Illinois Journal of Mathematics Volume 47, Number 1/2, Spring/Summer 2003, Pages 551–565 S 0019-2082

ARTINIAN-FINITARY GROUPS OVER COMMUTATIVE RINGS

B. A. F. WEHRFRITZ

In Memory of Reinhold Baer (1902–1979)

ABSTRACT. Let M be a module over the commutative ring R. We consider the group G of all automorphisms g of M for which M(g-1) is R-Artinian. We show that G has a locally residually nilpotent normal subgroup modulo which G is a subdirect product of finitary linear groups over field images of R. This can be used to study certain subgroups of G. For example, if H is a locally finite subgroup of G, then H is isomorphic to a finitary linear group of characteristic zero if R is an algebra over the rationals and $H/O_p(H)$ is isomorphic to a finitary linear group of characteristic a power of p. It also gives information about $\operatorname{Aut}_R M$ if M itself is R-Artinian.

1. Introduction

Throughout this paper M denotes a module over the (almost always) commutative ring R. The finitary automorphism group $F \operatorname{Aut}_R M$ of M over Ris the subgroup of the group $\operatorname{Aut}_R M$ of R-automorphisms g of M such that M(g-1) is Noetherian (as R-module). This includes all the finitary general linear groups FGL(V) of vector spaces V over fields and is studied in this generality in [12] and [13].

In [14] we considered a wide range of variations of the notion of a finitary group of automorphisms. Here we concentrate on the Artinian analogue of finitary groups, just over commutative rings. Thus we are primarily concerned with the subgroup

$$F_1 \operatorname{Aut}_R M = \{g \in \operatorname{Aut}_R M : M(g-1) \text{ is Artinian}\}\$$

of $\operatorname{Aut}_R M$. (The subscript 1 here is part of a more systematic notation and refers to the fact that a module is Artinian if and only if it has Krull dimension less than 1. An alternative notation for $F \operatorname{Aut}_R M$ would be $F^1 \operatorname{Aut}_R M$, since a module is Noetherian if and only if it has Krull codimension less than 1; see

©2003 University of Illinois

Received September 25, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 20H99, 20F28, 20K30.

[14].) Some information about the groups $F_1 \operatorname{Aut}_R M$, even for modules M over potentially non-commutative rings, is given in [14]; see especially [14, 1.2] and [14, 1.3]. Here, by restricting our ground rings R to being commutative we can derive stronger conclusions, of which the most obvious is the replacement of various cartesian products by direct products.

THEOREM 1. Let M be a module over the commutative ring R. Then the group $G = F_1 \operatorname{Aut}_R M$ contains a locally residually nilpotent normal subgroup N such that G/N embeds into a direct product of finitary linear groups over (commutative) fields.

More can be said about the normal subgroup N of Theorem 1. For example, it satisfies the natural analogue in this context of unipotence in linear groups; see below, especially Section 4. Not surprisingly, one can strengthen the conclusions of the theorem for locally finite groups.

COROLLARY. Let G be a locally finite subgroup of $F_1 \operatorname{Aut}_R M$.

- (a) The group G has a locally nilpotent normal subgroup modulo which G is a subdirect product of irreducible finitary linear groups.
- (b) If R is an algebra over the rationals Q, then G is isomorphic to a finitary linear group over the complex numbers C.
- (c) If R has characteristic a power of the prime p, then $G/O_p(G)$ is isomorphic to a finitary linear group of characteristic p (and $O_p(G)$ is locally nilpotent).

We give an example in Section 5 that shows that we cannot improve Theorem 1 by always choosing N to be $\langle 1 \rangle$. In fact, we give examples of R and M as above such that $F_1 \operatorname{Aut}_R M$ cannot be embedded into any cartesian product of finitary linear groups.

If M is Artinian, then $F_1 \operatorname{Aut}_R M = \operatorname{Aut}_R M$ and stronger conclusions can be drawn. Recall that a group is said to be *quasi-linear* if it can be embedded into a direct product of a finite number of linear groups of finite degree; equivalently, if it is isomorphic to a subgroup of some $\operatorname{GL}(n, J)$ for some integer n and some (cartesian) product J of a finite number of fields. Such groups arise naturally in many places (e.g., see [7, Chapter 13], [8] and [9, §6]).

THEOREM 2. Let M be an Artinian module over the commutative ring R. Then the group $G = \operatorname{Aut}_R M$ contains a locally residually nilpotent normal subgroup N such that G/N is quasi-linear.

COROLLARY. Let G be a locally finite subgroup of $\operatorname{Aut}_R M$, where M is Artinian.

(a) G is locally-nilpotent by quasi-linear.

- (b) If R is an algebra over the rationals Q, then G is abelian by finite and isomorphic to a linear group of finite degree over the complex numbers C.
- (c) If R has characteristic a power of the prime p, then $G/O_p(G)$ is isomorphic to a linear group of finite degree over the algebraic closure of the field of p elements (and again $O_p(G)$ is locally nilpotent).

If the ring R is itself Artinian, the Noetherian and the Artinian versions of finitary coincide. More generally, if M is a left module over the left Artinian ring R, then M is Noetherian if and only if M is Artinian (e.g., see [5, 3.25]), so $F_1 \operatorname{Aut}_R M = F \operatorname{Aut}_R M$. If instead the ring R is Noetherian, our conclusions are somewhat weaker.

THEOREM 3. Let M be a module over the commutative Noetherian ring R.

- (a) The group $G = F_1 \operatorname{Aut}_R M$ contains an abelian normal subgroup A such that G/A is isomorphic to a finitary group of automorphisms of some module over some commutative ring.
- (b) If also M is Artinian, then $\operatorname{Aut}_R M$ is quasi-linear.

We can use the finitary or the quasi-linear cases and Theorem 3 above simply to read off results. For example, Theorem 3(a) above and [13, Theorem 1] immediately yield the following.

COROLLARY. Let M be a module over the commutative Noetherian ring R.

- (a) A locally soluble subgroup of $F_1 \operatorname{Aut}_R M$ is hyperabelian, is abelian by (locally-nilpotent by abelian by locally-finite) and has a local system of soluble normal subgroups.
- (b) Let G be any subgroup of F₁ Aut_R M. Then G has a unique maximal locally soluble, normal subgroup, S say, S contains every ascendant (in particular every normal) locally soluble subgroup of G and S has a local system of soluble normal subgroups of G.

In connection with Theorem 3(b), note that if M is a Noetherian module over the commutative ring R, then $\operatorname{Aut}_R M$ is quasi-linear (see [8] or [9, 6.1]), if M is Artinian over the commutative ring R, then $\operatorname{Aut}_R M$ is not too far from being quasi-linear (by Theorem 2) and if M is Artinian over a commutative Noetherian ring, then $\operatorname{Aut}_R M$ is again quasi-linear by Theorem 3. In Section 5 we give an example of a module M over a commutative Noetherian ring R such that neither $F_1 \operatorname{Aut}_R M$ nor $F \operatorname{Aut}_R M$ is quasi-linear (or even embeddable into a cartesian product of finitary linear groups).

By an old theorem of Mal'cev [7, 4.2] finitely generated linear groups are residually finite. Our final theorem is a generalization of this.

THEOREM 4. Let M be a module over the commutative ring R. Then both $F \operatorname{Aut}_R M$ and $F_1 \operatorname{Aut}_R M$ are locally residually finite.

We show (by examples) that this is a particular phenomenon for $F \operatorname{Aut}_R M$ and $F_1 \operatorname{Aut}_R M$. It does not, for example, extend to $F_{\infty} \operatorname{Aut}_R M$, even if R is Noetherian.

2. General commutative rings

2.1. Let R be a commutative ring and let $\{1\} = U_0 < U_1 < \cdots < U_i < \cdots \leq \bigcup_{i\geq 0} U_i = M$ be a composition series for the R-module M. If U_1 is essential in M, then each U_{i+1}/U_i is isomorphic to U_1 .

Proof. Now $U_{i+1}/U_i \cong R/\mathfrak{m}_i$ for some maximal ideal \mathfrak{m}_i of R. Suppose $\mathfrak{m}_0 = \mathfrak{m}_1 = \cdots = \mathfrak{m}_{i-1} \neq \mathfrak{m}_i$. Then $\mathfrak{m}_0^i \mathfrak{m}_i U_{i+1} = \{0\}$. If $\mathfrak{m}_0^i U_{i+1} = \{0\}$, then \mathfrak{m}_0 kills U_{i+1}/U_i and $\mathfrak{m}_0 \leq \mathfrak{m}_i$. This is false, since $\mathfrak{m}_0 \neq \mathfrak{m}_i$ is maximal. Hence $\mathfrak{m}_0^i U_{i+1} \neq \{0\}$. But U_1 is irreducible and essential in M, so $U_1 \leq \mathfrak{m}_0^i U_{i+1}$. Hence $\mathfrak{m}_i U_1 \leq \mathfrak{m}_0^i \mathfrak{m}_i U_{i+1} = \{0\}$ and $\mathfrak{m}_i \leq \mathfrak{m}_0$, again a contradiction.

2.2. Let R be a commutative ring and $U \cong R/\mathfrak{m}$ an irreducible essential submodule of the R-module M. If either M is Artinian or R is Noetherian or M is Noetherian then

$$M = \bigcup_{1 \le j < \infty} \operatorname{ann}_M(\mathfrak{m}^j),$$

where $\operatorname{ann}_M(A) = \{x \in M : Ax = \{0\}\}$ for A any subset of R.

Proof. Suppose M is Artinian and let $x \in M \setminus \{0\}$. Then Rx is Artinian, so $R/\operatorname{ann}_R(x)$ is Artinian. By Hopkin's theorem (e.g., [1, 5.4.8]) it is also Noetherian, so Rx has a composition series of finite length, r say. By 2.1 we have $\mathfrak{m}^r x = \{0\}$ and the claim in this case follows.

If R is Noetherian, consider a finitely generated submodule W of M containing U. Then W is Noetherian and by the Artin-Rees lemma (e.g., [3, 11.C]) we have $\mathfrak{m}^r W = \{0\}$ for some integer r. Again the claim follows. If M is Noetherian, then so is $R/\operatorname{ann}_R(M)$ and the previous case applies.

2.3. Let R be a commutative ring, \mathfrak{m} a maximal ideal of R and M an R-module. Set $A_j = \operatorname{ann}_M(\mathfrak{m}^j)$ for each $j \ge 0$ and let G denote the centralizer in $\operatorname{Aut}_R M$ of A_1 . Then $[A_{j+1}, G] \le A_j$ for each $j \ge 0$.

Proof. Let $j \ge 1$ and suppose $[A_j, G] \le A_{j-1}$, a statement that is certainly true if j = 1. If $g \in G$, then $\mathfrak{m}A_{j+1}(g-1) \le A_j(g-1) \le A_{j-1}$. Thus $\mathfrak{m}^j A_{j+1}(g-1) \le \mathfrak{m}^{j-1}A_{j-1} = \{0\}$ and hence $A_{j+1}(g-1) \le A_j$. The claim follows.

Denote the socle of a module M by soc M.

2.4. Let M be a module over the ring R and let U be an irreducible submodule of M. Suppose V is a submodule of M that is maximal subject

to being an essential extension of U and suppose $\operatorname{soc} M = U \oplus W$. Then $\operatorname{soc}(M/V) = (V \oplus W)/V \cong W$.

Proof. Clearly $V \cap \operatorname{soc} M = U$ and $V \cap W = \{0\}$. Also $(V \oplus W)/V$ does lie in $\operatorname{soc}(M/V)$. If these are not equal there is some $X \leq M$ with $X \not\leq V \oplus W, V \leq X, (V \oplus W) \cap X = V$ and X/V irreducible. By the maximality of V, the submodule U is not essential in X, so there exists $Y \leq X$ with $Y \neq \{0\} = U \cap Y = V \cap Y$, the final equality being since U is essential in V. Then $U \oplus Y \leq X$ and $W \cap X \leq V \cap W = \{0\}$. Hence $Y \oplus \operatorname{soc} M = Y \oplus U \oplus W \leq M$. Further U is essential in V, so $Y \not\leq V$, $Y \oplus V = X$ and $Y \cong X/V$ is irreducible. This contradicts the definition of soc M and 2.4 follows.

2.5. COROLLARY. Let M be an Artinian module over the ring R. Then M has a series of submodules of finite length with uniform factors.

Proof. Let soc $M = U_1 \oplus U_2 \oplus \cdots \oplus U_n$, where each U_i is irreducible. By Zorn's lemma there is a submodule V_1 of M that is maximal subject to being an essential extension of U_1 . By 2.4 we have $\operatorname{soc}(M/V_1) = W_2 \oplus \cdots \oplus W_n$, where $W_i = (V_1 + U_i)/V_1$ is a copy of U_i . By induction on n there is a series

$$\{0\} = V_0 < V_1 < V_2 < \dots < V_n \le M,$$

where V_i/V_{i-1} is an essential extension of an irreducible submodule isomorphic to U_i , and consequently V_i/V_{i-1} is uniform, and $\operatorname{soc}(M/V_n) = \{0\}$. Also M/V_n is Artinian. Therefore $V_n = M$.

If \mathfrak{m} is a maximal ideal of the commutative ring R, call an R-module P an \mathfrak{m} -primary module if each of its elements is killed by some power of \mathfrak{m} . It follows that each composition factor of such a P is isomorphic to R/\mathfrak{m} (but not conversely in general).

2.6. Let \mathfrak{m} be a maximal ideal of the commutative ring R and suppose that \mathfrak{m}^r is Artinian and \mathfrak{m} -primary for some positive integer r. Then \mathfrak{m} is nilpotent.

Proof. Since \mathfrak{m}^r is Artinian, there is some $s \ge r$ with $\mathfrak{m}^s = \mathfrak{m}^{s+1}$. Let $x \in \mathfrak{m}^r$. Since \mathfrak{m}^r is \mathfrak{m} -primary, there exists j with $\mathfrak{m}^j x = \{0\}$. Thus $\mathfrak{m}^s x = \{0\}$ and so $\mathfrak{m}^s = \mathfrak{m}^{r+s} = \{0\}$. Thus \mathfrak{m} is nilpotent.

Let M be a module over the commutative ring R. If M contains a nonzero Artinian submodule, it contains an irreducible submodule, U_0 say. Then $U_0 \cong R/\mathfrak{m}_0$ for some maximal ideal \mathfrak{m}_0 of R. Set $M_1 = \bigcup_j \operatorname{ann}(\mathfrak{m}_0^j)$. Repeat with M/M_1 in place of M and keep going, transfinitely if necessary. We construct in this way maximal ideals \mathfrak{m}_σ of R for all $\sigma < \tau$ and submodules M_σ of M for $\sigma \leq \tau$, where $M_{\sigma+1}/M_\sigma = \bigcup_j \operatorname{ann}_{M/M_\sigma}(\mathfrak{m}_\sigma^j)$ and M/M_τ has no non-zero Artinian submodules. Each M_{σ} is fully invariant. Define $A_{\sigma,j}$ by $A_{\sigma,j}/M_{\sigma} = \operatorname{ann}_{M/M_{\sigma}}(\mathfrak{m}_{\sigma}^{j})$, so $A_{\sigma,0} = M_{\sigma}$. Then

$$\{0\} = A_{0,0} < A_{0,1} \le \dots \le A_{1,0} < A_{1,1} \le \dots \le M_{\tau} \le M$$

is a fully invariant ascending series of R-submodules of M.

Let $G = F_1 \operatorname{Aut}_R M$ and set $N = \bigcap_{\sigma < \tau} C_G(A_{\sigma,1}/M_{\sigma})$. Clearly G centralizes M/M_{τ} . From 2.3 it follows that N stabilizes the above series. In particular N is locally residually nilpotent by Hall and Hartley's Theorem A2 of [2]. Let $\rho_{\sigma} : \operatorname{End}_R M \to \operatorname{End}_{k_{\sigma}}(A_{\sigma,1}/M_{\sigma})$ be the natural map, where k_{σ} denotes the field R/\mathfrak{m}_{σ} . Then $G\rho_{\sigma} \leq \operatorname{FGL}(V_{\sigma})$ by [14, 2.2] for $V_{\sigma} = A_{\sigma,1}/M_{\sigma}$ regarded as a k_{σ} -space in the obvious way. Thus we obtain an embedding of G/N into $\prod_{\sigma < \tau} \operatorname{FGL}(V_{\sigma})$.

Let $g \in G$. We claim that $g\rho_{\sigma} = 1$ for almost all $\sigma < \rho$. If so we will have that G/N embeds into the direct product $\times_{\sigma < \tau} \operatorname{FGL}(V_{\sigma})$. Suppose $M(g-1) \cap M_1 \neq \{0\}$. Then M(g-1) contains a copy U_0 of the irreducible R-module R/\mathfrak{m}_0 . Let $W_0 \geq U_0$ be maximal subject to being an essential extension of U_0 in M(g-1). Since M(g-1) is Artinian, we have $W_0 \leq M_1$ by 2.2. Clearly $M_1/W_0 \leq \bigcup_{j\geq 1} \operatorname{ann}_{M/W_0}(\mathfrak{m}_0^j)$. In fact we have equality here: for suppose $x \in M$ with $x + W_0$ in the right-hand side. There exists a positive integer r with $\mathfrak{m}_0^r x \leq W_0$ and the latter is Artinian and \mathfrak{m}_0 -primary. By 2.6 applied to $R/\operatorname{ann}_R(x)$, there is a positive integer s with $\mathfrak{m}_0^s \leq \operatorname{ann}_R(x)$, that is, with $\mathfrak{m}_0^s x = \{0\}$, so $x \in M_1$. By 2.4 we can apply induction on the composition length n of the socle of M(g-1) to M/W_0 to deduce that $g\rho_{\sigma} = 1$ for all but n of the ρ_{σ} .

Suppose M is Artinian. Then $n_{\sigma} = \dim V_{\sigma}$ is finite for every $\sigma < \tau$ and ρ_{σ} maps G into $\operatorname{GL}(n_{\sigma}, k_{\sigma})$. Also τ is at most the composition length of the socle of M (for let $W_0 \leq M$ be maximal subject to being an essential extension of U_0 and apply induction to M/W_0 ; cf. the previous argument using 2.4 and 2.6). Actually it is easy to see that τ is the number of non-zero homogeneous components of the socle of M. Finally M/M_{τ} is Artinian, so $M = M_{\tau}$. We have now proved the following result.

2.7. THEOREM. Let M be a module over the commutative ring R and let G be a subgroup of $F_1 \operatorname{Aut}_R M$. Then there is an exact sequence

$$1 \longrightarrow N \longrightarrow G \longrightarrow \underset{\sigma < \tau}{\times} \operatorname{FGL} (V_{\sigma}),$$

where N stabilizes an ascending series in M and in particular is locally residually nilpotent, and V_{σ} is a vector space over some field image k_{σ} of R. If M is Artinian as R-module we can choose τ to be finite and choose each V_{σ} to be finite dimensional; in particular G/N is then quasi-linear.

Of course Theorems 1 and 2 follow at once from 2.7. Unlike the finitary case, that is, unlike the case of $F \operatorname{Aut}_R M$ (see [13, 2.2, 3.2 and 3.7]), the

subgroup N constructed in the proof of 2.7 need not be locally nilpotent or even locally soluble, even if M is Artinian. For example, let $R = \mathbb{Z}$, the integers, and let M be the direct sum of two Prüfer p^{∞} -groups for some prime p. Then $F_1 \operatorname{Aut}_R M = \operatorname{Aut}_R M = \operatorname{GL}(2, \mathbb{Z}_p)$ and $N = \{x \in G : x \equiv 1 \mod p\}$. In this case N contains free subgroups of rank 2. (Here \mathbb{Z}_p denotes the p-adic integers.)

If R is a Noetherian commutative ring we can do rather better than 2.7, as we shall see in the next section.

3. Noetherian rings

For the moment we consider again Artinian modules over an arbitrary commutative ring. Suppose $\{0\} < U < V$ is a series of *R*-modules with *U* and V/U irreducible. If *U* is essential in *V*, then $V/U \cong U$ by 2.1. If not, there is a proper submodule *W* of *V* with $U \cap W = \{0\}$. Then U + W = Vand $V = U \oplus W$. Hence $\{0\} < W < V$ is a series of *V* with *W* isomorphic to V/U and V/W isomorphic to *U*. In this way we can feed non-isomorphic composition factors of a module past each other. Thus a module *M* of positive finite composition length can be uniquely written as a direct sum $M = \oplus P_i$, where P_i is \mathfrak{m}_i -primary and non-zero and the \mathfrak{m}_i are finitely many distinct maximal ideals of *R*. Note that for each \mathfrak{m}_i there is an irreducible submodule of *M* isomorphic to R/\mathfrak{m}_i .

Now assume that M is Artinian and non-zero. Each finitely generated submodule of M has finite composition length, as does the socle of M. Thus an elementary localization argument shows that $M = \oplus P_i$ exactly as in the previous case. (More generally, the same conclusion holds if M is just locally Artinian, meaning that each finitely generated submodule of M is Artinian, except that now there may be infinitely many distinct maximal ideals \mathfrak{m}_i .) Clearly the P_i are fully invariant. Thus we have the following result.

3.1. Let M be a non-zero Artinian (or just locally Artinian) R-module. Then we have ring isomorphisms $\operatorname{End}_R M \cong \operatorname{End}_R(\oplus P_i) \cong \prod \operatorname{End}_R P_i$ and group isomorphisms $\operatorname{Aut}_R M \cong \operatorname{Aut}_R(\oplus P_i) \cong \prod \operatorname{Aut}_R P_i$.

From now on in this section assume that R is also Noetherian. Let M be Artinian and m-primary, so the socle of M is a direct sum of a finite number, n say, of copies of $U = R/\mathfrak{m}$. Now $M = \bigcup_j \operatorname{ann}_M(\mathfrak{m}^j)$. Hence M is naturally a module over the inverse limit S of the R/\mathfrak{m}^j (taken over j = 1, 2, ...). Then S is a complete local ring and S is Noetherian (by [9, 2.14] for example). Let E denote the injective hull of U over S and set $M^* = \operatorname{Hom}_S(M, E)$. Then M^* is Noetherian [5, 5.19]. Consequently [9, Theorem 6.1] yields that $\operatorname{Aut}_S M^*$ is quasi-linear. Clearly $\operatorname{Aut}_R M = \operatorname{Aut}_S M \to \operatorname{Aut}_S M^*$, the map here, σ say, being given by $(\phi\sigma)\eta = \phi\eta$ for $\phi \in \operatorname{Aut}_S M$ and $\eta \in M^*$ (alternatively $\eta(\phi\sigma) = \phi^{-1}\eta$ if you prefer $\operatorname{Aut}_S M$ and $\operatorname{Aut}_S M^*$ to act on the same side). Suppose $\phi \neq 1$. There exists some x in M with $x\phi \neq x$. By [5, 2.24] there exists η in M^* with $(x\phi - x)\eta \neq 0$. Then $(\phi\sigma)\eta = \phi\eta \neq \eta$ and so $\phi\sigma \neq 1$. Therefore $\operatorname{Aut}_R M$ embeds into $\operatorname{Aut}_S M^*$ and consequently it too is quasi-linear.

If M is Artinian, but not necessarily primary, we can write $M = \bigoplus P_i$ as in 3.1 and apply the above to each P_i . Thus again we obtain that $\operatorname{Aut}_R M$ is quasi-linear. We have now proved the following result.

3.2. THEOREM. Let M be an Artinian module over the commutative Noetherian ring R. Then $\operatorname{Aut}_R M$ is quasi-linear.

3.3. PROPOSITION. Let R be a complete local commutative Noetherian ring with maximal ideal \mathfrak{m} . Let E denote the injective hull of R/\mathfrak{m} over R and for any R-module M set $M^* = \operatorname{Hom}_R(M, E)$. Then $F_1 \operatorname{Aut}_R M$ embeds into F $\operatorname{Aut}_R M^*$ and F $\operatorname{Aut}_R M$ embeds into $F_1 \operatorname{Aut}_R M^*$,

Proof. Let $g \in F_1 \operatorname{Aut}_R M$ and set X = M(g-1). Then X^* embeds into M^* via

 $\gamma: \psi \longmapsto (g-1)\psi \quad \text{for } \psi \in X^*.$

If $\phi \in M^*$, then $(g-1)\phi = (g-1)\phi|_X \in X^*\gamma$. Thus $(g-1)M^* \leq X^*\gamma$. By [5, 5.19] the module X^* is Noetherian, so $(g-1)M^*$ is too. Thus the standard map $(\eta \mapsto (\phi \mapsto \eta \phi))$ of $\operatorname{End}_R M$ to $\operatorname{End}_R M^*$ maps $F_1\operatorname{Aut}_R M$ homomorphically into $F\operatorname{Aut}_R M^*$.

Let $\eta \in \operatorname{End}_R M$ with $\eta \neq 0$. Pick $x \in M$ with $x\eta \neq 0$. By [5, 2.24] there is some ϕ in M^* with $x\eta\phi \neq 0$. Then $\eta\phi \neq 0$ and so $\operatorname{End}_R M$ embeds into $\operatorname{End}_R M^*$. The first claim of the proposition follows. The proof of the second is similar, using [5, 5.18] in place of [5, 5.19]. (For this second part the completeness of R is not required.)

3.4. THEOREM. Let M be a module over the commutative Noetherian ring R and set $G = F_1 \operatorname{Aut}_R M$. Then there is a commutative ring S and an S-module L and a homomorphism ϕ of G into $F \operatorname{Aut}_S L$ with the kernel of ϕ abelian.

Note that Theorem 3 follows from 3.2 and 3.4. I do not know whether in 3.4 one can choose S to be Noetherian, nor whether one can choose ϕ to be an embedding.

Proof. Let N be the sum of all the Artinian submodules of M. Then N is locally Artinian. If $X \leq G$ is finitely generated, then [M, X] is Artinian (e.g., [14, 2.1]). In particular $[M, G] \leq N$. Thus we have an exact sequence

$$1 \longrightarrow C_G(N) \longrightarrow G \longrightarrow F_1 \operatorname{Aut}_R N,$$

where by stability theory $C_G(N)$ embeds into $\operatorname{Hom}_R(M/N, N)$ and in particular $C_G(N)$ is abelian.

Now $N = \bigoplus_{m} P_{\mathfrak{m}}$, where \mathfrak{m} ranges over the maximal ideals of R and each $P_{\mathfrak{m}}$ is \mathfrak{m} -primary; see 3.1 and its proof. Let $g \in F_1 \operatorname{Aut}_R N$ and set X = N(g-1). Then X is Artinian, so X is a direct sum of only finitely many of its primary components and the \mathfrak{m} -primary component of X is $X \cap P_{\mathfrak{m}}$. Thus $X \cap P_{\mathfrak{m}} = \{0\}$ for almost all \mathfrak{m} and g induces the identity map on almost all the $P_{\mathfrak{m}}$. Therefore $F_1 \operatorname{Aut}_R N$ embeds into $\times_{\mathfrak{m}} F_1 \operatorname{Aut}_R P_{\mathfrak{m}}$. Let $S_{\mathfrak{m}}$ denote the inverse limit of the R/\mathfrak{m}^j (taken over $j \ge 1$) and let $P_{\mathfrak{m}}^*$ denote the group of $S_{\mathfrak{m}}$ -homomorphisms of $P_{\mathfrak{m}}$ into the injective hull of R/\mathfrak{m} over $S_{\mathfrak{m}}$. Then $F_1 \operatorname{Aut}_R P_{\mathfrak{m}}$ embeds into $F \operatorname{Aut}_{s_{\mathfrak{m}}}(P_{\mathfrak{m}})^*$; see 3.3. Thus $F_1 \operatorname{Aut}_R N$ embeds into $\times_{\mathfrak{m}} F \operatorname{Aut}_{s_{\mathfrak{m}}}(P_{\mathfrak{m}})^*$. The latter embeds into $F \operatorname{Aut}_S L$ for $S = \prod_{\mathfrak{m}} S_{\mathfrak{m}}$ and $L = \bigoplus_{\mathfrak{m}}(P_{\mathfrak{m}})^*$. The theorem is proved.

The proof of 3.4 above also shows the following (note that N = M here).

3.5. Let M be a locally Artinian module over the commutative Noetherian ring R. Then there is a commutative ring S and an S-module L such that $F_1 \operatorname{Aut}_R M$ is embeddable into $F \operatorname{Aut}_R M$.

4. Some applications

In this section we assume the notation of 2.7 and its proof. Let G be a subgroup of $F_1 \operatorname{Aut}_R M$. By [14, 4.6] the group G has a unique maximal normal s-subgroup s(G), an s-subgroup being a subgroup S of $\operatorname{Aut}_R M$ such that each finitely generated subgroup of S stabilizes some ascending series of R-submodules of M. Now s(G) acts as an s-subgroup on each section of M [14, 4.2] and in particular on each $V_{\sigma} = A_{\sigma,1}/M_{\sigma}$. Consequently $s(G)\rho_{\sigma} \leq s(G\rho_{\sigma})$ and hence $s(G) \leq \bigcap_{\sigma < \tau} (s(G\rho_{\sigma}))\rho_{\sigma}^{-1} \cap G$.

Suppose $G \leq F_1 \operatorname{Aut}_R M$ is such that $G\rho_{\sigma}$ is an *s*-subgroup of $\operatorname{FGL}(V_{\sigma})$ for every $\sigma < \tau$. If G_1 is a finitely generated subgroup of G and if \mathfrak{g}_1 is the obvious image of the augmentation ideal of the group ring $\mathbb{Z}G_1$ in $\operatorname{End}_R M$, then $V_{\sigma}\mathfrak{g}_1^r = \{0\}$ for some integer $r = r(\sigma)$. As in the proof of 2.3 we obtain $A_{\sigma,j+1}\mathfrak{g}_1^r \leq A_{\sigma,j}$ for each $j \geq 0$. (Specifically, if $A_{\sigma,j}\mathfrak{g}_1^r \leq A_{\sigma,j-1}$, then $\mathfrak{m}_{\sigma}A_{\sigma,j+1}\mathfrak{g}_1^r \leq A_{\sigma,j-1}$, so $\mathfrak{m}_{\sigma}^j(A_{\sigma,j+1}\mathfrak{g}_1^r) \leq M_{\sigma}$ and so $A_{\sigma,j+1}\mathfrak{g}_1^r \leq A_{\sigma,j}$, as required.) Thus G_1 stabilizes an ascending series in M and so G is an *s*subgroup.

Now let G be any subgroup of $F_1 \operatorname{Aut}_R M$. The previous paragraph shows that $\bigcap_{\sigma < \tau} (s(G\rho_{\sigma}))\rho_{\sigma}^{-1} \cap G$ is an s-subgroup that is clearly normal in G. Therefore we have proved the following (since the second claim follows from the first and the finitary linear case).

4.1. Let G be a subgroup of $F_1 \operatorname{Aut}_R M$ for M a module over the commutative ring R. Then $s(G) = \bigcap_{\sigma < \tau} (s(G\rho_{\sigma}))\rho_{\sigma}^{-1} \cap G$ and G/s(G) is a subdirect product of irreducible finitary linear groups.

B. A. F. WEHRFRITZ

4.1 looks superficially like a special case of [14, 4.6], but this is not so since the ρ_{σ} of [14, 4.6] are not the same as the ρ_{σ} of 4.1 above. In fact one can choose the former so that the latter form a subset of the former. Continuing with the notation of 2.7, analogous to [14, 4.5 and 4.17] we have the following.

4.2. Let $G \leq F_1 \operatorname{Aut}_R M$, where M is a module over the commutative ring R. The following three conditions are equivalent.

- (a) G is an s-subgroup.
- (b) Each $G\rho_{\sigma}$ is a stability subgroup of $FGL(V_{\sigma})$.
- (c) Each $\mathfrak{g}\rho_{\sigma}$ is locally nilpotent.

(\mathfrak{g} is the image of the augmentation ideal of the group ring $\mathbb{Z}G$ in $\operatorname{End}_R M$.) If $g \in F_1 \operatorname{Aut}_R M$, the following are equivalent.

- (d) The element g is a u-element (i.e., $\langle g \rangle$ is an s-subgroup).
- (e) Each $g\rho_{\sigma}$ for $\sigma < \tau$ is unipotent.

Proof. Now (a) implies (c) by [14, 4.1 and 4.2]. Also (b) and (c) are equivalent by the finitary linear case. Further (b) implies that G = s(G) by 4.1, so (a) holds. Therefore (a), (b) and (c) are equivalent. Now set $G = \langle g \rangle$. Then g is a u-element if and only if G is an s-subgroup and $g\rho_{\sigma}$ is unipotent if and only if $\mathfrak{g}\rho_{\sigma}$ is nilpotent. Thus the equivalence of (a) and (c) yields the equivalence of (d) and (e).

4.3. Let $G \leq F_1 \operatorname{Aut}_R M$, where M is a module over the commutative ring R. Then G is a u-subgroup (i.e., has all its elements u-elements) if and only if G is an s-subgroup.

Proof. The result holds classically for linear groups of finite degree and consequently holds (almost immediately) for finitary linear groups. Thus it holds for subgroups of the FGL(V_{σ}). Therefore 4.3 follows from 4.2.

Note that a similar argument does not apply to the situation in [14], for there the V_{σ} are only vector spaces over division rings and the conclusion is not known to hold for skew linear groups of finite degree (see [6, §1.3] for a discussion of this). If R is a Q-algebra, then a similar result does hold in general, even for subgroups of $F_{\infty} \operatorname{Aut}_R M$ (cf. [14, 4.17]). Possibly 4.3 still holds for R commutative and subgroups of $F_{\infty} \operatorname{Aut}_R M$.

4.4. Proof of the Corollary to Theorem 1. (a) Set H = s(G) and apply 4.1. By [14, 4.6] the group H is locally residually nilpotent. Since H is also locally finite, so H is locally nilpotent.

(b) By [14, 4.12(a)] we have $H = \langle 1 \rangle$. If K is a locally finite, irreducible finitary linear group of characteristic 0, then K has a faithful finitary linear representation over the complex field (cf. the proof of [11, Corollary 3(a)]).

Part (b) follows since a direct product of finitary linear groups over the same field k is isomorphic to a finitary linear group over k.

(c) Here $H = O_p(G)$ by [14, 4.12(b)]. A set of fields of characteristic p can all be embedded into a single field of characteristic p. Part (c) follows.

4.5. Proof of the Corollary to Theorem 2. (a) By 2.7 we have G/N quasilinear and $N \leq s(G)$ is locally nilpotent as in 4.4(a).

(b) Here each char $k_{\sigma} = 0$ and $N \leq s(G) = \langle 1 \rangle$; see 4.4(b). Thus G is (quasi-)linear of characteristic zero. Therefore G is abelian-by-finite by Schur's theorem [7, 9.4] and G is isomorphic to a linear group of finite degree over the complex numbers.

(c) This follows from the Winter-Zalesskii theorem (see the proof of [7, 9.5] or see [6, 2.3.1]).

5. Examples

Throughout this section p denotes a prime, P a Prüfer p^{∞} -group, U =Aut P the group of units of the p-adic integers \mathbb{Z}_p and G = UP the split extension of P by U.

5.1. If $\phi : G \to GL(n, F)$ is a homomorphism, for n an integer and F a field, then $P\phi = \langle 1 \rangle$.

Proof. If $P\phi \neq \langle 1 \rangle$, then $P\phi$ is isomorphic to P, so char $F \neq p$ and $(G : C_G(P\phi))$ is finite, the latter by [7, 1.6 and 1.12]. But $(\ker \phi) \cap P$ is finite, so $(G : C_G(P)) = |U|$ is finite, which is false. Therefore $P\phi = \langle 1 \rangle$.

5.2. The group G is not quasi-linear, does not embed into the automorphism group of a Noetherian module over a commutative ring and does not embed into the automorphism group of an Artinian module over a commutative Noetherian ring.

Proof. Apply 5.1, [9, 6.1] (or [8] if you prefer) and 3.2 above.

5.3. Let $\phi : G \to \text{FGL}(_DV)$ be a homomorphism, where V is a left vector space over the division ring D. If $P\phi$ is unipotent, then $P\phi = \langle 1 \rangle$.

Proof. Now U contains an element x of infinite order. Then [P, x] = P and $\langle x^G \rangle = \langle x \rangle P$. Assuming $P\phi$ is unipotent, we have $P\phi \leq u(\langle x\phi^{G\phi} \rangle)$. By the proof of [10, 2.3] the group $P\phi$ stabilizes a finite series in V, say of length r. If char D = 0, then $P\phi$ is torsion-free. If not, then $P\phi$ has finite exponent dividing $(\operatorname{char} D)^{r-1}$. Either way $P\phi = \langle 1 \rangle$.

5.4. Let $\phi : G \to \text{FGL}(_FV)$ be a homomorphism, where V is a vector space over the field F. Then $P\phi = \langle 1 \rangle$.

The group G does embed into $\operatorname{GL}(n, D)$ for a suitable positive integer n and division ring D, for example of characteristic 0, so we do need to restrict D in 5.4. (For example, U contains a torsion-free (abelian) subgroup W of finite index p - 1. Let F be the subfield of the complex numbers generated by all p-th power roots of unity. There is an obvious action of U and hence W on F. Let D be the division ring of quotients of the skew group ring of W over F (see [6, 1.4.3]). Then G embeds into $\operatorname{GL}(2(p-1), D)$.)

Proof. If V is FG-irreducible, then dim_F V is finite, since G is soluble (see [4, Theorem A]). In this case $P\phi = \langle 1 \rangle$ by 5.1. In general this shows that $P\phi \leq u(G\phi)$. Consequently $P\phi = \langle 1 \rangle$ by 5.3.

5.5. The group G cannot be embedded into any cartesian product of finitary linear groups.

Proof. This follows from 5.4.

5.6. Set $R = \mathbb{Z}$, the integers, and $M = \mathbb{Z} \oplus P$. Then G embeds into $F_1 \operatorname{Aut}_R M$.

Of course R here is Noetherian, while M is neither Artinian nor Noetherian.

Proof. We have

$$\operatorname{End}_R M = \begin{pmatrix} \operatorname{End} \mathbb{Z} & \operatorname{Hom}(\mathbb{Z}, P) \\ 0 & \operatorname{End} P \end{pmatrix} = \begin{pmatrix} R & P \\ 0 & \mathbb{Z}_p \end{pmatrix}.$$

Set $G_1 = \begin{pmatrix} 1 & P \\ 0 & U \end{pmatrix} \leq \operatorname{Aut}_R M$. Clearly G_1 and G are isomorphic. If $u \in U$ and if $x \in P$, then

$$M\left(\begin{pmatrix}1&0\\0&u\end{pmatrix}-1\right) = P(u-1) \le P$$
 and $M\left(\begin{pmatrix}1&x\\0&1\end{pmatrix}-1\right) = \mathbb{Z}x \le P.$

Since P is Artinian we have $G_1 \leq F_1 \operatorname{Aut}_R M$, as required.

5.7. Set $R = \mathbb{Z}_p$ and $M = \mathbb{Z}_p \oplus P$. Then G can be embedded into both $F \operatorname{Aut}_R M$ and $F_1 \operatorname{Aut}_R M$.

Proof. We have

$$\operatorname{End}_R M = \begin{pmatrix} \mathbb{Z}_p & P\\ 0 & \mathbb{Z}_p \end{pmatrix}.$$

Set $G_2 = \begin{pmatrix} U & P \\ 0 & 1 \end{pmatrix} \leq \operatorname{Aut}_R M$. Clearly G_2 and G are isomorphic. With u in U and x in P as before, we have

$$M\left(\begin{pmatrix} u & 0\\ 0 & 1 \end{pmatrix} - 1\right) = \mathbb{Z}_p(u-1) \quad \text{and} \quad M\left(\begin{pmatrix} 1 & x\\ 0 & 1 \end{pmatrix} - 1\right) = \mathbb{Z}_p x = \langle x \rangle \le P.$$

Thus $G_2 \le F \operatorname{Aut}_R M.$

As in the proof of 5.6, set $G_1 = \begin{pmatrix} 1 & P \\ 0 & U \end{pmatrix}$, but working now over the current ring R. Then as in the proof of 5.6 we have $G \cong G_1 \leq F_1 \operatorname{Aut}_R M$.

Of course here R is a Noetherian complete local ring, while M is neither Artinian nor Noetherian.

5.8. Set $R = \mathbb{Z}_p \oplus P$, where $PP = \{0\}$. Then G embeds into GL(2, R).

Proof. G is isomorphic to $\binom{U \ 0}{P \ 1} \leq \operatorname{GL}(2, R)$ with $U \leq \mathbb{Z}_p \leq R$ and $P \leq R$ as given.

6. Residual properties

6.1. Let G be a finitely generated subgroup of $F_1 \operatorname{Aut}_R M$, where M is a module over the commutative ring R, and let X be a finite subset of M. Then

$$RXG = \sum_{x \in X, \ g \in G} Rxg$$

is finitely R-generated.

Proof. By [14, 2.1] we have that N = [M, G] is *R*-Artinian. Set $S_0 = \{0\} \leq N$ and define S_k inductively for k > 0 by $S_{k+1}/S_k = \operatorname{soc}(N/S_k)$. ($\{S_k\}$ is the upper socle series of N.) Then N is the union of the S_k (use Hopkin's Theorem) and each S_k is *R*-Noetherian as well as *R*-Artinian. Clearly $S_kG \leq S_k$ for each k.

Suppose $X = \{x_1, x_2, \ldots, x_m\}$ and $G = \langle g_1, g_2, \ldots, g_n \rangle$. Then each $x_i(g_j - 1)$ lies in $N = \bigcup_{k \ge 0} S_k$, so there exists k with $x_i(g_j - 1) \in S_k$ for all i and j. Then $RXG \le RX + S_k$, so $RXG = RX + (RXG \cap S_k)$. Also S_k is R-Noetherian, so $RXG \cap S_k$ is finitely R-generated. Consequently so too is RXG.

6.2. Let G be a finitely generated subgroup of $\operatorname{Aut}_R M$ for M a module over the commutative ring R. Under each of the following three conditions the group G is residually finite.

- (a) M is finitely R-generated.
- (b) $G \leq F \operatorname{Aut}_R M$.
- (c) $G \leq F_1 \operatorname{Aut}_R M$.

Theorem 4 follows at once from 6.2.

Proof. (a) By [7, 13.4] we may assume that R too is finitely generated (as a ring) and hence that R is Noetherian. Then G is quasi-linear (by [8] or [9, §6]) and hence G is residually finite by the linear case [7, 4.2].

(b) By [13, 2.3(c)] we may assume that M is finitely R-generated. The claim then follows from Part (a).

B. A. F. WEHRFRITZ

(c) By 6.1 the group G acts residually on the finitely R-generated R-G sub-bimodules of M. Thus again we may assume that M is finitely generated and apply Part (a).

6.3. EXAMPLE. Let $J = \mathbb{Z}[1/2] \leq \mathbb{Q}$, let N be the Z-submodule of the matrix ring $J^{3\times 3}$ of all matrices with zeros above the diagonal and with equal integers in the (1, 1) and (3, 3) positions, let

$$H = \left\langle \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \right\rangle \le \operatorname{GL}(3, J),$$

set $M = N/\mathbb{Z}e_{31}$ as \mathbb{Z} -module, where $\{e_{ij}\}$ denotes the set of standard matrix units, and put $G = H/\langle (1 + e_{31}) \rangle$. Then G is a 3-generator, soluble (even nilpotent-of-class-2 by cyclic) group, whose center is a Prüfer 2^{∞}-group. In particular G is not residually finite.

The group G acts faithfully on M via right multiplication of H on N, so we can regard G as a subgroup of $\operatorname{Aut}_{\mathbb{Z}} M$. It is easy to check that M has Krull dimension 1 and Krull codimension 1, for M has a series of length 8 with four Prüfer 2^{∞}-factors and four infinite cyclic factors. Thus we have

$$G \leq \operatorname{Aut}_{\mathbb{Z}} M = F_2 \operatorname{Aut}_{\mathbb{Z}} M = F^2 \operatorname{Aut}_{\mathbb{Z}} M = F_{\infty} \operatorname{Aut}_{\mathbb{Z}} M,$$

and trivially \mathbb{Z} is Noetherian. Also G does not embed into either $F \operatorname{Aut}_S L$ or $F_1 \operatorname{Aut}_S L$ for any module L over any commutative ring S, by 6.2.

Of course the integer 2 in the above construction can be replaced by any integer prime.

The first conclusion of the following remark is slightly stronger than local residual finiteness.

- **6.4**. Let M be a module over the commutative ring R.
- (a) If M is Artinian, then $\operatorname{Aut}_R M$ is residually linear-of-finite-degree.
- (b) If M is locally Artinian, then $F \operatorname{Aut}_R M$ and $F_1 \operatorname{Aut}_R M$ are both residually nilpotent-by-finitarily linear.

Proof. In either case, define $S_k \leq M$ for each $k \geq 0$ by $S_0 = \{0\}$ and $S_{k+1}/S_k = \operatorname{soc}(M/S_k)$. Then $\bigcup_k S_k = M$ and $\bigcap_k C_G(S_k) = \langle 1 \rangle$. Thus we may assume that $M = S_k$ for some k.

(a) Since M is Artinian, each S_{i+1}/S_i has finite composition length and so $M = S_k$ is Noetherian. Consequently $\operatorname{Aut}_R M$ is quasi-linear and hence clearly residually linear-of-finite-degree.

(b) Since $M = S_k$, each Noetherian submodule of M is Artinian and conversely. Thus $F \operatorname{Aut}_R M = F_1 \operatorname{Aut}_R M$, = G say. Also M is a direct sum of its primary components (see Section 3), so we may suppose that M is m-primary for some maximal ideal \mathfrak{m} of R. Assume the notation of 2.7 and its proof.

Then $\mathfrak{m}_0 = \mathfrak{m}$ and $A_{0,k} = M$. Hence $N = C_G(A_{0,1})$ stabilizes the series $\{A_{0,j}\}$ and consequently N is nilpotent of class less than k (assuming $M \neq \{0\}$, so $k \geq 1$). Finally G/N embeds into FGL(V_0). The proof is complete.

References

- P. M. Cohn, Algebra. Vol. 2, second ed., John Wiley & Sons Ltd., Chichester, 1989. MR 91b:00001
- [2] P. Hall and B. Hartley, The stability group of a series of subgroups, Proc. London Math. Soc. (3) 16 (1966), 1–39. MR 33#173
- [3] H. Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 42#1813
- [4] U. Meierfrankenfeld, R. E. Phillips, and O. Puglisi, *Locally solvable finitary linear groups*, J. London Math. Soc. (2) 47 (1993), 31–40. MR 94c:20064
- [5] D. W. Sharpe and P. Vámos, *Injective modules*, Cambridge University Press, London, 1972. MR 50#13153
- [6] M. Shirvani and B. A. F. Wehrfritz, *Skew linear groups*, London Mathematical Society Lecture Note Series, vol. 118, Cambridge University Press, Cambridge, 1986. MR 89h:20001
- B. A. F. Wehrfritz, Infinite linear groups. An account of the group-theoretic properties of infinite groups of matrices, Springer-Verlag, New York, 1973. MR 49#436
- [8] _____, Automorphism groups of Noetherian modules over commutative rings, Arch. Math. (Basel) 27 (1976), 276–281. MR 53#13367
- [9] _____, Lectures around complete local rings, Queen Mary College Department of Pure Mathematics, London, 1979. MR 80k:13014
- [10] _____, Locally soluble finitary skew linear groups, J. Algebra 160 (1993), 226–241. MR 94m:20080
- [11] _____, Locally finite finitary skew linear groups, Proc. London Math. Soc. (3) 83 (2001), 71–92. MR 2002a:20054
- [12] _____, Nilpotence in finitary groups over commutative rings, Comm. Algebra 30 (2002), 1417–1435. MR 2003b:20075
- [13] _____, Finitary automorphism groups over commutative rings, J. Pure Appl. Algebra 172 (2002), 337–346. MR 2003b:20076
- [14] _____, On generalized finitary groups, J. Algebra **247** (2002), 707–727. MR **2002m**:20085

School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, England

E-mail address: b.a.f.wehrfritz@qmul.ac.uk