since

H/{Hn G, pH} ({H, pG/pG)/({H ,G, pG}/pG)

is a direct sum of countable groups, H n G is direct summand of H by
Proposition 5. Now suppose that h is a limit ordinal. For each < h,
{H G, pH}/pH is p-pure in H/pH. Therefore H G is
p-pure in H according to Proposition 4, and the lemmu is proved.

Proof of theorem. Suppose that G G is direct sum of countable
primary groups G. Let H be un isotype subgroup of G huving countable
length . Let I0 be a subset of I such that H 0 G is pX-pure in H and

{H, p"G} {0 G, p"G} H o G,, p"G}

for a -< X. It follows from Lemm 1 nd Lemm 2 that there is chain
I0 I I leading up to I such that I Ua< Ia if 3’ is a
limit ordinal, I+ I is countable, H z, Gi is pX-pure in H, nd

for a _<_ . Observe that (H n z+ G)/(H n G) is countable and
pX-projective. Hence H G is direct summnd of H n r+ G.
Thus H (H n r0 G) q- z C. where C. is countable. The fct that H is
a direct sum of countable groups is demonstrated by tking I0 0.

IV. Applications and related results

Our first two corollaries of Theorem 1 sharpen results of Nunke [12].

CoRoLr,av 1. Suppose that a is a countable ordinal. Let G be a direct sum

of countable primary groups and let H be a subgroup of G. If H is weakly
p%pure in G and ifp+G is countable, then H is a direct sum of countable groups.

Proof. Let K pG. Then K is direct sum of countable groups nd
p’K is countable. Hence K C q- cyclics where C is countable, so ny
subgroup of K is direct sum of countable groups. Let H be wekly p%pure
in G. Then p"H p"G H K H is direct sum of countable groups.
Since H/pH is isotype in G/pG, Theorem 1 implies that H/pH is direct
sum of countuble groups. Thus H is direct sum of countable groups [4],
[12].



Remark 1. If A is a neat subgroup of pG and if B A is maximal in G with
respect to B n pG A, then B is pl-pure in (S by Proposition 1 since B is
neat in G and since G[p] {B[p], pG[p]}. If G is a direct sum of reduced
countable groups and if pG is uncountable, then G contains a neat subgroup
that is not a direct sum of countable groups; this result is due to Nunke [12],
but a particularly simple proof is given in [3]. Thus it follows that if G is a
direct sum of reduced countable groups such that p+G is uncountable, then G
contains a p%pure subgroup that is not a direct sum of countable groups.

The next result was proved by Nunke for purity rather than weak purity
in [12]. His result, Proposition 2.5 in [12], and Theorem 1 yield the stronger
form.

COOLAR 2. Suppose that a is a countable ordinal. Let G be a direct sum
of countable primary groups and let H be a subgroup of G. If H is weakly
p%pure in G and pG is countable for some < a 2, then H is p-projective
for some countable .

Remarlc 2. If G is a direct sum of countable groups and has uncountable
length, there exist proper subsocles S of G such that G[p] {S, pG[p]} for
each countable a. It order to verify this, all we need to do is let K be a re-
duced primary group such that K/paK G and paK 0 and let S be the
socle of {L, pK}/pK where L is a-high in K. Let S be such a subsocle of G
such that G[p]/S is countable and let H be maximal in G with respect to
H[p] S. ThenH is p-pure in G; in particular, H is isotype in G and G/H is
countable. It is easy to show that H cannot be a direct sum of countable
groups, for suppose that H Hi and G z G where G and H are
countable. There exist countable subsets I0 and J0 of I and J, respectively,
such that H n ,0 G JoH and such that G {H, 0 G}. Now

which yields cotrdiction to the statement that G[p] {H[p], pG[p]} for
etch a < ; choose a such that p 0 G 0, nd recall that H[p] G[p].

COROLLARY 3. Suppose that G G + G where each G is a
countable primary group. Let a be a countable ordinal and let H be p%pure in

G U K is isotype in G of length a and ff

for fl a, then H is a direct summand of K provided that K Gi H.

Proof. Since K is isotype in G and has countable length a, by Theorem 1 it
is enough to show that K a G H is p%pure in K because the hypotheses
immediately imply that

for a. However, K n G is p"-pure in K since it is p%pure in G.
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A primary group G is said to be summable if there exists a decomposition
G[p] S of the socle of G such that the height of each nonzero element of
S is precisely a.

As we mentioned in [2], it is not difScult to establish that any countable
reduced primary group is summable. Hence a direct sum of such groups is
summable. It would be interesting to know the answer to the following
question. If G is a direct sum of countable groups and if H is an isotype sub-
group of G, must H be a direct sum of countable groups provided that it is
summable?
An immediate consequence of Theorem 1 and Nunke’s homological charac-

terization of direct sums of countable groups is the following corollary; see
Theorem 2.12 in [12].

COROLLARY 4. Let the reduced group G be a direct sum of countable primary
groups and let H be an isotype subgroup of G. Then H is a direct sum of count-
able groups if and only if H is p -pro3ectwe.

We now state and prove the uniqueness theorem referred to in the intro-
duction.

THEOREM 2. Suppose that the primary group G is such that G/pG is a direct
sum of countable groups for a countable limit ordinal a. Suppose that each of A
and A is a neat subgroup of pG. Let B A be maxinal in G with respect to
B r pG A and let B’ A’ be maximal with respect to B r pG A’. If
A --- A, then B B.

Proof. As we observed in Remark 1, B and B’ are p+%pure in G. Thus
pB A and pB’ A’. Moreover, {B, pG}/pG and {B’, pG}/pG are
isotype in G/pG with the same Ulm invariants as G/p"G. To verify that
{B, pG}/pG and G/pG have the same Ulm invariants, notice that B/A is
maximal in G/A with respect to B/A n p"(G/A O. Hence {B, p"G} /p"G
B/A has the same Ulm invariants as (G/A)/p"(G/A) G/pG. We know

that B/A and B’/A’ are direct sums of countable groups by Theorem 1.
Therefore B/A B’/A’ since they have the same Ulm invariants, and the
proof of the theorem is finished by Hill and Megibben’s theorem [4].

An interesting consequence of Theorem 2 is that if the primary group G is a
direct sum of countable groups and if A is a neat subgroup of pG for any

a, then, up to isomorphism, there exists only one subgroup B of G that
is maximM with respect to B n pG A.
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