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LOCAL DUALITY FOR BIGRADED MODULES

JÜRGEN HERZOG AND AHAD RAHIMI

Abstract. In this paper we study local cohomology of finitely gener-
ated bigraded modules over a standard bigraded ring with respect to
the irrelevant bigraded ideals and establish a duality theorem. Several
applications are considered.

Introduction

Let R be a standard bigraded K-algebra with bigraded irrelevant ideals P
generated by all elements of degree (1, 0) and Q generated by all elements of
degree (0, 1). We want to relate the local cohomology functors Hi

P (−) and
Hj
Q(−) via duality in the category of bigraded modules. In the ordinary local

duality theorem Matlis duality establishes isomorphisms between the local
cohomology modules of a module and its Ext-groups.

In our situation we have to consider Matlis duality for bigraded mod-
ules. Given a bigraded R-module M we define the bigraded Matlis-dual
of M to be M∨, where the (i, j)th bigraded component of M∨ is given by
HomK(M(−i,−j),K).

As the main result of our paper we have the following duality theorem:

Theorem. Let R be a standard bigraded K-algebra with irrelevant bi-
graded ideals P and Q, and let M be a finitely generated bigraded R-module.
Then there exists a convergent spectral sequence

E2
i,j = Hm−j

P (Hi
R+

(M)∨) =⇒
j
Hi+j−m
Q (M)∨

of bigraded R-modules, where m is the minimal number of homogeneous gen-
erators of P and R+ is the unique graded maximal ideal of R.

Note that the above spectral sequence degenerates when M is Cohen-
Macaulay and one obtains for all k the following isomorphims of bigraded
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R-modules

Hk
P (Hs

R+
(M)∨) ∼= Hs−k

Q (M)∨,(1)

where s = dimM ; see Corollary 2.6.
Let R0 be the K-subalgebra of R which is generated by the elements of

bidegree (1, 0), and let N be any bigraded R-module. Then for all j, the
module Nj =

⊕
iN(i,j) is a graded R0-module with grading (Nj)i = N(i,j).

Moreover, if N is finitely generated, then each Nj is a finitely generated R0-
module. In particular, if M is an s-dimensional Cohen-Macaulay module and
if we set N = Hs

R+
(M)∨, then N is again an s-dimensional Cohen-Macaulay

module and by (1) we obtain for all j the isomorphisms of graded R0-modules

Hk
P0

(Nj) ∼= (Hs−k
Q (M)−j)∨,(2)

where P0 is the graded maximal ideal of R0. Here we used that Hk
P (N)j ∼=

Hk
P0

(Nj) for all k and j.
Brodmann and Hellus [4] raised the question whether the modules Hk

Q(M)
are tame ifM is a finitely generated graded R-module, in other words, whether
for each k there exists an integer j0 such that eitherHk

Q(M)j = 0 for all j ≤ j0,
or else Hk

Q(M)j 6= 0 for all j ≤ j0. In various cases this problem has been
answered in the affirmative; see [3], [4], [16], [10], [12] and [2] for a survey on
this problem. In case M is Cohen-Macaulay the tameness problem translates,
due to (2), to the following question: Given a finitely generated bigraded R-
module N , does there exist an integer j0 such that Hk

P0
(Nj) = 0 for all j ≥ j0,

or else Hk
P0

(Nj) 6= 0 for all j ≥ j0? More generally, one would expect that for
a finitely generated graded R0-module W and a finitely generated bigraded
R-module N there exists for all k an integer j0 such that ExtkR0

(Nj ,W ) = 0
for all j ≥ j0, or else ExtkR0

(Nj ,W ) 6= 0 for all j ≥ j0. However, this is not
the case as has been recently shown by Cutkosky and the first author; see
[7]. Their example also provides a counterexample to the general tameness
problem. To show this, Proposition 2.5 of this paper is used. On the other
hand, in a recent paper [14] the second author of this paper has shown that
tameness holds for all local cohomology modules of a ring with monomial
relations and with respect to monomial prime ideals.

In Section 2 we use our duality to give new proofs of known cases of the
tameness problem and also to add a few new cases in which tameness holds;
see Corollaries 2.4, 2.8 and 2.12. The duality is also used in Corollaries 2.9
and 2.10 to prove some algebraic properties of the modules Hk

Q(M)j in case
M is Cohen-Macaulay.
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1. Proof of the duality theorem

Let S = K[x1, . . . , xm, y1, . . . , yn] be the standard bigraded polynomial ring
over the field K. We set K[x] = K[x1, . . . , xm] and K[y] = K[y1, . . . , yn] and
consider both as standard graded polynomial rings.

If A is a standard (bi)graded K-algebra and M a (bi)graded A-module,
we set M∨ = HomK(M,K) and view M∨ as (bi)graded A-module with the
(bi)grading

(M∨)a = HomK(M−a,K)

for a ∈ Z (respectively a ∈ Z2 in the bigraded case).
The following simple fact is needed for the proof of the next lemma.

Lemma 1.1. Let M be a graded K[x]-module and N be a graded K[y]-
module. Then there exists a natural bigraded isomorphism of bigraded S-
modules

(M ⊗K N)∨ ∼= M∨ ⊗K N∨.

Proof. Let S = K[x]⊗K K[y] = K[x, y]. Note that M ⊗K N is a bigraded
free S-module with the natural bigrading

(M ⊗K N)(i,j) = Mi ⊗K Nj .

Thus we see that

((M ⊗K N)∨)(i,j) = HomK((M ⊗K N)(−i,−j),K) = HomK(M−i⊗K N−j ,K).

By using the universal property of the tensor product one has the following
natural isomorphism of K-vector spaces

HomK(M−i ⊗K N−j ,K) ∼= HomK(M−i,K)⊗K HomK(N−j ,K).

Thus we have

((M ⊗K N)∨)(i,j) ∼= HomK(M−i,K)⊗K HomK(N−j ,K)

= (M∨)i ⊗K (N∨)j
= (M∨ ⊗K N∨)(i,j).

So the desired isomorphism follows. �

Lemma 1.2. Let S = K[x1, . . . , xm, y1, . . . , yn] be the standard bigraded
polynomial ring over the field K with the irrelevant bigraded ideals P =
(x1, . . . , xm) and Q = (y1, . . . , yn). Then we have the following isomorphism
of bigraded S-modules

Hm
P (ωS) ∼= Hn

Q(S)∨,

where ωS is the bigraded canonical module of S.
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Proof. We denote by P0 the graded maximal ideal of K[x] and by Q0

the graded maximal ideal of K[y]. First we notice that there is a natural
isomorphism of bigraded S-modules

Hm
P (S) ∼= Hm

P0
(K[x])⊗K K[y].

By the graded version of the local duality theorem (see [5, Example 13.4.6])
we have

Hm
P0

(K[x])∨ ∼= K[x](−m).

Thus we see that

Hm
P (ωS) = Hm

P (S(−m,−n)) = Hm
P (S)(−m,−n)

∼= (K[x](−m)∨ ⊗K K[y])(−m,−n)

= K[x]∨ ⊗K K[y](−n).

On the other hand, using again the local duality theorem, Lemma 1.1 yields

Hn
Q(S)∨ ∼= (K[x]⊗K Hn

Q0
(K[y]))∨ ∼= (K[x]⊗K K[y](−n)∨)∨

∼= K[x]∨ ⊗K K[y](−n)∨∨

∼= K[x]∨ ⊗K K[y](−n),

as desired. �

Corollary 1.3. Let F be a finitely generated bigraded free S-module, and
set F ∗ = HomS(F, ωS). Then there exists a natural isomorphism of bigraded
S-modules

Hm
P (F ∗) ∼= Hn

Q(F )∨.

Proof. Let F =
⊕t

k=1 S(−ak,−bk). Thus F ∗ =
⊕t

k=1(ωS)(ak, bk) and
hence by Lemma 1.2 we have

Hm
P (F ∗) ∼=

t⊕
k=1

Hm
P (ωS)(ak, bk) ∼=

t⊕
k=1

Hn
Q(S)∨(ak, bk)

∼= Hn
Q(

t⊕
k=1

S(−ak,−bk))∨

∼= Hn
Q(F )∨. �

The previous result can easily be extended as follows.

Lemma 1.4. Let F be a bounded complex of bigraded free S-modules. We
set F∗ = HomS(F, ωS). Then we have a functorial isomorphism

Hm
P (F∗) ∼= Hn

Q(F)∨

of complexes of bigraded modules.
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Proof. In order to prove that the complexes of Hm
P (F∗) and Hn

Q(F)∨ are
isomorphic, we observe that for any bihomogeneous linear map ϕ : G → F
between finitely generated free bigraded S-modules we obtain the following
commutative diagram

Hn
Q(F )∨

ψ∨1−→ Hn
Q(G)∨

↓ ↓
Hm
P (F ∗)

ψ2−→ Hm
P (G∗),

where ψ1 = Hn
P (ϕ) and ψ2 = Hm

Q (ϕ∗) and where the vertical maps are the iso-
morphisms given in Corollary 1.3. The commutativity of the diagram results
from the fact that all maps in the diagram are functorial. �

Proposition 1.5. Let M be a finitely generated bigraded S-module, P
and Q be the irrelevant bigraded ideals of S. Then we have the following
convergent spectral sequence

E2
i,j = Hm−j

P (Extn+m−i
S (M,ωS)) =⇒

j
Hi+j−m
Q (M)∨.

Proof. Let (F, d) be a bigraded free resolution of M of length n +m, and
let G be the complex of bigraded S-modules with Gi = HomS(Fm+n−i, ωS)
and differential ∂i = HomS(dm+n−i, ωS). Next we choose a bigraded free
resolution C of the complex G. In other words, C is a double complex Cij of
finitely generated bigraded free S-modules with i, j ≥ 0 such that:

(i) The ith column of C is a free resolution of Gi for all i, i.e.,

Hj(Ci.) =
{
Gi for j = 0,
0 for j > 0.

(ii) For each row the image of Ci−1,j ←− Ci,j is a bigraded free direct
summand of the kernel of Ci−2,j ←− Ci−1,j . In particular, the ho-
mology of

Ci−2,j ←− Ci−1,j ←− Ci,j
is a bigraded free S-module for all i and j.

(iii) For each i the complex

0←− Hi(C.,0)←− Hi(C.,1)←− Hi(C.,2)←− · · ·
is a bigraded free resolution of Hi(G).

Now we compute the total homology of the double complex Hm
P (C): Since

all Gi are free S-modules, it follows that the complexes

0←− Gi ←− Ci,0 ←− Ci,1 ←− · · ·
are all split exact. Hence the complexes

0←− Hm
P (Gi)←− Hm

P (Ci,0)←− Hm
P (Ci,1)←− · · ·

are again exact.
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This implies that the E1-terms of the double complex Hm
P (C) with respect

to the column filtration are

E1
i,j =

{
Hm
P (Gi) for j = 0,

0 for j > 0.

As a consequence, for the E2-terms of Hm
P (C) we have that E2

i,j = 0 for j > 0,
and that E2

i,0 is the ith homology of the complex Hm
P (G). Now we use Lemma

1.4 as well as [13, Theorem 1.1 ] and obtain

E2
i,j =

{
Hi−m
Q (M)∨ for j = 0,

0 for j > 0,

sinceHi(Hm
P (G)) = (Hn+m−i(Hn

Q(F)))∨. From this it follows that the (i+j)th
total homology of Hm

P (C) is equal to Hi+j−m
Q (M)∨.

Now we compute the homology ofHm
P (C) using the row filtration. Each row

Hm
P (C.j) of Hm

P (C) is split exact with homology Hi(Hm
P (C.j)) =

Hm
P (Hi(C.j)). In other words, E1

i,j = Hm
P (Hi(C.j)). Hence by property

(iii) of the complex C and by [13, Theorem 1.1 ] it follows that E2
i,j =

Hm−j
P (Extm+n−i

S (M,ωS)). This yields the desired conclusion. �

Now our main theorem is an easy consequence of Proposition 1.5:

Proof. As R is a standard bigradedK-algebra, it is the homomorphic image
of a standard bigraded polynomial ring S = K[x1, . . . , xm, y1, . . . , yn]. We
may consider R and S as well as standard graded K-algebras with the unique
graded maximal ideal R+ (resp. S+), and M as a graded R-module (resp.
S-module). Then by the graded local duality theorem we have

Extm+n−i
S (M,ωS) ∼= Hi

S+
(M)∨.

Since Hi
S+

(M) ∼= Hi
R+

(M), it follows that

Hm−j
P (Hi

R+
(M)∨) = Hm−j

P (Extm+n−i
S (M,ωS)).

Let (x) = (x1, . . . , xm) and (y) = (y1, . . . , yn) be the irrelevant ideals of S.
We note thatHm−j

P (Extm+n−i
S (M,ωS)) = Hm−j

(x) (Extm+n−i
S (M,ωS)) and that

Hi+j−m
Q (M)∨ = Hi+j−m

(y) (M)∨. Therefore, Proposition 1.5 yields the desired
convergent spectral sequence. �

Corollary 1.6. Let R be a standard bigraded d-dimensional Cohen-
Macaulay K-algebra with irrelevant bigraded ideals P and Q, and let M be
a finitely generated bigraded R-module. Then there exists a convergent spec-
tral sequence

E2
i,j = Hm−j

P (Extd−iR (M,ωR)) =⇒
j
Hi+j−m
Q (M)∨

of bigraded R-modules, where m is the minimal number of homogeneous gen-
erators of P .



LOCAL DUALITY FOR BIGRADED MODULES 143

Proof. The assertion follows from our main theorem by using the fact that
Hi
R+

(M)∨ = Extd−iR (M,ωR). �

2. Some applications

In this section, unless otherwise stated, R denotes a standard bigraded
K-algebra of dimension d, and M a finitely generated bigraded R-module.

We note that for the E2-terms in the spectral sequence of our main theorem
we have E2

i,j = Hm−j
P (Hi

R+
(M)∨) = 0 if i < depthM or i > dimM or j < 0

or j > m. Thus the possible non-zero E2-terms are in the shadowed region of
the following picture.

j

i
•

•

(s, m)

•

(t, 0) s

E2

i,j

Figure 1

Here t = depthM , s = dimM and E2
i,j = Hm−j

P (Hi
R+

(M)∨).
We first observe that the graded local duality theorem is a special case of

our main theorem. In fact, if we assume that P = (0), then m = 0, and
m = Q is the unique graded maximal ideal of R. Moreover, E2

i,j = E∞i,j = 0
for j 6= 0 and all i, since Hk

(0)(−) = 0 if k 6= 0. Therefore we have

Extd−iR (M,ωR) = H0
(0)(Extd−iR (M,ωR)) ∼= Hi

m(M)∨.

Considering Figure 1 we immediately obtain the following corner isomor-
phisms.

Proposition 2.1. Let dimM = s and depthM = t. Then there are
natural isomorphisms

Hm
P (Ht

R+
(M)∨) ∼= Ht−m

Q (M)∨ and H0
P (Hs

R+
(M)∨) ∼= Hs

Q(M)∨.

Moreover, for i < t−m we have Hi
Q(M) = 0.
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Definition 2.2. Let R0 be a commutative Noetherian ring, R a graded
R0-algebra and N a graded R-module. The R-module N is called tame, if
there exists an integer j0 such that

Nj = 0 for all j ≤ j0, or Nj 6= 0 for all j ≤ j0.

In case of a standard bigraded K-algebra R we let R0 be the K-subalgebra
of R generated by all elements of degree (1, 0). Then R is a graded R0-
algebra with components Rj = R(∗,j) =

⊕
iR(i,j). Let N be a bigraded

R-module. We may view N as a graded R-module with graded components
Nj = N(∗,j) =

⊕
iN(i,j). Each of the modules Nj is a graded R0-module,

and if N is a finitely generated R-module then each Nj is a finitely generated
R0-module.

Now let M be a finitely generated bigraded R-module. Then Hi
P (M)j =

Hi
P0

(Mj), where P0 is the graded maximal ideal of R0. Since Mj is a finitely
generated R0-module it follows thatHi

P0
(Mj) is a graded Artinian R0-module.

Hence we see that (Hi
P (M)∨)j = (Hi

P (M)−j)∨ = Hi
P0

(M−j)∨ is a finitely
generated graded R0-module for all j. Of course this does not imply that
Hi
P (M)∨ is a finitely generated R-module.
We denote by cd(M) the cohomological dimension of M with respect to Q,

i.e., the number
cd(M) = sup{i ∈ N0 : Hi

Q(M) 6= 0}.

Corollary 2.3. Let N = Hs
R+

(M)∨. Then the following statements
hold:

(a) cd(M) < dim(M) if and only if depthR0
Nj > 0 for all j.

(b) If cd(M) < dim(M)− 1, then depthR0
Nj > 1 for all j.

Proof. We note that cd(M) < dim(M), if and only if Hs
Q(M) = 0. Hence

Proposition 2.1 yields part (a) of the corollary.
For the proof of (b) we notice that Hi

P (N) = E∞s,m−i for i = 0, 1, and that
E∞s,m−i is a submodule of Hs−i

Q (M)∨ for all i. Thus our assumption implies
that Hi

P0
(Nj) = Hi

P (N)j = 0 for i = 0, 1 and all j. This yields the desired
conclusion. �

The second statement of the next corollary is well-known (see [2, Theorem
4.8 (e)]).

Corollary 2.4. Let M be a finitely generated bigraded R-module of di-
mension s and depth t. Then Ht−m

Q (M) and Hs
Q(M) are tame.

Proof. We first prove Ht−m
Q (M) is tame. By [1, Proposition 2.5] the di-

mension of Nj as an R0-module is constant for j � 0. We set N = Ht
R+

(M)∨

and s0 = dimR0 Nj for j � 0. Note that s0 ≤ dimR0 ≤ m. Thus we have
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Hm
P (N)j = Hm

P0
(Nj) = 0 for j � 0 if s0 < m and Hm

P (N)j = Hm
P0

(Nj) 6= 0
for j � 0 if s0 = m. Therefore by Proposition 2.1 there exists an integer j0
such that

Ht−m
Q (M)j = 0 for all j ≤ j0, or Ht−m

Q (M)j 6= 0 for all j ≤ j0,

as desired. In order to prove that Hs
Q(M) is tame, we set N = Hs

R+
(M)∨.

SinceHs
R+

(M) is a graded ArtinianR-module, N is a finitely generated graded
R-module. Thus Nj is a finitely generated R0-module. By [1, Proposition
2.5] the set of associated prime ideals of AssR0(Nj) is constant for large j. If
P0 ∈ AssR0(Nj), it follows that H0

P (N)j = H0
P0

(Nj) 6= 0 for large j, and if
P0 /∈ AssR0(Nj), then H0

P (N)j = H0
P0

(Nj) = 0 for large j. Thus in view of
Proposition 2.1, Hs

Q(M) is also tame. �

We say that M is a generalized Cohen-Macaulay R-module if Hi
R+

(M) has
finite length for all i 6= dimM .

Proposition 2.5. Let M be a generalized Cohen-Macaulay R-module of
dimension s. Then we have the following long exact sequence of bigraded
R-modules

0→ H1
P (Hs

R+
(M)∨)→ Hs−1

Q (M)∨ → Hs−1
R+

(M)∨ →

H2
P (Hs

R+
(M)∨)→ Hs−2

Q (M)∨ → Hs−2
R+

(M)∨ →

· · · → Hs−m
Q (M)∨ → Hs−m

R+
(M)∨ → 0.

Moreover, we have the following isomorphisms

Hi
R+

(M) ∼= Hi
Q(M) for all i < s−m.

Proof. Since M is a generalized Cohen-Macaulay module, we have that
Hi
R+

(M)∨ is of finite length for i 6= s. Thus by Grothendieck’s vanishing
theorem [5, Theorem 6.1.2] we see that E2

i,j = E∞i,j = 0 for j = 0, . . . ,m − 1
and i 6= s. The following picture will make this clear.
Therefore for all k with s ≤ k < s+m we get the following exact sequences

0→ E∞s,r → H l
Q(M)∨ → E∞l,m → 0,

0→ E∞l,m → E2
l,m → E2

s,r−1 → E∞s,r−1 → 0,

where l and r are defined by the equations s+ r = l +m = k.
Composing these two exact sequences we get the long exact sequence

· · · → E2
s,r → H l

Q(M)∨ → E2
l,m → E2

s,r−1 →

H l−1
Q (M)∨ → E2

l−1,m → E2
s,r−2 → . . . ,

which yields the desired exact sequence, observing that

H0
P (Hi

R+
(M)∨) = Hi

R+
(M)∨
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•

(s, r)

(l, m)

•

kt sl

Figure 2

for i 6= s, since for such i the modules Hi
R+

(M)∨ have finite length. The last
statement of the proposition follows similarly. �

Corollary 2.6. Suppose M is a generalized Cohen-Macaulay module of
dimension s. Then the following conditions are equivalent:

(a) M is Cohen-Macaulay.
(b) Hk

P (Hs
R+

(M)∨) ∼= Hs−k
Q (M)∨ for all k.

Proof. (a) =⇒ (b): Since M is Cohen-Macaulay we have Hi
R+

(M)∨ = 0
for all i 6= s. Therefore it follows from the long exact sequence in Proposition
2.5 that Hk

P (Hs
R+

(M)∨) ∼= Hs−k
Q (M)∨ for k = 1, . . . ,m. The assertion for

k = 0 follows from Proposition 2.1. The assertion is also clear when k < 0.
Now assume that k > m. Then s−k < s−m, and hence by Proposition 2.5 it
follows that Hs−k

Q (M)∨ = Hs−k
R+

(M)∨ = 0. On the other hand, we also have
Hk
P (Hs

R+
(M)∨) = 0 because k > m.

(b) =⇒ (a): This is proved is the same way. �

As a generalization of Lemma 1.2 we obtain as an immediate consequence
of Corollary 2.6 the following

Remark 2.7. Let R be a bigraded Cohen-Macaulay K-algebra of dimen-
sion d. Then

Hk
P (ωR) ∼= Hd−k

Q (R)∨ for all k.

Recall that for a finitely generated graded R-module N one has that
dimR0 Nj as well as depthR0

Nj is constant for large j; see [1, Proposition
2.5]. In fact, if N is Cohen-Macaulay, then limj→∞ depthR0

Nj = dimN −
dimN/P0N as shown in [9]. We call these constants the limit depth and limit
dimension, respectively. Using this fact we have:

Corollary 2.8. Let M be a bigraded Cohen-Macaulay R-module of di-
mension s. We set N = Hs

R+
(M)∨, and put t0 = limj→∞ depthR0

Nj and
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s0 = limj→∞ dimR0 Nj. Then the R-modules Hj
Q(M) are tame for all j ≤

s− s0 and j ≥ s− t0.

Proof. We see that Hs−i
P (N)j = Hs−i

P0
(Nj) 6= 0 for j � 0 if i = s− s0 and

i = s − t0, and also Hs−i
P (N)j = Hs−i

P0
(Nj) = 0 for j � 0 if i < s − s0 and

i > s− t0. Therefore by Corollary 2.6 we have the desired conclusion. �

Corollary 2.9. Assume R0 is Cohen-Macaulay and M is a bigraded
Cohen-Macaulay R-module of dimension s. We set N = Hs

R+
(M)∨. Then:

(a) For all k and j we have the following isomorphism of graded R0-
modules

Extd−kR0
(Nj , ωR0) ∼= Hs−k

Q (M)−j ,

where d = dimR0.
(b) dimHs−k

Q (M)−j ≤ k for all k and j.

Proof. Corollary 2.6 implies that

(Hs−k
Q (M)−j)∨ ∼= (Hs−k

Q (M)∨)j = Hk
P0

(Nj).

Thus the local duality theorem yields

Hs−k
Q (M)−j ∼= Hk

P0
(Nj)∨ ∼= Extd−kR0

(Nj , ωR0),

as desired.
Finally by [6, Corollary 3.5.11(c)] one has dimR0 Extd−kR0

(Nj , ωR0) ≤ k.
This proves statement (b). �

Let N 6= 0 be a graded R0-module. We set a(N) = inf{i : Ni 6= 0} and
b(N) = sup{i : Ni 6= 0}. If N = 0, we set a(N) =∞ and b(N) = −∞.

Recall that the regularity of N is defined to be

regN = max{b(Hk
P0

(N)) + k : k = 0, 1, . . .}.

With the assumptions and notation introduced in Corollary 2.6 we therefore
have

reg(Nj) = −min{a(Hs−k
Q (M)−j)− k : k = 0, 1, . . .}.

In [8] and [11] it is shown that reg(Nj) is bounded above by a linear function
of j. Thus in view of the preceding formula we get:

Corollary 2.10. Let M be a Cohen-Macaulay R-module. Then there
exist integers c and d such that a(Hk

Q(M)j) ≥ cj + d for all k and all j.

If the dimension and the depth of M differ at most by 1 or dimR0 ≤ 1 one
obtains:

Proposition 2.11. The following statements hold:
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(a) If dimM = s and depthM = s − 1, then we obtain the long exact
sequence

· · · → Hm−j−2
P (Hs−1

R+
(M)∨)→ Hm−j

P (Hs
R+

(M)∨)→ Hs−m+j
Q (M)∨ →

Hm−j−1
P (Hs−1

R+
(M)∨)→ Hm−j+1

P (Hs
R+

(M)∨)→ . . . .

(b) If dimR0 = 0, then Hi
R+

(M) ∼= Hi
Q(M) for all i.

(c) If dimR0 = 1, then for all i we have the short exact sequence

0→ H1
P (Hi+1

R+
(M)∨)→ Hi

Q(M)∨ → H0
P (Hi

R+
(M)∨)→ 0.

Proof. We first prove (a). Our hypotheses imply the following exact se-
quences

0→ E∞s,j → Hs−m+j
Q (M)∨ → E∞s−1,j+1 → 0,

0→ E∞s−1,j+1 → E2
s−1,j+1 → E2

s,j−1 → E∞s,j−1 → 0.
Putting these two exact sequences together we get the long exact sequence

· · · → E2
s−1,j+2 → E2

s,j → Hs−m+j
Q (M)∨ → E2

s−1,j+1 →

E2
s,j−1 → Hs−m−1+j

Q (M)∨ → E2
s−1,j → E2

s,j−2 → . . . ,

which yields the desired exact sequence.
For the proof of (b) we set N = Hi

R+
(M)∨. Since dimR0 = 0, it follows

that Nk is a finitely generated R0-module of finite length. Thus Hm−j
P (N)k =

Hm−j
P0

(Nk) = 0 for all k and j < m and hence E2
i,j = 0 for all i and j 6= m.

Therefore we have N = H0
P (N) ∼= Hi

Q(M)∨ for all i, and so Hi
R+

(M) ∼=
Hi
Q(M) for all i. In order to prove (c) we again set N = Hi

R+
(M)∨. Since

dimR0 = 1, it follows that Hm−j
P (N)k = Hm−j

P0
(Nk) = 0 for all k and j <

m− 1 and hence E2
i,j = 0 for all i and j 6= m,m− 1. Thus for all i we get the

exact sequence

0→ E∞i+1,m−1 → Hi
Q(M)∨ → E∞i,m → 0.

Since E∞i+1,m−1 = E2
i+1,m−1 and E∞i,m = E2

i,m for all i, the result follows. �

As a simple consequence of Proposition 2.11 (b),(c) we obtain the following
tameness result due to [2, Theorem 4.5].

Corollary 2.12. Let dimR0 ≤ 1. Then Hi
Q(M) is tame for all i.

Proof. First we assume that dimR0 = 0. Since any Artinian graded R-
module is tame, the result follows from Proposition 2.11 (b).

Now we assume that dimR0 = 1. Let N be a finitely generated bigraded
R-module. By Proposition 2.11 (c) it is enough to prove that there exists an
integer j0 such that for i = 0, 1 one has:

Hi
P0

(Nj) = 0 for all j ≥ j0, or Hi
P0

(Nj) 6= 0 for all j ≥ j0.
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We set t0 = limj→∞ depthR0
Nj and s0 = limj→∞ dimR0 Nj . ThenH0

P0
(Nj) 6=

0 for j � 0 if t0 = 0, and H0
P0

(Nj) = 0 for j � 0 if t0 6= 0. Similarly,
H1
P0

(Nj) 6= 0 for j � 0 if s0 = 1, and H1
Po

(Nj) for j � 0 if s0 = 0. �

Finally we want to mention two standard 5-term exact sequences arising
from our spectral sequence.

Proposition 2.13. There is a 5-term exact sequence for the corner (t, 0)

Ht+2−m
Q (M)∨ → Hm−2

P (Ht
R+

(M)∨)→ Hm
P (Hd+1

R+
(M)∨)→

Ht+1−m
Q (M)∨ → Hm−1

P (Ht
R+

(M)∨)→ 0,

and a 5-term exact sequence for the corner (s,m)

Hs
Q(M)∨ → H0

P (Hs−1
R+

(M)∨)→ H2
P (Hs

R+
(M)∨)→

Hs−1
Q (M)∨ → H0

P (Hs−1
R+

(M)∨)→ 0.
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