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LOCAL DUALITY FOR BIGRADED MODULES

JURGEN HERZOG AND AHAD RAHIMI

ABSTRACT. In this paper we study local cohomology of finitely gener-
ated bigraded modules over a standard bigraded ring with respect to
the irrelevant bigraded ideals and establish a duality theorem. Several
applications are considered.

Introduction

Let R be a standard bigraded K-algebra with bigraded irrelevant ideals P
generated by all elements of degree (1,0) and @ generated by all elements of
degree (0,1). We want to relate the local cohomology functors Hi(—) and
H é(—) via duality in the category of bigraded modules. In the ordinary local
duality theorem Matlis duality establishes isomorphisms between the local
cohomology modules of a module and its Ext-groups.

In our situation we have to consider Matlis duality for bigraded mod-
ules. Given a bigraded R-module M we define the bigraded Matlis-dual
of M to be MV, where the (i,7)th bigraded component of MV is given by
HOIHK(M(_i,_j), K)

As the main result of our paper we have the following duality theorem:

THEOREM. Let R be a standard bigraded K-algebra with irrelevant bi-
graded ideals P and @Q, and let M be a finitely generated bigraded R-module.
Then there exists a convergent spectral sequence

By = Hp ™ (Hp, (M)") = Hy? ™" (M)

of bigraded R-modules, where m is the minimal number of homogeneous gen-
erators of P and Ry is the unique graded mazimal ideal of R.

Note that the above spectral sequence degenerates when M is Cohen-
Macaulay and one obtains for all k£ the following isomorphims of bigraded
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R-modules
(1) Hp(Hp, (M)Y) = HEH(M)Y,

where s = dim M; see Corollary 2.6.

Let Ry be the K-subalgebra of R which is generated by the elements of
bidegree (1,0), and let N be any bigraded R-module. Then for all j, the
module N; = €, N, ;) is a graded Ro-module with grading (N;); = N j).
Moreover, if N is finitely generated, then each N, is a finitely generated Ro-
module. In particular, if M is an s-dimensional Cohen-Macaulay module and
if we set N = Hp, (M)V, then N is again an s-dimensional Cohen-Macaulay
module and by (1) we obtain for all j the isomorphisms of graded Ry-modules

(2) Hp, (Nj) 2 (Hgy " (M)-5)",

where P, is the graded maximal ideal of Ry. Here we used that HE(N); =
HF, (N;) for all k and j.

Brodmann and Hellus [4] raised the question whether the modules H 5(M )
are tame if M is a finitely generated graded R-module, in other words, whether
for each k there exists an integer jy such that either Hg(M)] = 0 forall j < jo,
or else Hg(M)j # 0 for all j < jg. In various cases this problem has been
answered in the affirmative; see [3], [4], [16], [10], [12] and [2] for a survey on
this problem. In case M is Cohen-Macaulay the tameness problem translates,
due to (2), to the following question: Given a finitely generated bigraded R-
module N, does there exist an integer jy such that HII%O (N;) =0forall j > jo,
or else H }%0 (N;) # 0 for all j > jo? More generally, one would expect that for
a finitely generated graded Rp-module W and a finitely generated bigraded
R-module N there exists for all k an integer jo such that Ext’;zo (N;,W)=0
for all j > jg, or else Ext’f{o (N;,W) # 0 for all j > jo. However, this is not
the case as has been recently shown by Cutkosky and the first author; see
[7]. Their example also provides a counterexample to the general tameness
problem. To show this, Proposition 2.5 of this paper is used. On the other
hand, in a recent paper [14] the second author of this paper has shown that
tameness holds for all local cohomology modules of a ring with monomial
relations and with respect to monomial prime ideals.

In Section 2 we use our duality to give new proofs of known cases of the
tameness problem and also to add a few new cases in which tameness holds;
see Corollaries 2.4, 2.8 and 2.12. The duality is also used in Corollaries 2.9
and 2.10 to prove some algebraic properties of the modules Hf? (M); in case
M is Cohen-Macaulay.
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1. Proof of the duality theorem

Let S = K[z1,...,Zm,Y1,-- ., Yn] be the standard bigraded polynomial ring
over the field K. We set K[z] = K[z1,...,%n] and K[y] = K[y1,. .., yn] and
consider both as standard graded polynomial rings.

If A is a standard (bi)graded K-algebra and M a (bi)graded A-module,
we set MY = Homg (M, K) and view MV as (bi)graded A-module with the
(bi)grading

(MY), = Homg (M_,, K)
for a € Z (respectively a € Z? in the bigraded case).
The following simple fact is needed for the proof of the next lemma.

LEMMA 1.1. Let M be a graded K[z]-module and N be a graded Kly]-
module. Then there exists a natural bigraded isomorphism of bigraded S-
modules

(M@K N)v ~ MY RK NV,

Proof. Let S = K[z] ®x K[y] = K[z,y]. Note that M ®x N is a bigraded
free S-module with the natural bigrading

(M QK N)(i,j) = Mz KK Nj.
Thus we see that
((M RK N)v)(i,j) = HomK((M R N)(_L_j),K) = HOII]K(M_Z' RK N_j,K).

By using the universal property of the tensor product one has the following
natural isomorphism of K-vector spaces

Hompg(M_; ®x N_;, K) = Homg (M_;, K) ®x Homg (N_;, K).
Thus we have
((M R N)v)(i7j) = HomK(M,i, K) [29)7¢ HomK(N,j, K)
= (MY); @K (NY);
= (Mv RK Nv)(i,j).
So the desired isomorphism follows. O
LEMMA 1.2. Let S = K[x1,...,Zm,Y1,--.,Yn] be the standard bigraded
polynomial ring over the field K with the irrelevant bigraded ideals P =

(1, ,Zm) and Q = (y1,...,Yn). Then we have the following isomorphism
of bigraded S-modules

HE (ws) = H(S)",

where wg s the bigraded canonical module of S'.
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Proof. We denote by P, the graded maximal ideal of K[z] and by Qg
the graded maximal ideal of KJy]. First we notice that there is a natural
isomorphism of bigraded S-modules

Hp'(S) = HE, (K[2]) @ Kly].

By the graded version of the local duality theorem (see [5, Example 13.4.6])
we have

HE, (K [z])" = Klz](—m).
Thus we see that
Hp (ws) = Hp'(S(=m, —n)) = HE'(S)(—m, —n)
= (Klz](—m)” @k Kly])(-=m,—n)
= K[2]" @k K[yl(—n).
On the other hand, using again the local duality theorem, Lemma 1.1 yields
Hy(S)" = (K[z] @k Hg, (K[y])" = (K[z] @k Klyl(-n)")"
Klz]" ®x Ky)(-n)""
K[z]" @k K[yl(—n),
as desired. O

IR

1

COROLLARY 1.3.  Let F' be a finitely generated bigraded free S-module, and
set F* = Homg(F,wg). Then there exists a natural isomorphism of bigraded
S-modules

HpE(F*) = H5(F)".

Proof. Let F = @, _, S(—ak, —by). Thus F* = @) _,(ws)(ax,bx) and
hence by Lemma 1.2 we have
¢

HpE (F*) = @ Hp (ws) (ak, bi) HE(8)" (ak, br)
k=1

P~

=
Il
—

(6D S(—ak, —by))"
k=1
B(F). 0

1%
T
3

I
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The previous result can easily be extended as follows.

LEMMA 1.4. Let F be a bounded complex of bigraded free S-modules. We
set F* = Homg(F,wg). Then we have a functorial isomorphism
HP (F) = H3(F)"

of complexes of bigraded modules.
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Proof. Tn order to prove that the complexes of Hp'(F*) and H(F)Y are
isomorphic, we observe that for any bihomogeneous linear map ¢ : G — F
between finitely generated free bigraded S-modules we obtain the following
commutative diagram

HB(F)Y 25 HB(G)Y

1 1
Hp(FY) % Hp(GY),
where ¥1 = Hp(p) and 12 = H{}'(¢*) and where the vertical maps are the iso-

morphisms given in Corollary 1.3. The commutativity of the diagram results
from the fact that all maps in the diagram are functorial. O

PROPOSITION 1.5. Let M be a finitely generated bigraded S-module, P
and @ be the irrelevant bigraded ideals of S. Then we have the following
convergent spectral sequence

E}; = Hp 7 (Exty™ (M, ws)) — Hy7 ™™ (M),

Proof. Let (F,d) be a bigraded free resolution of M of length n + m, and
let G be the complex of bigraded S-modules with G; = Homg(Fy4pn—i,ws)
and differential 9; = Homg(dy,4n—i,ws). Next we choose a bigraded free
resolution C of the complex G. In other words, C is a double complex Cj; of
finitely generated bigraded free S-modules with i, 5 > 0 such that:

(i) The ith column of C is a free resolution of G; for all i, i.e.,

] oy G,’ for j = 0,
HJ(C“>_{ 0 forj>0.

(ii) For each row the image of C;_1; «— C;; is a bigraded free direct
summand of the kernel of C_5 ; «— C;_1 ;. In particular, the ho-
mology of

Ci—z,j «— Ci15«— Cij
is a bigraded free S-module for all 7 and j.
(iii) For each i the complex
0— H;(C.p) «— Hi(C.1) «— H;(C.2) «— ---
is a bigraded free resolution of H;(G).
Now we compute the total homology of the double complex H'(C): Since
all G; are free S-modules, it follows that the complexes
0—Gi«—Cigp—Cig— -
are all split exact. Hence the complexes
0« Hp'(Gi) «— Hp'(Cip) «— Hp' (Cin) «— -+

are again exact.
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This implies that the E'-terms of the double complex H%'(C) with respect
to the column filtration are
1 _ [ HE(G;) for j =0,
“3 1 0 for j > 0.
As a consequence, for the E*-terms of Hp'(C) we have that E7; = 0 for j > 0,
and that E?, is the ith homology of the complex H%(G). Now we use Lemma

K2

1.4 as well as [13, Theorem 1.1 ] and obtain

22 _{ HE ™ (M)Y - for j =0,
tJ 0 for j > 0,
since H;(HP(G)) = (Hptm—i(HH(F)))Y. From this it follows that the (i+37)th
total homology of H?(C) is equal to ngj*m(M)V.

Now we compute the homology of Hp'(C) using the row filtration. Each row
Hp(C.;) of HEF(C) is split exact with homology H;(HF(C.;)) =
Hp(Hi(C.;)). In other words, E};, = Hp(H;(C.;)). Hence by property
(ili) of the complex C and by [13, Theorem 1.1 | it follows that E}; =
Hp ™7 (BExtZ " (M, ws)). This yields the desired conclusion. O

Now our main theorem is an easy consequence of Proposition 1.5:

Proof. As R is a standard bigraded K-algebra, it is the homomorphic image
of a standard bigraded polynomial ring S = Klx1,...,Zm,Y1,.--,Yn]. We
may consider R and S as well as standard graded K-algebras with the unique
graded maximal ideal R4 (resp. Si), and M as a graded R-module (resp.
S-module). Then by the graded local duality theorem we have

Exty " (M, ws) = Hg (M)
Since Hg+ (M) = H%h (M), it follows that
HE™ (Hpy, (M)Y) = Hp ™ (Bxtg ™"~ (M, ws)).

Let (z) = (z1,...,2) and (y) = (y1,...,¥n) be the irrelevant ideals of S.

We note that Hp' 7 (ExtZ "~ (M, ws)) = Hg;j (Extd (M, ws)) and that

Hé;j_m(M)V = H(i;')j_m(M)v. Therefore, Proposition 1.5 yields the desired
convergent spectral sequence. O

COROLLARY 1.6. Let R be a standard bigraded d-dimensional Cohen-
Macaulay K-algebra with irrelevant bigraded ideals P and Q, and let M be
a finitely generated bigraded R-module. Then there exists a convergent spec-
tral sequence

Ei%j _ Hgb*j(EXttIi%fi(M’ WR)) :J> Hg*j*m(M)\/

of bigraded R-modules, where m is the minimal number of homogeneous gen-
erators of P.
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Proof. The assertion follows from our main theorem by using the fact that
Hj (M)Y = Ext§ " (M,wg). 0

2. Some applications

In this section, unless otherwise stated, R denotes a standard bigraded
K-algebra of dimension d, and M a finitely generated bigraded R-module.

We note that for the E2-terms in the spectral sequence of our main theorem
we have E7; = HY ™/ (Hp (M)Y) = 0if i < depth M or i > dim M or j <0
or j > m. Thus the possible non-zero E?-terms are in the shadowed region of
the following picture.

(s,m)
AN
N
2
7 i A e
N I
|
(t,0) AN S
FiGURE 1

Here t = depth M , s = dim M and E?; = Hp ™/ (Hp, (M)Y).

We first observe that the graded local duality theorem is a special case of
our main theorem. In fact, if we assume that P = (0), then m = 0, and
m = @ is the unique graded maximal ideal of R. Moreover, Ef ;,=ES=0

for j # 0 and all 4, since Hé“o)(—) = 0 if k # 0. Therefore we have

Exty (M, wr) = Hiy (Bxtf; (M, wr)) 2 Hy (M)

Considering Figure 1 we immediately obtain the following corner isomor-
phisms.

ProrosiTION 2.1. Let dimM = s and depthM = t. Then there are
natural isomorphisms

HP (Y, (M)") = Hy™(M)Y and  HY(Hj,, (M)") = Hy(M)".

Moreover, for i <t —m we have Hé(M) =0.
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DEFINITION 2.2. Let Ry be a commutative Noetherian ring, R a graded
Ry-algebra and N a graded R-module. The R-module N is called tame, if
there exists an integer jo such that

N; =0for all j <jg, or N;j#0 forall j< jo.

In case of a standard bigraded K-algebra R we let Ry be the K-subalgebra
of R generated by all elements of degree (1,0). Then R is a graded Rg-
algebra with components R; = R, ;) = @, R ). Let N be a bigraded
R-module. We may view N as a graded R-module with graded components
Nj = N j) = D, N jy- Each of the modules N; is a graded Ro-module,
and if N is a finitely generated R-module then each [V; is a finitely generated
Ro-module.

Now let M be a finitely generated bigraded R-module. Then Hi(M); =
H};O(M i), where Py is the graded maximal ideal of Ry. Since M; is a finitely
generated Ry-module it follows that H 120 (M) is a graded Artinian Ry-module.
Hence we see that (Hp(M)Y); = (Hp(M)_;)V = Hp (M_;)" is a finitely
generated graded Ry-module for all j. Of course this does not imply that
HL(M)V is a finitely generated R-module.

We denote by c¢d(M) the cohomological dimension of M with respect to @,
i.e., the number

cd(M) = sup{i € Ng : H5(M) # 0}.

COROLLARY 2.3. Let N = H§+(M)v. Then the following statements
hold:
(a) cd(M) < dim(M) if and only if depthr N; > 0 for all j.
(b) Ifed(M) < dim(M) — 1, then depthp N; > 1 for all j.

Proof. We note that cd(M) < dim(M), if and only if HE (M) = 0. Hence
Proposition 2.1 yields part (a) of the corollary.

For the proof of (b) we notice that Hj,(N) = EZ,,_; for i = 0,1, and that
EZ,.—; is a submodule of Hé_i(M )V for all . Thus our assumption implies

that Hj, (N;) = Hp(N); = 0 for i = 0,1 and all j. This yields the desired
conclusion. O

The second statement of the next corollary is well-known (see [2, Theorem

4.8 (e))).

COROLLARY 2.4. Let M be a finitely generated bigraded R-module of di-
mension s and depth t. Then Hég_m(M) and H(M) are tame.

Proof. We first prove Hé_m(M) is tame. By [1, Proposition 2.5] the di-
mension of N; as an Ro-module is constant for j > 0. We set N = Hp, (M)Y
and so = dimpg, N; for j > 0. Note that so < dim Ry < m. Thus we have
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HPE(N); = Hp (Nj) =0 for j > 0if so < m and Hp'(N); = HE (N;) # 0
for 7 > 0 if s = m. Therefore by Proposition 2.1 there exists an integer jo
such that

Hé?_m(M)j =0 for all j <jy, or Hé_m(M)j # 0 for all j < jo,

as desired. In order to prove that Hg) (M) is tame, we set N = Hp (M)".
Since H Ry (M) is a graded Artinian R-module, N is a finitely generated graded
R-module. Thus Nj is a finitely generated Rp-module. By [1, Proposition
2.5] the set of associated prime ideals of Assg,(IN;) is constant for large j. If
Py € Assg,(N;), it follows that HR(N); = Hp (N;) # 0 for large j, and if
Py ¢ Assg,(Nj), then Hp(N); = Hp, (N;) = 0 for large j. Thus in view of
Proposition 2.1, Hg) (M) is also tame. O

We say that M is a generalized Cohen-Macaulay R-module if H 1i%+ (M) has
finite length for all 4 # dim M.

PROPOSITION 2.5. Let M be a generalized Cohen-Macaulay R-module of
dimension s. Then we have the following long exact sequence of bigraded
R-modules

0~ Hp(Hp, (M)") = Hy " (M)" — H ' (M)” —
Hp(Hy, (M)Y) — Hy 2(M)" — Hy 2(M)" —
o Hy (M) Hi ()Y 0
Moreover, we have the following isomorphisms
H?aJr(M) = Hég(M) for alli < s—m.

Proof. Since M is a generalized Cohen-Macaulay module, we have that
HIiQJr(M )V is of finite length for i # s. Thus by Grothendieck’s vanishing

theorem [5, Theorem 6.1.2] we see that Efj =EX=0forj=0,....,m—1
and i # s. The following picture will make this clear.
Therefore for all £ with s < k < s+ m we get the following exact sequences

0— ES. — Hé(M)V — B, — 0,
0— Elo,om - Elz,m - E?,r—l - Eg,(;’—l - 07

where [ and r are defined by the equations s +r=101+m = k.
Composing these two exact sequences we get the long exact sequence

-— B2, — HL(M)" — Ef,, » E2,_| —
HlQ_l(M)V - El2—1,m - 3,7“—2 T
which yields the desired exact sequence, observing that
Hp(Hp, (M)Y) = Hp, (M)
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for i # s, since for such ¢ the modules H}'%+ (M) have finite length. The last
statement of the proposition follows similarly. O

COROLLARY 2.6. Suppose M is a generalized Cohen-Macaulay module of
dimension s. Then the following conditions are equivalent:
(a) M is Cohen-Macaulay.
(b) HE(Hf, (M)Y) 2 HEH(M)Y for all k.

Proof. (a) = (b): Since M is Cohen-Macaulay we have H}%JM)V =0
for all 4 # s. Therefore it follows from the long exact sequence in Proposition
2.5 that H}%(Hfh(M)v) = Hg{k(M)v for k = 1,...,m. The assertion for
k = 0 follows from Proposition 2.1. The assertion is also clear when k < 0.
Now assume that kK > m. Then s —k < s—m, and hence by Proposition 2.5 it
follows that Hgfk(M)v = H;,:rk(M)v = 0. On the other hand, we also have
HII?-,(HI'S%+(M)V) = 0 because k > m.

(b) = (a): This is proved is the same way. O

As a generalization of Lemma 1.2 we obtain as an immediate consequence
of Corollary 2.6 the following

REMARK 2.7. Let R be a bigraded Cohen-Macaulay K-algebra of dimen-
sion d. Then
Hp(wr) = HEH(R)Y  for all k.

Recall that for a finitely generated graded R-module N one has that
dimpg, N; as well as depthg, Nj is constant for large j; see [1, Proposition
2.5]. In fact, if N is Cohen-Macaulay, then lim; .., depthp N; = dim N —
dim N/PyN as shown in [9]. We call these constants the limit depth and limit
dimension, respectively. Using this fact we have:

COROLLARY 2.8. Let M be a bigraded Cohen-Macaulay R-module of di-
mension s. We set N = Hp,_ (M)Y, and put to = lim;_,o depthp, N; and
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so = lim; .o dimp, N;. Then the R-modules Hé(M) are tame for all j <
s—sgandj>s—tg.

Proof. We see that H3 “(N); = H;O_i(Nj) #0for j > 0ifi=5s— 50 and
i =s—ty, and also H5 '(N); = Hfjgi(Nj) =0for j>0ifi <s—spand

i > s — tg. Therefore by Corollary 2.6 we have the desired conclusion. O

COROLLARY 2.9. Assume Ry is Cohen-Macaulay and M is a bigraded
Cohen-Macaulay R-module of dimension s. We set N = Hp, | (M)V. Then:

(a) For all k and j we have the following isomorphism of graded Rg-
modules

Extf " (Nj, wr,) = HY F(M)_j,
where d = dim Ry.
(b) dim Hy™"(M)_; <k for all k and j.
Proof. Corollary 2.6 implies that
(Hy F(M)—;)" = (Hy M(M)Y); = HE, (N;).
Thus the local duality theorem yields
HE*(M)_; = Hp (N;)" = Ext§. " (N;,wr,),

as desired.
Finally by [6, Corollary 3.5.11(c)] one has dimpg, Ext?%;k(Nj,wRO) < k.
This proves statement (b). O

Let N # 0 be a graded Rp-module. We set a(N) = inf{i: N; # 0} and
b(N) =sup{i: N; #0}. If N =0, we set a(N) = o0 and b(N) = —o0.
Recall that the regularity of N is defined to be
reg N = max{b(H}, (N)) +k: k=0,1,...}.

With the assumptions and notation introduced in Corollary 2.6 we therefore
have

reg(N;) = —min{a(HS ™" (M)_;) —k: k=0,1,...}.

In [8] and [11] it is shown that reg(XV;) is bounded above by a linear function
of j. Thus in view of the preceding formula we get:

COROLLARY 2.10. Let M be a Cohen-Macaulay R-module. Then there
exist integers ¢ and d such that a(Hg(M)j) >cj+d forall k and all j.

If the dimension and the depth of M differ at most by 1 or dim Ry < 1 one
obtains:

ProroSITION 2.11.  The following statements hold:
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(a) If dim M = s and depth M = s — 1, then we obtain the long exact
sequence
- — Hp /T (Hp N(M)Y) — Hp ™/ (Hy (M)Y) — Hy ™" (M) —
Hy ™7 HG L (M)Y) — HE T (H (M)Y) —
im Ry =0, then H® ~ [l or all i.
b) If dim Ry = 0, then Hp (M) = Hg (M) for all
(¢) If dim Ry = 1, then for all i we have the short exact sequence

0 — Hp(HE ' (M)") — Ho(M)Y — Hp(Hp, (M)Y) — 0.

Proof. We first prove (a). Our hypotheses imply the following exact se-

quences _
0= B — Hy ™M) — B2,y 0,

0— E:il,j+1 - Ef_l,j+1 - Ez,j—1 - Eg.ij—l — 0.
Putting these two exact sequences together we get the long exact sequence

T ngl,j+2 - E?,j - H57m+j(M)v - Eil,jﬂ -

—m—14j

B, —Hy" (MY S B - EL o
which yields the desired exact sequence.

For the proof of (b) we set N = Hp (M)". Since dim Ry = 0, it follows
that N is a finitely generated Rp-module of finite length. Thus Hzl_j (N) =
Hp ™/ (Ny) = 0 for all k and j < m and hence E}; = 0 for all i and j # m.

_ 0 ~ ] \ - ) ~
Therefore we have N = Hp(N) = Hgy(M)Y for all i, and 50 Hp (M) =
Hg (M) for all i. In order to prove (c) we again set N = Hp (M)". Since
dim Ry = 1, it follows that HE 7/ (N)y = Hpy 7/ (Ny) = 0 for all k and j <
m — 1 and hence Efj =0 for all ¢ and j # m,m — 1. Thus for all ¢ we get the
exact sequence
0— EX1m— HlQ(M)v — B, — 0.

Since EfYy,,_ 1 = B}, and EY, = E? | for all i, the result follows. [

As a simple consequence of Proposition 2.11 (b),(c) we obtain the following
tameness result due to [2, Theorem 4.5].

COROLLARY 2.12. Let dim Ry < 1. Then HZ;)(M) is tame for all i.

Proof. First we assume that dim Ry = 0. Since any Artinian graded R-
module is tame, the result follows from Proposition 2.11 (b).

Now we assume that dim Ry = 1. Let N be a finitely generated bigraded
R-module. By Proposition 2.11 (c) it is enough to prove that there exists an
integer jo such that for ¢ = 0,1 one has:

Hp, (Nj) =0 for all j>jo, or Hp (Nj)# 0 forall j > jo.
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We set {9 = lim; o depthp, N; and so = lim;_, o dimpg, N;. Then H%O (Nj) #*
0 for j > 0if t; = 0, and H?;D(Nj) = 0 for j > 0 if ty # 0. Similarly,
Hp (N;) # 0 for j > 0if sg = 1, and Hp, (N;) for j > 0 if 59 = 0. O

Finally we want to mention two standard 5-term exact sequences arising
from our spectral sequence.

PROPOSITION 2.13.  There is a 5-term exact sequence for the corner (t,0)
HEm (M) — HE = (Hp, (M)”) — HE(HE(M)") -
HG™ ™™ (M) — Hp ™' (Hp, (M)Y) — 0,
and a 5-term exact sequence for the corner (s,m)
Hg(M)Y — Hp(Hy ' (M)Y) — Hp(Hp, (M)Y) —
H (M) — HY(H5 (M)Y) = 0.
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