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ASYMPTOTIC GROWTH OF POWERS OF IDEALS

CĂTĂLIN CIUPERCĂ, FLORIAN ENESCU, AND SANDRA SPIROFF

To Phil Griffith

Abstract. Let A be a locally analytically unramified local ring and

J1, . . . , Jk, I ideals such that Ji ⊆
√

I for all i, the ideal I is not nilpo-
tent, and

T
k Ik = (0). Let C = C(J1, . . . , Jk; I) ⊆ Rk+1 be the cone

generated by {(m1, . . . , mk, n) ∈ Nk+1 | Jm1
1 . . . J

mk
k ⊆ In}. We prove

that the topological closure of C is a rational polyhedral cone. This
generalizes results by Samuel, Nagata, and Rees.

Introduction

In this note we continue the study of the asymptotic properties of powers
of ideals initiated by Samuel in [8]. Let A be a commutative noetherian ring
with identity and I, J ideals in A with J ⊆

√
I. Also, assume that the ideal

I is not nilpotent and
⋂

k Ik = (0). Then for each positive integer m one
can define vI(J,m) to be the largest integer n such that Jm ⊆ In. Similarly,
wJ(I, n) is defined to be the smallest integer m such that Jm ⊆ In. Under
the above assumptions, Samuel proved that the sequences {vI(J,m)/m}m and
{wJ(I, n)/n}n have limits lI(J) and LJ(I), respectively, and lI(J)LJ(I) = 1
[8, Theorem 1]. It is also observed that these limits are actually the supre-
mum and infimum of the respective sequences. One of the questions raised in
Samuel’s paper is whether lI(J) is always rational. This has been positively
answered by Nagata [4] and Rees [5]. The approach used by Rees is described
in the next section of this paper.

We consider the following generalization of the problem described above.
Let J1, . . . , Jk, I be ideals in a locally analytically unramified ring A such
that Ji ⊆

√
I for all i, I is not nilpotent, and

⋂
k Ik = (0), and let C =

C(J1, . . . , Jk; I) ⊆ Rk+1 be the cone generated by {(m1, . . . ,mk, n) ∈ Nk+1 |
Jm1

1 . . . Jmk

k ⊆ In}. We prove that the topological closure of C is a rational
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30 CĂTĂLIN CIUPERCĂ, FLORIAN ENESCU, AND SANDRA SPIROFF

polyhedral cone; i.e., a polyhedral cone bounded by hyperplanes whose equa-
tions have rational coefficients. Note that the case k = 1 follows from the
results proved by Samuel, Nagata, and Rees; the cone C is the intersection of
the half-planes given by n ≥ 0 and n ≤ lI(J)m1. In Section 3 we look at the
periodicity of the rate of change of the sequence {vI(J,m)}m, more precisely,
the periodicity of the sequence {vI(J,m + 1) − vI(J,m)}m. The last part of
the paper describes a method of computing the limits studied by Samuel in
the case of monomial ideals.

1. The Rees valuations of an ideal

In this section we give a brief description of the Rees valuations associated
to an ideal.

For a noetherian ring A that is not necessarily an integral domain, a discrete
valuation on A is defined as follows.

Definition 1.1. Let A be a noetherian ring. We say that v : A → Z∪{∞}
is a discrete valuation on A if {x ∈ A | v(x) = ∞} is a prime ideal P , v
factors through A → A/P → Z ∪ {∞}, and the induced function on A/P is
a rank one discrete valuation on A/P . If I is an ideal in A, then we denote
v(I) := min{v(x) | x ∈ I}.

If R is a noetherian ring, we denote by R the integral closure of R in its
total quotient ring Q(R).

Definition 1.2. Let I be an ideal in a noetherian ring A. An element x ∈
A is said to be integral over I if x satisfies an equation xn+a1x

n−1+· · ·+an = 0
with ai ∈ Ii. The set of all elements in A that are integral over I is an ideal
I, and the ideal I is called integrally closed if I = I. If all the powers In are
integrally closed, then I is said to be normal.

Given an ideal I in a noetherian ring A, for each x ∈ A let vI(x) = sup{n ∈
N | x ∈ In}. Rees [5] proved that for each x ∈ A one can define

vI(x) = lim
k→∞

vI(xk)
k

,

and for each integer n one has vI(x) ≥ n if and only if x ∈ In. Moreover,
there exist discrete valuations v1, . . . , vh on A in the sense defined above, and
positive integers e1, . . . , eh such that, for each x ∈ A,

(1.1) vI(x) = min
{vi(x)

ei
| i = 1, . . . , h

}
.

We briefly describe a construction of the Rees valuations v1, . . . , vh. Let
p1, . . . , pg be the minimal prime ideals p in A such that p + I 6= A, and let
Ri(I) be the Rees ring (A/pi)[It, t−1]. Denote by Wi1, . . . ,Wihi the rank one
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discrete valuation rings obtained by localizing the rings Ri(I) at the minimal
primes over t−1Ri(I), let wij (i = 1, . . . , g, 1 ≤ j ≤ hi) be the corresponding
discrete valuations, and let Vij = Wij ∩ Q(A/pi) (i = 1, . . . , g). Then define
vij(x) := wij(x+pi) and eij := wij(t−1)(= vij(I)) for all i, and for simplicity,
renumber them as e1, . . . , eh and v1, . . . , vh, respectively.

Rees [5] proved that v1, . . . , vh are valuations satisfying (1.1). We refer the
reader to the original article [5] for more details on this construction.

Remark 1.3. With the notation established above, for every positive in-
teger n we have

In =
h⋂

i=1

InVi ∩R.

In particular, we have the following.

Remark 1.4. If K, L are ideals in A, v1, . . . , vh are the Rees valuations
of L, and vi(K) ≥ vi(L) for all i = 1, . . . , h, then K ⊆ L.

The rationality of lI(J) can now be obtained as consequence of the results of
Rees. Indeed, by [8, Theorem 2], if J = (a1, . . . as), then lI(J) = min{lI(ai) |
i = 1, . . . s}, and for each i we have lI(ai) = vI(ai), which is rational.

Finally, recall the following definition.

Definition 1.5. A local noetherian ring (A,m) is analytically unramified
if its m-adic completion Â is reduced.

Rees [6] proved that for every ideal I in an analytically unramified ring
there exists an integer k such that for all n ≥ 0, In+k ⊆ In.

2. The cone structure

Throughout this section A is a locally analytically unramified ring and I
and J = J1, . . . , Jk are ideals in A such that Ji ⊆

√
I for all i. Let C =

C(J1, . . . , Jk; I) ⊆ Rk+1 denote the cone generated by {(m1, . . . ,mk, n) ∈
Nk+1 | Jm1

1 . . . Jmk

k ⊆ In}. Also, for (m1, . . . ,mk) ∈ Nk, let vI(J,m1, . . . ,mk)
denote the largest nonnegative integer n such that Jm1

1 . . . Jmk

k ⊆ In.
For each Rees valuation vj of I, denote αij = vj(Ji)/ej for all i, j, where

ej = vj(I). Then we consider

Dj =

{
(m1, . . . ,mk) ∈ Rk

≥0

∣∣∣ k∑
s=1

msαsj ≤
k∑

s=1

msαsl for all l 6= j

}
,

and we say that a Rees valuation vj is relevant if Dj 6= {0}. After a renum-
bering, assume that v1, v2, . . . , vr (r ≤ h) are the relevant Rees valuations.
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Note that each Dj is an intersection of half-spaces (hence a polyhedral
cone),

⋃r
j=1 Dj = Rk

≥0, and two cones Di, Dj (i 6= j) either intersect along
one common face or have only the origin in common. Let

Ej =

{
(m1, . . . ,mk, n) ∈ Rk+1

+

∣∣∣ (m1, . . . ,mk) ∈ Dj and n <

k∑
s=1

msαsj

}
and

Ej =

{
(m1, . . . ,mk, n) ∈ Rk+1

+

∣∣∣ (m1, . . . ,mk) ∈ Dj and n ≤
k∑

s=1

msαsj

}
.

Theorem 2.1. Let A be a locally analytically unramified ring. Then for
each j = 1, . . . , r we have

Ej ∩Qk+1 ⊆ C ∩ (Dj × R≥0) ⊆ Ej .

Proof. Let (m1, . . . ,mk, n) ∈ C∩ (Dj×R≥0). Then there exists t ∈ R such
that tm1, . . . , tmk are positive integers and

J tm1
1 . . . J tmk

k ⊆ Itn.

Hence, for each Rees valuation vj of I we obtain

tm1vj(J1) + · · ·+ tmkvj(Jk) ≥ tnvj(I),

or equivalently,

n ≤
k∑

s=1

msαsj .

For the other inclusion, first observe that it is enough to prove that Ej ∩
Zk+1 ⊆ C ∩ (Dj×R≥0). Indeed, if Ej ∩Zk+1 ⊆ C ∩ (Dj×R≥0), then for each
α ∈ Ej ∩Qk+1 there exists a positive integer L such that αL ∈ Ej ∩ Zk+1 ⊆
C∩(Dj×R≥0). This implies that α ∈ (1/L)

(
C∩(Dj×R≥0)

)
= C∩(Dj×R≥0)

Let (m1, . . . ,mk, n) ∈ Ej ∩ Zk+1. Set α =
∑k

s=1 msαsj . Since the ring A

is analytically unramified, there exists an integer N such that It ⊆ It−N for
all t. (The convention is that In = A for n ≤ 0.) Let g be the integer part of
α. For any Rees valuation vi of A we then get

vi(Ig) = gei ≤ αei ≤

(
k∑

s=1

msαsi

)
ei = vi(Jm1

1 . . . Jmk

k ),

and hence, by Remark 1.4,

Jm1
1 . . . Jmk

k ⊆ Ig ⊆ Ig−N .

This implies that

(2.1) vI(J,m1, . . . ,mk) ≥ g −N > α− 1−N.
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Since n < α, we can find δ > 0 such that n < α − δ. Choose l such
that lδ > N + 1 and lm1, . . . , lmk, ln are integers. By (2.1), we obtain
vI(J, lm1, . . . , lmk) > lα−N−1, and by the choice of l, we also have nl < lα−
N−1. Then nl < vI(J, lm1, . . . , lmk), which implies that J lm1

1 . . . J lmk

k ⊆ I ln;
i.e., (m1, . . . ,mk, n) ∈ C. �

Corollary 2.2. The topological closure of C is a rational polyhedral
cone.

Proof. From the previous theorem it follows that the topological closure of
C∩ (Dj×R≥0) is Ej , and hence the topological closure of C is the polyhedral
cone bounded by the hyperplanes n =

∑k
s=1 msαsj (j = 1, . . . , r) and the

coordinate hyperplanes. �

A detailed example of Corollary 2.2 is given below in Example 2.5.

Corollary 2.3. Let a1, a2, . . . , ak be real numbers. The limit

(2.2) lim
m1,...,mk→∞

vI(J,m1, . . . ,mk)
a1m1 + · · ·+ akmk

exists if and only if there exists a rational number l such that las = αs1 =
αs2 = · · · = αsr for all s = 1, . . . , k. In this case the limit is equal to l.

Proof. Since the polyhedral cones Dj form a partition of Rk
≥0, the limit

(2.2) exists and is equal to l if and only if for each j we have

(2.3) lim
m1,...,mk→∞

(m1,...,mk)∈Dj

vI(J,m1, . . . ,mk)
a1m1 + · · ·+ akmk

= l.

On the other hand, (2.3) holds if and only if las = αsj for all s = 1, . . . , k.
Indeed, this limit exists and is equal to l if and only if over Dj the topological
closure of C is bounded by the hyperplane n = la1m1 + · · · + lakmk, which
therefore should coincide with the hyperplane n =

∑k
s=1 msαsj .

In conclusion, the limit (2.2) exists and is equal to l if and only if all the
hyperplanes n =

∑k
s=1 msαsj (j = 1, . . . , r) coincide with n = la1m1 + · · ·+

lakmk, or equivalently, las = αs1 = αs2 = · · · = αsr for all s = 1, . . . , k. �

Corollary 2.4. Assume that the ideal I has only one Rees valuation.
Then the limit

lim
m1,...,mk→∞

vI(J,m1, . . . ,mk)
a1m1 + · · ·+ akmk

exists if and only if lI(J1)/a1 = · · · = lI(Jk)/ak.

Proof. This is a particular case of the previous Corollary. �
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Example 2.5. Let A = R[[X, Y, Z]]/(XY 2−Z9) and I = (x, y, z)A be as
in [3, Example 3.1]. Then R(I) = A[It, t−1], R(I)/t−1R(I) ∼=
R[xt, yt, zt]/(xt)(yt)2, and there are two Rees valuations v1 and v2, corre-
sponding to the minimal primes p1 = (xt, t−1) and p2 = (yt, t−1), over
t−1R(I). As shown in [3, Example 3.1], we have v1(x) = 7, v1(y) = v1(z) = 1
and v2(x) = v2(z) = 1, v2(y) = 4. Thus v1(I) = min{v1(x), v1(y), v1(z)} = 1.
Likewise v2(I) = 1. Set J1 = (x, z2) and J2 = (y2, z3). Then v1(J1) =
2, v2(J1) = 1, and v1(J2) = 2, v2(J2) = 3. Therefore, E1 = {(m1,m2, n)|n ≤
2m1 + 2m2} and E1 = {(m1,m2, n)|n ≤ m1 + 3m2}. The boundary planes of
E1 and E2 in R3 are z = 2x+2y and z = x+3y, respectively. Thus, according
to the results of Corollary 2.2, the topological closure of the cone generated
by {(m1,m2, n)|Jm1

1 Jm2
2 ⊆ In} is as pictured below.
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Figure 1. View from the front and rotated 90◦ counter-
clockwise around the z-axis.

Example 2.6. Let A = k[[X, Y ]], with k a field, and I = (x3, x2y, y2). As
shown in [7], I has only one associated Rees valuation. Let J1 = (x3y7), J2 =
(x4y6), and J3 = (x5y2). Using the methods in Section 4, we can compute
lI(J1) = 9/2, lI(J2) = 13/3, and lI(J3) = 8/3. Then by Corollary 2.4, the
limit

lim
m1,m2,m3→∞

vI(J1, J2, J3,m1,m2,m3)
27m1 + 26m2 + 16m3

exists and equals 1/6 since
lI(J1)

27
=

lI(J2)
26

=
lI(J3)

16
=

1
6
.
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3. Periodic increase

In this section we take a closer look at the sequence {vI(J,m)}m. To
simplify the notation we will simply write v(m) instead of vI(J,m).

We address the question of whether this sequence increases eventually in
a periodic way; that is, whether or not there exists a positive integer t such
that v(m + t)− v(m + t− 1) = v(m)− v(m− 1) for m � 0, or equivalently,
v(m + t) − v(m) = constant, for m � 0. Our work is partly motivated by
[4, Theorem 8], where Nagata proves that the deviation v(m) − lI(J)m is
bounded. In particular, this implies that there exists a positive constant C
such that 0 ≤ v(m + t)− v(m)− v(t) < C for all m, t.

We begin by defining noetherian filtrations.

Definition 3.1. A family of ideals F = {Fm}m≥0 in a noetherian ring A
is called a filtration if F0 = A, Fm+1 ⊆ Fm, and FmFn ⊆ Fm+n for all m,n ≥
0. We say that the filtration {Fm}m≥0 is noetherian if the associated graded
ring ⊕m≥0Fm is noetherian. Equivalently, the filtration F is noetherian if and
only if there exists t such that Fm+t = FmFt for all m ≥ t ([1, 4.5.12]).

Proposition 3.2. Let I, J be ideals in a noetherian local ring A such that
J ⊆

√
I , the ideals I, J are not nilpotent, and

⋂
k Ik = (0). Assume that J

is principal and the ring B = ⊕m,nJm ∩ In is noetherian. Then there exists a
positive integer t such that v(m + t) = v(m) + v(t) for all m ≥ t.

Proof. In the ring ⊕n≥0I
n consider the filtration {Fm} with Fm = ⊕n≥0J

m

∩ In. Since B = ⊕m≥0Fm is noetherian, there exists a positive integer t such
that Fm+t = FmFt for all m ≥ t. We will prove that this implies v(m + t) =
v(m)+v(t) for all m ≥ t. First note that the inequality v(m+t) ≥ v(m)+v(t)
always holds. By contradiction, assume that v(m + t) > v(m) + v(t) for some
m ≥ t. This implies that the component of degree v(m) + v(t) + 1 in Fm+t is
Jm+t, and since Fm+t = FmFt we then obtain

Jm+t = J t(Jm ∩ Iv(m)+1) + Jm(J t ∩ Iv(t)+1).

Let J = (z). Then we have

(z)m+t = zm+t(Iv(m)+1 : zm) + zm+t(Iv(t)+1 : zt).

From the definition of v(−), both (Iv(m)+1 : zm) and (Iv(t)+1 : zt) are con-
tained in the maximal ideal, and by the Nakayama Lemma, we must have z
nilpotent, contradicting our assumptions. �

Remark 3.3. It is not always true that the ring B is noetherian. For such
an example see [2, Lemma 5.6].

Note that there are a few other natural conditions that ensure the periodic
increase of the sequence {v(m)}m. We comment on these below.
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Remark 3.4. If the ring G(I) = ⊕n≥0I
n/In+1 is reduced, then we have

v(m) = mv(1) for all m. In particular, the sequence v(m + 1) − v(m) is
constant. Indeed, let x ∈ J \ Iv(1)+1. The image of x in Iv(1)/Iv(1)+1 ⊆ G(I)
is nonzero, and since G(I) is reduced, so is the image of xm in Imv(1)/Imv(1)+1.
This implies that Jm * Imv(1)+1, and hence v(m) ≤ mv(1).

The point of view formulated in the above remark can be refined to include
the case when J is not necessarily principal, but it comes at the expense of
strengthening the hypotheses.

Remark 3.5. Assume that I is normal and J = (a1, . . . , as). Then for
every m we have vI(J,m) = min{vI((aj),m) | j = 1, . . . , s}. Indeed, if
n := min{vI((aj),m) | j = 1, . . . , s}, then am

j ∈ In for all j = 1, . . . , s. This
implies that Jm ⊆ Jm = (am

1 , . . . , am
s ) ⊆ In = In, so vI(J,m) ≥ n. On

the other hand, if vI(J,m) > n, we have Jm ⊆ IvI((aj),m)+1 for some j and
hence am

j ∈ IvI((aj),m)+1, a contradiction. If I is normal and all the rings
⊕m,n(am

j ) ∩ In are noetherian (j = 1, . . . , s), by Proposition 3.2 we obtain
that there exists tj such that vI((aj),m + tj) = vI((aj),m) + vI((aj), tj) for
m ≥ tj . If we have t1 = t2 = · · · = ts = t (i.e., the sequences vI((aj),m)
increase eventually in a periodic way with the same period), then we have
vI(J,m+ t) = vI(J,m)+vI(J, t) for m ≥ t. Indeed, by the above observation,
vI(J,m+t) = vI((aj),m+tj) for some j, and hence vI(J,m+t) = vI((aj),m)+
vI((aj), t) ≤ vI(J,m) + vI(J, t). The other inequality always holds.

Note that in the situation described in Remark 3.4, when the associated
graded ring G(I) = ⊕n≥0I

n/In+1 is reduced (which implies that I is normal),
we have t1 = t2 = · · · = ts = 1.

Our final observation introduces a bigraded ring associated to the ideals J
and I that can be used in examining the periodicity of the rate of change of
the sequence {v(m)}m.

Remark 3.6. Let C be the ring⊕m≥0,n≥0Fm,n, with Fm,n = Jm∩In/Jm∩
In+1 and multiplication defined naturally such that Fm,nFm′,n′ ⊆ Fm+m′,n+n′ .
Let Fm = ⊕n≥0Fm,n. Note that Fm is a filtration on G(I) = ⊕n≥0I

n/In+1

and Fm,n = 0 for n < v(m), while Fm,v(m) 6= 0 for all m. As in the
above remark, one can check that v(m + t) = v(m) + v(t) is equivalent to
Fm,v(m)Ft,v(t) 6= 0.

So, if there exists t such that Ft,v(t) contains a nonzerodivisor on C, then
v(m + t) = v(m) + v(t) for all m. However, note that C a domain implies
that F0 = G(I), the associated graded ring of I, is a domain as well, and then
Remark 3.4 applies.
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4. Computations

In this section we describe a method of determining LJ(I) = inf{m/n |
Jm ⊆ In} (and lI(J) = 1/LJ(I)) for two monomial ideals I and J in a
polynomial ring k[x1, . . . , xr] over a field k. Whenever J = (a1, . . . , as), one
has LJ(I) = max{L(aj)(I) | j = 1, . . . , s} ([8, Theorem 2]), so we may assume
that J is a principal ideal. Let I = (xbi1

1 xbi2
2 . . . xbir

r | i = 1, . . . , t) and
J = (xc1

1 xc2
2 . . . xcr

r ).
First observe that Jm ⊆ In if and only if there exist nonnegative integers

y1, . . . , yt with y1 + · · ·+ yt = n such that

(4.1)
t∑

i=1

bijyi ≤ cjm for all j = 1, . . . , r.

Set Bij = (1/cj)bij , zi = yi/(y1 + · · ·+ yt) = yi/n and z = (z1, . . . , zt) ∈ Q t.
So Jm ⊆ In if and only if there exist zi = yi/n with y1 + · · ·+ yt = n such

that

(4.2)
m

n
≥ 1

ncj

t∑
i=1

bijyi =
t∑

i=1

Bijzi for all j = 1, . . . , r.

Consider the function α : Rt → R , α(z) = max1≤j≤r{
∑t

i=1 Bijzi} and the
subsets of the rationals Λ1 = {m/n | Jm ⊆ In} and Λ2 = {α(z) | z1, . . . , zt ∈
Q≥0, z1 + · · ·+ zt = 1}. We will prove that

(4.3) inf Λ1 = inf Λ2

The inequality ≥ follows from (4.2). For the other inequality, we will show
that Λ2 ⊆ Λ1. Let α(z) ∈ Λ2 with zi = pi/q (1 ≤ i ≤ t, p1 + · · ·+ pt = q, and
pi, q nonnegative integers). The coefficients Bij are rationals, so after clearing
the denominators we obtain α(z) = h/lq for some nonnegative integers h, l.
By (4.2), since zi = lpi/lq for all i, we have h/lq ∈ Λ1, which finishes the
proof of (4.3).

Note that

inf Λ2 = inf {α(z) | z1, . . . , zt ∈ R≥0, z1 + · · ·+ zt = 1} ,

so we need to minimize the function

α(z) = max

{
t∑

i=1

Bijzi

∣∣∣ j = 1, . . . , r

}
subject to the constraints

z1, . . . , zt ≥ 0 and z1 + · · ·+ zt = 1.

Let

∆k =

{
z ∈ Rt

≥0

∣∣∣ t∑
i=1

Bikzi ≥
t∑

i=1

Bijzi for all j 6= k

}
.
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Clearly ∆1 ∪ · · · ∪∆r = Rt
≥0, so it is enough to minimize the function α on

each ∆k.
In conclusion, for each k = 1, . . . , r, the problem reduces to minimizing the

objective function

α(z) =
t∑

i=1

Bikzi

subject to the constraints

z1, . . . , zt ≥ 0, z1 + · · ·+ zt = 1

and
t∑

i=1

Bikzi ≥
t∑

i=1

Bijzi for all j 6= k.

This is a classical problem linear programming problem which can be al-
gorithmically solved using the simplex method.

Remark 4.1. In general, the limits lI(J) and Lj(I) need not be reached by
an element of the sequences {vI(J,m)/m}m and {wJ(I, n)/n}n, respectively.
However, in the monomial case, as the procedure described above shows, there
exists a pair (m,n) with Jm ⊆ In and LJ(I) = n/m.

Example 4.2. Let A = k[x, y] and I = (x3, x2y, y2), J = (x3y7). In this
case, b11 = 3, b12 = 0, b21 = 2, b22 = 1, b31 = 0, b32 = 2, c1 = 3, c2 = 7 and
B11 = 3/3 = 1, B12 = 0/7 = 0, B21 = 2/3, B22 = 1/7, B31 = 0, B32 = 2/7.
Then

∆1 =
{
(z1, z2, z3) ∈ R3

≥0 | z1 + (2/3)z2 ≥ (1/7)z2 + (2/7)z3

}
and

∆2 =
{
(z1, z2, z3) ∈ R3

≥0 | (1/7)z2 + (2/7)z3 ≥ z1 + (2/3)z2

}
.

By using a computer algebra system that has the simplex method imple-
mented, one can obtain that the minimum on each of the sets ∆1 and ∆2 is
2/9, and hence LJ(I) = 2/9.

In fact, the minimum can occur only at the intersection of various regions
∆k (in our case on ∆1 ∩∆2), for there are no critical points in the interior of
∆k.
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